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Forest Site Index Mapping 
and Modeling 

Employing Landsat MSS imagery and a unified, multivariate data 
base, 97 percent accuracy was achieved in a test site in the 
coniferous forests of Northcentral Colorado. 

most ~ractical. consistent, and generally useful in- 

OREST SITE PRODUCTIVITY expresses the com- dicator of fore'st site (Davis, 1954). 

ined influence of the biotic, climatic, and F b .  
PRESENT SITE EVALUATION APPROACHES e d a ~ h i c  conditions on the timber-growing caDac- 

ity of wildlands (Davis, 1954). ~ i t e i r o d u s i v i i ~  in On-the-ground site index evaluations are de- 
even-aged American forests is commonly desig- rived through field measurements of volume per 
nated by a site index number which relates tree tree in relation to age, soil factors, and lesser veg- 
species height to age. That is, site productivity is etation, and tree height in relation to age. How- 

ABSTRACT: Forest site productivity refers to the timber-growing capacity of 
wildlands, and is commonly designated by a site index number which relates 
tree species height to age. Landscape modeling was used to merge a single 
summer Landsat scene of four MSS bands and six MSS band ratios with nine 
ancillary map variables, including topographic elevation, slope, aspect, solar 
radiation, four MSS insolation band ratios, and photointerpreted vegetation 
type, to predict and map forest site productivity with a supervised nonparamet- 
ric classifier. The stepwise linear discriminant classification of 37 randomly 
selected field inventory plots into nine site index classes yielded a tmining set 
accuracy of 43 percent using only the four basic MSS bands and 68 percent 
using only the five basic ancillary map variables, but achieved 97 percent accu- 
racy using all 19 image and map variables. Total direct mapping cost was $19 
per square mile, or $1,060 for the entire 7"12-minute quadrangle. Flexibility of 
data input and analysis with landscape modeling indicated that further site 
classification accuracy gains andlor cost reductions were possible. However, the 
real value of such a unified, multivariate data base lies not in just a single- 
purpose function, but in its applicability to a wide range of resource manage- 
ment, planning, and research areas. 

defined as the average height of sample canopy 
trees in pure, even-aged stands at selected index 
ages, usually 50 or 100 years (Alexander, 1966; 
Jones, 1969). For example, site index 125 on a 
100-year base means that the dominant and codom- 
inant trees averaged 125 feet (38.1 m) in height 
at 100 years of age (Tom and Miller, 1979). Tree 
height in relation to age has been found to be the 

ever, measurements of volume and growth on an 
area are time-consuming and expensive jobs, par- 
ticularly ifdone only to measure site (Davis, 1954). 

The most successful methods for site classifica- 
tion from aerial photographs have involved the 
recognition of topographic classes (ridge top, 
upper slope, lower slope, and bottom land) and 
generalized soil textural classes (sands and 
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gravels, loams, silts, and clays). Forest site quality 
is generally well correlated with a combination of 
these two factors. Site can be classified on aerial 
photographs, therefore, but not always in the same 
terms or on the same schemes as are used on the 
ground (Spurr, 1960). 

More recent alternatives to direct field or air- 
photo measurement currently include vegetation 
classification and ordination, plus a number of en- 
vironmental approaches including soil-site equa- 
tions, forest soil classification and mapping as 
done in the United States and Germany, and the 
ordination of vegetation and physical environ- 
ments into moisture, nutrient, and temperature re- 
gimes (Jones, 1969). All vegetation and environ- 
mental approaches, like direct measurement, re- 
quire site productivity parameters for which there 
are no inexpensive, readily available surrogates. 

Foresters traditionally have been concerned 
with the spatial distribution of site productivity 
over large land holdings. A major need for many 
federal, state, and private forest managers has 
been for a regional site productivity map. Site pro- 
ductivity has a profound effect on the volume, 
value, and timber species that can be best grown 
on an area. While foresters can manipulate timber 
density, species composition, quality, and stem 
size distribution through cutting, the potential 
productivity is controlled by the site (Davis, 1954). 

Landscape modeling is the name given to the 
long-overdue merger of geographic information 
systems and remote sensing. This synergistic 
combination of two closely related but hitherto 
separate technologies organizes and overlays data 
from existing maps, airphotos, Landsat imagery, 
and numerical tables into a single computer 
framework (Figure I). The resulting data as- 
semblage provides a multivariate, multitemporal 
mathematical model that represents the landscape 
much as a three-dimensional model of the physical 
terrain is represented by a topographic map. 

This analytical framework not only facilitated 
site index modeling, but also the identification of 
influential variables, expected levels of classifica- 
tion accuracy, and recommended computational 
techniques. It was hypothesized that readily avail- 
able imagelmap data could serve as cost-effective 
data surrogates for direct site and airphoto mea- 
surement and alternative quantitative inputs. Ad- 
ditionally, it was felt that combining available re- 
mote sensing imagery with map data in such a 
digital landscape model could substantially im- 
prove both mapping and modeling activities. 

