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Introduction to Array Algebra* 

The elementary principles of array algebra are presented, a 
small array multiplication is detailed, and a FORTRAN program 
is devised. 

WHY BOTHER WITH ARRAY ALGEBRA? 

M OST MATHEMATICAL SCIENCES deal with the linear algebra and to a greater extent the 
linear problems treat mllltidimensional data. For example, the advanced measuring 

technology with satellites and other computerized instru~llents produces a flood of digital 
data related to a space which has at least four local coordinates x, y, z ,  t .  Yet, the tools of 
linear algebra have been centered in solving for a linear system A X = L - V , where 

I 1rt.1 m.1 

the parameters X, V and the observed values L are only one-dimensional vectors. 
Array algebra is a new powerful mathematical tool extending the linear algebra to deal 

with the multidimensional data. The above matrix equation is extended to an i-dimensional 

ABSTRACT: Array algebra is a generalization of the vector, matrix, 
and tensor algebras extending the so-called fast transform technol- 
ogy of information and computer sciences. It forms the fast multi- 
linear algebra for handling gridded data, although some of its fast 
characteristics can also be utilized i n  processing monolinear and 
non-gridded data. Arra!y algebra makes a rigorous solution of mil- 
lions of parameters computationally feasible, of ten for the very first 
t ime.  The  way  to  these generalized concepts car1 be paved by  an  
educational introduction to  the elen8entar;y principles of array alge- 
bra. Such an  introduction is the .scope of this  presentation. It is 
based on  a collection of the author's lecture notes on  array algebra 
since the lute 60'.s to  graduate students at  the Royal Institute of 
Technology in  Stockholm and representatices of some U.S. gouern- 
ment  and research organizations. A small array multiplication is 
detailed and a F O R T ~ N  program deuised for computing a more gen- 
eral consistent "clrray transform." The  connection of this special 
array multiplication to  converltional fast t ru~as forn~s  and signal 
processing is outlined. The ger~erulity o f  array algebra is demon- 
strated through generalized monolinear operators called loop in- 
verses. 

array equation where X , L , V are i-dimensional arrays associated 
" 1 " 2 " ' " i  l n 2 " l , i  "ti  

with i partial design matrices A ,  , A ,  , . . A t . . .  , A i  . In two dimensions the array 
r n 1 t i ,  m 2 n 2  utknli tnin,  

equation can be expressed as A ,  X A'$ = L - V , but in higher dimensions the no- 
I n  I ?1 2  71 27)1 2 111 1'" 2 VC I"' 

tational system of matrix and tensor calculus would Therefore, an important part of array 
algebra consists of the symbols and grammatical rules for expressing the multilinear 
operations. 

The reward of using array algebra is related to the significant computational and storage 
space savings. The number of scalar arithmetical operations of a non-sparse array solution is 
proportional to the first power of the number, N ,  of the parameters in contrast to the third 
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power of the conventional linear algebra. The storage space requirement for a solution of the 
non-sparse array equation is N locations in contrast to N2 locations of the conventional case. 

Array algebra can be characterized as a generalized field of the so-called fast transform 
technology that caused a rethinking of several sciences in the 60's and 70's. There is a vast 
number of problems, technologies, and sciences where array algebra principles can be 
applied, either directly or after a rethinking. Because of the generality of array algebra, the 
use of the conventional fast transform technology would fail in many of these array algebra 
applications. 

Not all multidimensional problems can be directly expressed by array algebra, not even 
after some modifications. The observed values (real or fictitious) have to form an array or a 
complete grid. Also, the math model has to have separable variables or design matrices. This 
requirement is identical to the technique of successive one-dimensional modeling, one 
variable direction at a time. Often these theoretical restrictions of array algebra can be re- 
leased by a smart problem designer such that many real world problems can be modified 
and solved in the new approximated form with sufficient accuracy for practical purposes- 
and who would care about an exact solution of millions of parameters if it is not computa- 
tionally feasible. 

AN ILLUSTRATIVE EXAMPLE 

Assume some function values, say, temperatures 

be measured at the comers of a rectangular room with sides a, b, c .  The problem is defined 
to interpolate these values into the comers of a smaller concentric room of sides sa, sb, sc, 
where s is a scale factor such that 0 < s < 1. 