The Eaton Reservoir 7%-minute U.S. Geologi- 
cal Survey (uscs) topographic map quadrangle was 

INPUTS:  

TOPOGRAPHIC MAPS 

PHOTOINTERPRETED 
VEGETATION 
COVER TYPE 

LANOSAT LANDSAT IMAGERY I ILl ~ i ~ ~ i A p H ~ c  

LANDSCAPE 

COMPUTER 
PATTERN RECOGNITION 

PHOTOINTERPRETATION 

COMPUTES: 
TOPOGRAPHIC SLOPE/ASPECT 
LANDSAT BAN0 RATIOS 
LANDSAT IMAGE INSOLATION 

OUTPUTS: 
FOREST S I T E  INDEX MAP 

AND MANY OTHER A P P L I -  
CATIONS AS NEEDED 

FIG. 1. Simple schematic representation of the land- 
scape modeling concept. Spatially referenced data from 
a variety of sources is overlaid in the landscape model. 
Point- andlor area-format data from continuous forest in- 
ventory plots, for example, can be readily input also. The 
result is a unified data base for improved mapping and 
modeling activities. 

designated as the study area for this site produc- 
tivity mapping effort. This test area was imaged on 
the 15 August 1973 Landsat-1 scene designated as 
path 36, row 32. A considerable amount of work 
was already completed in compiling topographic 
elevation (Figure 2), slope, aspect, and vegetation 
cover data for previous wildfire hazard mapping 
studies (Tom and Getter, 1975). The quadrangle is 
located in the Colorado Front Range approxi- 
mately 94 statute air miles (151 km) northwest of 
Denver, Colorado, and 51 air miles (82 km) south- 
west of Cheyenne, Wyoming (Figure 3). The area 
is rectangular in shape, with dimensions of 6.5 
miles (10.5 km) east-west and 8.6 miles (13.8 km) 
north-south, and an area of approximately 56.2 
miles2 (145.6 km2). Diverse landscapes with a va- 

FIG. 2. Three-dimensional perspective view of the 
Eaton Reservoir quadrangle looking from the southeast. 
Incorporation of terrain data into the digital landscape 
model allowed the computation of ancillary slope, as- 
pect, and image insolation data planes, as well as Land- 
sat band transformation ratios. 
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FIG. 3. Location of Eaton Reservoir quadrangle test 
area. This quadrangle was used to study forest site pro- 
ductivity mapping with digital Landsat image and an- 
cillary map data inputs to a landscape modeling process. 

riety of landforms and vegetation types occur 
within the test site. The elevation ranges from 
7,680 feet (2,341 m) to 9,840 feet (2,999 m) above 
mean sea level. The climate is characteristic of the 
Colorado Rockies, with abundant sunshine, mild 
summers with frequent showers, heavy winter 
snows, and wide fluctuations of temperature. An- 
nual precipitation ranges from 10 to 22 inches (25 
to 56 cm), with over half of this precipitation fall- 
ing during the snowy winter months. Major forest 
cover types include lodgepole pine (Pinus con- 
torts Dougl.), ponderosa pine (P. ponderosa 
Laws.), limber pine (P.flexilis James.), Douglas-fir 
(Pseudotsuga menziesii (Mirb.) Franco), and 
quaking aspen (Populus tremuloides Michx.). 

Ground control efforts consisted of initial field 
inventory and subsequent imagelmap registration 
efforts. Field crews visited 14 forest stands 
selected at random within the study area, and 
sampled 37 temporary inventory plots. Statistics 
were compiled for timber type, stand size class, 
stocking class, stand area, and site index. The lat- 
ter sample site indices ranged from 25 through 65 
on a 100-year base, and constituted the training set 
data employed in subsequent pattern recognition 
analyses. 

The 15 August 1973 Landsat-1 scene was geo- 
metrically corrected and resampled to yield 137 
lines and 102 columns of 2%-acre (1.01-ha) squares 
for all four MSS bands to cover the quadrangle 
(Figure 4). A nearest-neighbor algorithm correct- 
ing for Earth rotation, scanline skew, and non- 
linear mirror velocity was used to generate the 
image data set. Other features included scene ro- 
tation and pixel resampling without ground con- 

trol points. Eaton Reservoir was the only readily 
identifiable feature in the scene, and the bound- 
aries of the image subscene were adjusted to the 
USGS map sheet with the use of an MSS band 7 
graymap. 

Six additional MSS band ratios were formed from 
the four original MSS bands (MSS-4, MSS-5, MSS-6, 
and MSS-7) as MSS-~MSS-4, MSS-~/MSS-4, MSS-71~~s-I, 
MSS-5/MSS-6, MSS-~/MSS-5, and MSS-71~~s-6, and in- 
terspliced back into the multichannel image file. 
Ratioing is simply the division of the digital 
radiance value of one MSS band by that of another 
on a pixel-to-pixel basis, and has been proposed as 
a means of effectively reducing random fluctua- 
tion of reflectance values caused by source varia- 
tions and changing atmospheric conditions (Max- 
well, 1976; Sung and Miller, 1977). 

The preceding geometric rectification allowed 
the spatial registration of Landsat spectral data 
with ancillary topographic elevation, slope, as- 
pect, and photointerpreted vegetation type data. A 
fifth landscape variable, solar radiation, was cal- 
culated for the incident insolation on the Eaton 
Reservoir terrain model at  the  t ime of the  
Landsat-1 overflight (Figure 5). 

Ancillary landscape data consisted primarily of 
existing maps and map transformations, but can 
also include point- and area-format numerical 
data, tables, or narratives. The utilization of com- 
prehensive, in-place mapping efforts and available 
data bases offers significant potential to improve 
machine classification efforts as pseudospectral 
channels. Conversely, the use of timely remote 
sensing inputs offers considerable reciprocal ad- 
vantages to land-cover mapping and modeling ef- 
forts (Tom, Miller, and Christenson, 1978). The 
most efficient approach is one in which remote 
sensing, geomapping systems, and ground tech- 
niques are properly balanced. All data inputs have 
their place and all must be used if accurate 
mapping/modeling is to be obtained in a minimum 
time and at a minimum cost. 

Four ~sslinsolation band ratios were created as 
the last four ancillary variables. This normaliza- 
tion is proposed as another preprocessing tech- 
nique specifically to remove terrain effects, and is 
simply the division of the digital MSS radiance by 
the computed image insolation on a pixel-to-pixel 
basis. Thus, the four original MSS bands and six MSS 

band ratios were registered with nine ancillary 
landscape variables and overlayed as 2%-acre 
(1.01-ha) cells (Table 1). 

Stepwise linear discriminant analysis was the 
nonparametric statistical technique used for site 
index classification. The original set of image and 
ancillary landscape variables is transformed into a 
single classification parameter through a discri- 



(a) Rectified green image 
(MSS band 4 = 0.5-0.6 pm) 

(b) Rectified red image 
(MSS band 5 = 0.6-0.7 pm) 

(c) Rectified solar IR1 lmage 
(MSS band 6 = 0.7-0.8 pm) 

... - 
(d) Rectified solar IR2 lmage 
(MSS band 7 = 0.8-1.1 pm) 

FIG. 4. Display of Eaton Reservoir quadrangle rectifiedlresampled multispectral Landsat-1 imagery 
emphasizing lowest band spectroreflectance (in black). The original picture elements were 192-foot 
(58.5-m) by 259-foot (78.9-m) inclined rectangles which were rectified and resampled to 330-foot 
(100.6-m) north-south squares to overlay ancillary map data. Note the lack of spatial and tonal varia- 
tion in these four spectral bands due to the dominance of terrain-induced radiance variation. These 
multispectral images are displayed from computer-compatible tapes as electrostatic plotter graymaps 
with a cellular resolution of 2% acres (1.01 ha) per picture element. Image taken 15 August 1973. 
Rectified scale nominally 1:215,000. 
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minant function. The initial multivariate problem Four basic MSS channels only; 
collapses down into a univariate situation, then, Four MSS channels and six ~ s s  band ratios; 
and discriminant analysis is seen to be closely re- * Five basic ancillary landscape variabies only; 
lated to linear regression analysis (Duda and Hart, Five landscape and four ancillary ~sslinsolation 
1973). Mathematically, a linear discriminant func- 
tion is derived such that 

where x,, x,, . . . , x ,  are the n = 19 independent 
Landsatfancillary landscape variables associated 
with each of the 37 field site index measurements, 
and a,,  a,, . . . , a, are calculated to yield a value for 
Yi, the linear compound, which minimizes the 
misclassification probability of the ith field plot 
into the nine site index classes. 

Not all of the variables included in the discri- 
minant function are  equally useful in distin- 
guishing one site productivity class from another. 
The B M D O ~ M  biomedical computer program used 
in this study operates in a stepwise fashion, itera- 
tively entering another nonincluded variable 
which produces the greatest improvement in the 
discriminating power of the linear function at  each 
step (Dixon, 1967). The program allows for vari- 
able deletion or forcing, as well as program termi- 
nation, if the unentered variables are poor dis- 
criminators. The final discriminant function con- 
sequently contains only useful variables, and the 
expression is commonly checked by seeing how 
well it classifies unknown cases for each group or 
category of interest. 

MACHINE CLASSIFICATION OBJECTIVES 

Stepwise linear discriminant analyses were 
performed on various combinations of the  19 
Landsat and ancillary variables to see how well 
they could replicate their own basic training or 
calibration data set of 37 site index plots. The vari- 
ous analyses were evaluated by a figure-of-merit, 
an average classificational accuracy expressing the 
total number of site indices which were correctly 
classified over the total number evaluated. 

The objectives of these machine classification 
tests were fourfold as follows: 

To structure a multivariate model for site index 
productivity with readily available Landsat1 
ancillary data surrogates for hard-to-obtain field 
measurement variables; 
To test each Landsat andlor ancillary variable for 
both significance and contribution to site index 
mapping; 
To explore cost-effective or 'best' model subsets 
of the total 19 variables, where cost-effectiveness 
is evaluated by classificational timelaccuracy 
considerations; and 
To classify and map the full Eaton Reservoir 
quadrangle for site index productivity with sup- 
porting summary tables. 

Five training set classification tests were con- 
ducted with stepwise linear discriminant analysis 
for site productivity mapping as follows: 

ratios; and 
All 19 Landsat and ancillary landscape variables. 

MACHINE CLASSIFICATION RESULTS 

The initial or baseline classification used only 
the original four ~ s s  channels and no other vari- 
ables to correctly reclassify 43.2 percent of the 37 
training set points back into their correct site index 
class (Table 2). This correct percentage, or figure- 
of-merit, will hereafter be referred to as the train- 
ing set accuracy. 

A second classification used the four original 
MSS bands plus the six transformed image channels 
consisting of the ratios of the basic bands to yield 
an improvement of 16.3 percentage points for a 
training set accuracy of 59.5 percent. This result 
indicated that the six ratios of the basic four bands 
were useful for site index mapping (Table 3). 

Next, the five basic ancillary landscape vari- 
ables, exclusive of any image-related variables, 
were tested separately. The end training set accu- 
racy for these ancillary data variables was 67.6 
percent (Table 4). 

The  four ancillary MSS-normalized variables, 
created as the ratio of each MSS band divided by 
the terrain model-derived Landsat image insola- 
tion, were next added to the five initial ancillary 
landscape variables for testing. Again, these vari- 
ables were tested separately of any pure image 
data, and showed a training set accuracy of 94.6 
percent (Table 5) .  This indicated that the insola- 
tion ratios of the basic four spectral bands contrib- 
uted measurably to the site index mapping clas- 
sification. 

All 19 ~ s s ,  ~ s s  ratios, physiographic, vegetation, 
and ~ss/insolation ratio variables were then jointly 
tested, resulting in a training set accuracy of 97.3 
percent for the nine site index classes (Table 6). 
This meant that 97.3 percent of the 37 field site 
plots could be correctly assigned to their known 
site productivity class. Simple random assignment 
of these points to the nine site index categories 
would yield lln = nine classes times 100 percent 
= 11.1 percent expected accuracy. This repre- 
sented, therefore, a significant increase in the ac- 
curacy of machine-classified Landsat imagery with 
the synergistic inclusion of spatially overlaid an- 
cillary landscape data. Neither the basic four 
Landsat channels alone nor the basic five land- 
scape variables alone were effective discrimi- 
nants; however, the joint utility of Landsat and an- 
cillary landscape data was clearly evident for site 
productivity mapping (Figure 6). 

The linear discriminant analysis algorithm au- 
tomatically added each non-included Landsat1 
landscape variable in the order in which it con- 
tributed the most to the site index mapping accu- 
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(a) Topographic elevation, feet (b) Topographic slope, percent (c) Topographic aspect, degrees 

(d) Landsat-1 image (15 August 1973) (e) Photointerpreted Vegetation 
Insolation, centilangleys minute-' cover 

FIG. 5. Display of Eaton Reservoir quadrangle ancillary landscape data emphasizing lowest elevation, slope, north- 
east aspect, insolation, and limber pine cover (in black). Topographic elevation data were manually coded from the 
1:24,000-scale uscs quadrangle map. Slope and aspect were computed from the digital terrain model, and insolation 
was also computed for the time of the 15 August 1973 Landsat-1 overflight. Vegetation cover type was photo- 
interpreted from NASA aircraft photography. These ancillary landscape data planes are displayed from computer- 
compatible tapes as electrostatic plotter graymaps with a spatial resolution of 2% acres (1.01 ha) per cell. Display 
scale nominally 1:215,000. 

racy a t  that step. Clearly, many of the less useful Machine  cost-effectiveness considerations,  
mapping variables did not meaningfully contrib- then, dictated the examination of various subsets 
ute to the final training set accuracy, and, in fact, of the full 19-variable model prior to automated 
decreased the cost-effectiveness of the full 19- classification of the Eaton Reservoir quadrangle. 
variable model and increased the total computa- Fortunately, this task was greatly simplified by the 
tional cost. stepwise nature of the discriminant algorithm. 
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I~ABLE 1. LIST OF LANDSAT SPECTRAL AND ANCILLARY LANDSCAPE VARIABLES USED FOR FOREST SITE 
PRODUCTIVITY MAPPING. VARIOUS LINEAR COMBINATIONS OF THESE VARIABLES WERE EXAMINED 

THROUGH STEPWISE LINEAR DISCRIMINANT ANALYSES, AND THE STATISTICAL CONTRIBUTION 
OF EACH VARIABLE TO MAPPING ACCURACY WAS QUANTIFIED. 

Symbol Variable Unit of Measurement 

XI Landsat-1 MSS-4 (visible green) Watts cm-2 p-' sr-' 
xz Landsat-1 MSS-5 (visible red) Watts cm-2 w-' sr-I 
x3 Landsat-1 MSS-6 (solar IRI) Watts crn-2 p-' s i '  
X4 Landsat-1 MSS-7 (solar IR2) Watts cm-2 p-' sr-' 
x5 Topographic elevation Feet above mean sea level 
% Topographic slope Slope, percent 
x7 Topographic aspect Azimuth, degrees 
xs Landsat-1 image insolation Centilangleys minute-' 
xg Vegetation cover type Code number 
Xlo MSS~IMSS-4 band ratio Dimensionless 
XII M S S - 6 1 ~ ~ ~ 4  band ratio Dimensionless 
X12 MSS-71~s~-4 band ratio Dimensionless 
x13 MSS-YMSS-6 band ratio Dimensionless 
X ~ a  ~ss -71~ss-s  band ratio Dimensionless 
XIS MSS-~IMSS-6 band ratio Dimensionless 
XIB MSS-dimage insolation ratio Watts-Minute ~ r n - ~  p-' sr-I Centilangleys-I 
XI 7 MSS-slimage insolation ratio Watts-Minute p-I s f 1  Centilangleys-I 
X1a MSS-slimage insolation ratio Watts-Minute ~ r n - ~  p-I sr-I Centilangleys-' 
XIO MSS-71image insolation ratio Watts-Minute ~ m - ~  p-I sr-I Centilangleys-I 

TABLE 2. FOUR ORIGINAL LANDSAT-1 MSS BAND TRAINING SET ACCURACY. SIXTEEN 2%-ACRE (1.01-ha) TRAINING 
SET POINTS WERE CORRECTLY &CLASSIFIED INTO NINE SITE INDEX CLASSES FOR A 43.2 PERCENT FIGURE-OF-MERIT. 

THE LANDSAT-1 IMAGE VARIABLES WERE ADDED IN A FREE STEPWISE FASHION AND CLASSIFIED USING LINEAR 
DISCRIMINANT ANALYSIS. IMAGE TAKEN 15 AUGUST 1973. C-P = CENTRAL-PROCESSOR. 

Step 
Number Variable Entered 

Training Set 
Classification Step Step Average 

C-P Correct Correct 
Total Percent Time, Pts Per Pts Per F-Value 
Right Right Seconds C-P Sec C-P Sec To Enter 

1 MSS-5 (visible red) 11 29.7 0.08 137.5 137.5 4.44 
2 MSS-6 (solar IR1) 12 32.4 0.08 150.0 143.8 1.46 
3 MSS-4 (visible green) 13 35.1 0.09 144.4 144.0 1.26 
4 MSS-7 (solar IR2) 16 43.2 0.68 23.5 55.9 0.92 

TABLE 3. FOUR ORIGINAL LANDSAT-1 MSS AND SIX BAND RATIO TRAINING SET ACCURACY. TWENTY-TWO 2%-ACRE 
(1.01-ha) TRAINING SET POINTS WERE CORRECTLY RECLASSIFIED INTO NINE SITE INDEX CLASSES FOR A 59.5 PERCENT 

FIGURE-OF-MERIT. THE LANDSAT-1 IMAGE VARIABLES WERE ADDED IN A FREE STEPWISE FASHION AND CLASSIFIED 
USING DISCRIMINANT ANALYSIS. IMAGE TAKEN 15 AUGUST 1973. C-P = CENTRAL-PROCESSOR. 

Step 
Number Variable Entered 

Training Set 
Classification Step Step Average 

C-P Correct Correct 
Total Percent Time. Pts Per Pts Per F-Value 
Right Right seconds C-P Sec C-P Sec To Enter 

MSS-5 (visible red) 
MSS-5/MSS-4 band ratio 
MSS-4 (visible green) 
MSS-6 (solar IR1) 
MSS-61MSS-4 band ratio 
MSS-7lMSS-4 band ratio 
MSS-7/MSS-5 band ratio 
MSS-7 (solar IR2) 
MSS-5lMSS-6 band ratio 
MSS-7lMSS-6 band ratio 
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TABLE 4. FIVE BASIC ANCILLARY LANDSCAPE VARIABLE TRAINING SET ACCURACY. TWENTY-FIVE %$-ACRE (1.01-ha) 
TRAINING SET POINTS WERE CORRECTLY RECLASSIFIED INTO NINE SITE INDEX CLASSES FOR A 67.6 PERCENT 
FIGURE-OF-MERIT. THE ANCILLARY LANDSCAPE VARIABLES WERE ADDED IN A FREE STEPWISE FASHION A N D  

CLASSIFIED USING LINEAR DISCRIMINANT ANALYSIS. C-P = CENTRAL-PROCESSOR. 

Training set 
Classification Step Step Average 

C-P Correct Correct 
Step Total Percent Time, Pts Per Pts Per F-Value 

Number Variable Entered Right Right Seconds C-P Sec C-P Sec To Enter 

1 Topographic elevation 16 43.2 0.09 177.8 177.8 7.68 
2 Vegetation cover type 19 51.4 0.09 211.1 194.4 3.94 
3 Topographic slope 22 59.5 0.09 244.4 211.1 3.58 
4 Topographic aspect 24 64.9 0.10 240.0 218.9 1.93 
5 Landsat image insolation 25 67.6 0.69 36.2 100.0 1.65 

Each  mapping variable is added  to the  dis-  
criminating set according to greatest F-value to 
enter, and can be considered as statistically 'opti- 
mal' for each iteration. Consequently, the first 
variable selected is the 'best' single variable, the 
second variable selected when combined with the 
first variable selected is the 'best' pair ofchannels, 
and the kth variable selected when combined with 
the previously selected variables is the 'best' k 
linear combination of n variables, where k n. 

The best 11-variable combination, consisting of 
two original MSS bands, three MSS band ratios, five 
ancillary landscape variables, and one ancillary 
~ s s / i n s o l a t i o n  ratio, preserved all of the  19- 
variable training set accuracy, but took only 46 
percent of the total execution time. The mean and 
covariance statistics derived from the 11-variable 
training set were then applied to classify the en- 
tire Eaton Reservoir quadrangle into nine site 
index classes. 

The machine classification of the study area 
utilized five Landsat-1 spectral bands and six an- 

cillary variables in the mapping of nine site index 
classes. The result is displayed as a classification 
map showing the nine site index classes in differ- 
ent  shades of gray (Figure 7), and as a tabular 
summary (Table 7). 

Further testing, or verification, is commonly 
done to determine how accurately the training set 
procedures extended to the mapping of the entire 
study area. However, the random selection of the 
input forest stands ensured a statistically repre- 
sentative sample of the full quadrangle and, con- 
sequently, eliminated the need for verification on 
another test set of unknown site index plots. The 
training set classifications, therefore, directly rep- 
resented mapping or verification accuracy in lieu 
of the training set accuracy usually achieved by 
this type of activity (Miller, et al., Tom, et al., 
1978; Tom and Miller, 1980). 

Caution should be  exercised in interpreting the 
many examples of both training and test site accu- 
racy in the technical literature, particularly when 
test fields are selected in much the same way as 
the initial training set, and are also statistically un- 
representative. Judicious selection of training sets 

TABLE 5. NINE ANCILLARY LANDSCAPE VARIABLE TRAINING SET ACCURACY. THIRTY-FIVE 2%-ACRE (1.01-ha) TRAINING 
SET POINTS WERE CORRECTLY RECLASSIFIED INTO NINE SITE INDEX CLASSES FOR A 94.6 PERCENT FIGURE-OF-MERIT. 
THE ANCILLARY LANDSCAPE VARIABLES WERE ADDED IN A FREE STEPWISE FASHION AND CLASSIFIED USING LINEAR 

DISCRIMINANT ANALYSIS. IMAGE TAKEN 15 AUGUST 1973. C-P = CENTRAL-PROCESSOR. 

Training Set 
Classification Step Step 

C-P Correct 
Step Total Percent Time, Pts Per 

Number Variable Entered Right Right Seconds C-P Sec 

Average 
Correct 
Pts Per F-Value 
C-P Sec To Enter 

Topographic elevation 
MSS-7linsolation ratio 
Vegetation cover type 
Topographic slope 
Topographic aspect 
MSS-4linsolation ratio 
Landsat image insolatic 
MSS-6linsolation ratio 
MSS-5linsolation ratio 
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TABLE 6. IMPROVEMENT I N  THE TRAINING SET ACCURACY OF LANDSAT IMAGE DATA BY THE ADDITION OF ANCILLARY 
PHYSIOGRAPHIC, VEGETATION, ~NSOLATION, A N D  INSOLATION RATIO DATA. THIRTY-SIX  AC ACRE (1.01-ha) TRAINING 
SET POINTS WERE CORRECTLY RECLASSIFIED INTO NINE SITE INDEX CLASSES FOR A 97.3 PERCENT FIGURE-OF-MERIT. 

THE LANDSAT-1 IMAGE VARIABLES AND ANCILLARY LANDSCAPE DATA WERE ADDED IN A FREE STEPWISE FASHION AND 

CLASSIFIED USING LINEAR DISCRIMINANT ANALYSIS. IMAGE TAKEN 15 AUGUST 1973. C-P = CENTRAL-PROCESSOR. 

Training Set 
Classification Step Step Average 

C-P Correct Correct 
Step Total Percent Time, Pts Per Pts Per F-Value 

Number Variable Entered Rinht Right Seconds C-P Sec C-P Sec To Enter 

Topographic elevation 
MSS-6 (solar 1R1) 
Topographic slope 
MSS-4 (visible green) 
MSS-61MSS-4 band ratio 
Vegetation cover type 
Landsat image insolation 
Topographic aspect 
MSS-7lMSS-4 band ratio 
MSS-7lMSS-6 band ratio 
MSS-4linsolation ratio 
MSS-7 (solar IR2) 
MSS-5linsolation ratio 
MSS-5 (visible red) 
MSS-51MSS-4 band ratio 
MSS-7lMSS-5 band ratio 
MSS-5lMSS-6 band ratio 
MSS-Glinsolation ratio 
MSS-7/insolation ratio 

$@ F I V E  B A S I C  ANCILLARY MAP VARIABLES ONLY I 
Ff - 

FOUR B A S I C  LANOSAT MS5 BANDS ONLY 

I . . . . . . . . . . . . . . . . . . . I  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

VARIABLE ADDED 

FIG. 6. Training set accuracy of site index classification 
with-and-without Landsat imagery. The vertical axis 
represents the percentage of 37 training points correctly 
reclassified into their one of nine site index classes. The 
lower and intermediate curves represent the stepwise 
training set accuracies achieved when the classification 
is restricted to the four Landsat image variables and five 
ancillary map variables, respectively. The upper curve 
represents the improved stepwise training set accuracy 
obtained when all 19 Landsat image and ancillary land- 
scape variables are synergistically combined. Specific 
spectrallancillary variables are cross-referenced to the 
list of variables (Table 1) by the enclosed numbers; i.e. 
0. 

can be  used to manipulate the final training set 
accuracy to be  anywhere from very poor to very 
good, depending on the desired results. 

Lastly, an analysis was performed to assess the 
various direct computer, labor, and material costs 
and times involved in site mapping the Eaton Res- 
ervoir quadrangle. These figures were based on 
the Control Data Corporation Cyber 172 computer 
used at Colorado State University at the basic 
campus research rate of $290 per machine-hour 
and-an hourly work rate of $5  pe r  man-hour. 
Quoted figures represent only direct computer, 
labor, and material costs/times. 

Field inventory costs alone represented $720 of 
the total $1,060.35, or almost 68 percent of the total 
direct cost Only $340.35, or about 32 percent, was 
expended on direct computer costs. The  equiva- 
lent average cost per unit area for the final 11- 
variable site index mapping was calculated as 
either 3.04 cents per acre, 7.50 cents per hectare, 
$19.43 per mile2, or $1,060.35 per 7Yz-minute uscs 
quadrangle (Table 8). 

Costltime savings could be  realized immedi- 
ately if accurate, digitized topographic elevation 
data were readily available. Additionally, these di- 
rect costs also potentially represented develop- 
ment, assembly, and testing costs for a large-scale 
geographic data base, so that these costs could also 
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FIG. 7. Display of Eaton Reservoir quadrangle site 
quality emphasizing highest productivity (in black). An 
11-variable linear discriminant function was used to 
classify the test area into nine site index classes. This 
classification is displayed from computer-compatible 
tapes as an electrostatic plotter graymap with a spatial 
resolution of 2% acres (1.01 ha) per cell. Display scale 
nominally 1:214,830. 

out additional research areas to pursue. These are 
summarized as  follows: 

Topographic elevation data digitization. Eleva- 
tion, together with its derivative slope, aspect, 
and insolation data, is an essential element of site 
index mapping. Alternative elevation data 
sources need to be developed to replace the tedi- 
ous hand cellularizing used in this study and the 
low-resolution, 1:250,000-scale Defense Map- 
ping Agency digital terrain tapes. The proposed 
Stereosat, with a 17-m pixel, appears promising 
for terrain relief, slope, strike, and dip studies 
(Doyle, 1978; Henderson and Ondrejka, 1978). 
Multidate/multitemporal Landsat data analysis. 
Point geometric congruence through image rec- 
tification allows multiple areas and/or scenes to 
be overlaid. The cost-effectiveness of exploiting 
the temporal dimension for improved machine 
classification accuracy needs to be more fully 
addressed; 
Additional ancillary data inputs. The most obvi- 
ous landscape variables have been examined, but 
other possibilities exist as well. For example, soil 
survey maps would be highly useful where avail- 
able, and would tend to improve the site index 
mapping effort; and 
Further geoinformation systems development. 
The synergistic combination of Landsat image 
and ancillary landscape data demonstrated here 
strongly suggests additional spatial information 
systems development to provide complete, ob- 
jective, and consistent data and analyses. The 
versatility of a unified, multivariate data base can 
be used to address a wide spectrum of manage- 
ment, planning, and research problems. 

o e  shared by other functions such as  land-use Thanks are e x t e n d e d t o t h e m a n y  Colorado State 

planning, for example, and reduced accordingly Forest  Service personnel  w h o  contributed their  

for this single-function application of site index t ime,  knowledge, a n d  experience to  this endeavor. 

mapping.  Mr. James R. Getter,  project coordinator, k e p t  dif- 
ferent aspects of t h e  s tudy functioning harmoni- 
ously. MS. Clara J. Frobig a n d  Ms. Lorraine K. 

REsEARcH AND OpPoRTuNITIEs Seger  deserve special recognition for their  topo- - - 

T h e  experience a n d  preliminary results der ived graphic m a p  coding, aerial photointerpretation, 
from this unsponsored internal study have pointed a n d  associated field sampling work. Mr. Richard P. 

TABLE 7. SUMMARY TABLE OF EATON RESERVOIR SITE QUALITY. AN 11-VARIABLE LINEAR DISCRIMINANT FUNCTION WAS 
USED TO CLASSIFY EACH  ACRE (1.01-ha) CELL I N  THE TEST AREA INTO ONE OF NINE SITE INDEX CLASSES. 

Site Total 
Index Class Cells 

Total 
Area, Acres (Hectares) 

Area 
Percent 

25 
30 
35 
40 
45 
50 
55 
60 
65 

GRAND TOTALS 
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TABLE 8. SITE PRODUCTIVITY MAPPING ANALYSIS. QUOTED FIGURES REPRESENT ONLY DIRECT COMPUTER, LABOR, A N D  

MATERIAL CO~TS/TIMES. THE AVERAGE DIRECT COST WAS 3.04 CENTS PER ACRE (7.50 CENTS PER HECTARE). SOME 
68 PERCENT OF THE TOTAL DIRECT COST WAS I N  FIELD SAMPLING, SO THERE ARE SIGNIFICANT OPPORTUNITIES 

FOR FURTHER COST/TIME SAVINGS. C-P = CENTRAL-PROCESSOR. 

Task Description Time Cost 

1.0 ANCILLARY LANDSCAPE DATA INPUT: 
1.1 Topographic elevation coding 11.4 man-hrs $ 57.08 
1.2 Topographic slopelaspect mapping 288.0 C-P sec 23.20 
1.3 Landsat image insolation modeling 60.0 C-P sec 4.83 
1.4 Vegetation photointerpretation 4.2 man-hrs 21.00 
1.5 Vegetation map digitization 4.0 man-hrs 20.00 

1.0 subtotal $ 126.11 
2.0 LANDSAT IMAGE PREPROCESSING: 
2.1 CCT data reformatting 394.0 C-P sec $ 31.74 
2.2 Image rectification/rotation 259.0 C-P sec 20.86 
2.3 Image channel ratioing 514.0 C-P sec 49.46 
2.4 Landsatllandscape file merging 195.0 C-P sec 15.71 

2.0 subtotal $ 117.77 
3.0 STATISTICAL FEATURE EXTRACTION: 
3.1 Classification file creation 39.0 C-P sec $ 3.16 
3.2 Multivariate classification 534.0 C-P sec 43.02 
3.3 Field inventory sampling 139.8 man-hrs 699.00 

3.0 subtotal $ 745.18 
4.0 QUADRANGLE CLASSIFICATION: 
4.1 Classification file creation 477.0 C-P sec $ 38.43 
4.2 Multivariate classification 131.0 C-P sec 10.55 
4.3 Graphics generation 277.0 C-P sec 22.31 

4.0 subtotal $ 71.29 
7%-MINUTE USGS QUADRANGLE GRAND TOTAL $1,060.35 

Jansky a n d  Mr. Peter  E. Wikoffalso ably assisted 
i n  t h e  field work. Mr. David H. Sonnen contrib- 
u ted  his t ime a n d  ideas. Appreciation must also go 
to Dr. Gearold R. Johnson, Associate Director of 
t h e  Colorado State University Computer  Center ,  
for providing computing resources, a n d  Mr. John 
H. Schock of Dynamic Systems Consulting Ser- 
vice for his assistance on  computer  graphics. T h e  
work was performed for t h e  Resources Division, 
Colorado State Forest  Service, Fort Collins, C O  
80523. 
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