Because the array L o  contains only two measured values in each coordinate direction of 
2,2,2 

the space variables z, y, x, the interpolation function has to be restricted now to the tri-linear 
tra ezoidal interpolation. The functional model therefore contains the variables [l, z ] ,  [I, 
y ] j l ,  x ]  in each "dimensionwise" interpolation of values L o  located at the intersections of 
the coordinates z = zol, zO2; y = yo,, yo2; x = xo l ,  x o z  The trapezoidal interpolation coefficients 
of any variable, u, can be derived by 

Now the function values L o  from locations u = uol, uO2 can be interpolated into values L at 
2 , l  2.1 

locations u = u,, u2 by 

In the present example the coordinate system is centered by choosing 
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t ,  = ( 1  + s) /2  
t ,  = (1  - s)/2,  

where d can take the place of any of a, b,  c. Thus, each coordinate direction of the example 
happens to have the interpolator K l  = K 2  = K ,  = K yielding 

1 1  = t l  101 + t 2  102 

12  = t z  10,  + t l  102. (4) 

The following three steps will yield the interpolated values L at coordinates z = -sa/2, 
2,2,2 

sa/2; y = -sb/2; sbI2, x = -sc/2, sc/2 from the measured values Lo at coordinates z = 
2.22 

-a/2, al2; y = -b/2,  b /2;  x = -c/2, c /2:  

Step 1: 

Interpolations are performed along all columns of Lo  by the summation 
2.2.2 

Thus, array L, is replaced by the new array M , i.e., the same storage locations can be uti- 
2.2.2 2,2,2 

lized for both arrays. In practice an auxiliary vector Y with nl elements is required for the 
n,,' 

intermediate storing Y = K ,  LoJZJ3 before replacing the entire column Lo by Y . The 
>ZJ3 

n i , l  n ~ n ~  n , . ~  n , . ~  a l . l  

number of scalar multiplications of this step consists of the n2n3 repeated matrix by column 
multiplications ( K l  L ) requiring n: operations (scalar additions and multiplications) 

n , n ,  n,,? '2'3 

each or totally n,n;n': 16 operations. Array M contains the interpolated values at the co- 
ordinate intersections of z = -sa/2, sa/2; y = -b/2,  b /2 ;  x = -c/2, c/2. Thus, N = nln2n3 
values were interpolated using only n2n3n: operations or n ,  operations per point. Formation 
of the interpolation matrix K ,  = A ,  A,: would require in the order of only n? operations 

" , " I  " I n 1  " l n l  

which is an order of magnitude less than the above number n2n3n: of the scalar operations of 
the summation " 1  

C ( k l ) r l J l  ( ' o ) J ~ J ~ > ~ '  

Step 2: 

Interpolations are now performed along the rows of array M to yield a new array N at 
2.2.2 z;z,z 

the coordinate intersections z = -sa/2, sa/2; y = -sb/2, sb12; x = -c/2, c /2  through the sum- 
mation nrlrli3 = n 2  ( k 2 ) r 2 1 2  mr112~3 by 

J2=1 

n l 1 1  = t ,  m 1 1 1  + t z  m 1 z 1  nlZ1 = t2  mlll  + t l  mlzl  front 
= t l  mzll + t 2  mz2, nzz1 = t2 m ~ , ,  + t l  m 2 2 1  wall 
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Again the same "replacement" storage space can be utilized for both arrays M, N. The sum- 
mation requires nln3 repeated row by matrix multiplications (M) K; , r 1  = , 3 2 3  . n l  or 

I.nZ n 2 n 2  j 3  = 1.2. . . . n 3  

totally nln3n2, operations to yield N = nln2n3 new interpolated values. By denoting the "front 
walls" of L o  , N with L ,,, , N and the "back walls" with L o, , N,  the steps 1-2 can be 

"ln2"3 "ln2"3 "I"? "In? "ln2 "ln2 
combined into the matrix expressions 

N ,  = K 1  Lo, K; 
m l m 2  m l n l  n1n2 n2m2 m l  = n l  = 2 

m 2  = n 2  = 2 

N,  = K 1  Lo, KT, n 3 = 2  

m1m2 ml"1 "l"2 nzm2 . 
Step 3: 

The one-dimensional interpolations performed now along the third ("depth row") dimen- 
sion of array N will yield the final desired array L at locations z = -sa12, sa12; y = -sb /2 ,  

" l n p 3  

sb/2;  x = -sc/2,  sc/2 by the summation 

new 
l l ~ l = t l n 1 ~ l + t 2 n 1 2 2  front 
12zl = t l  + t z  nzz2 wall 

new 
lllz = t2  nl l l  + t1 nl12 1122 = t2nlz1  + t1 n 1 2 ~  back 
L12 = t 2  nzll + t l  nz12 lZz2 = t 2  n z l  + t l  nzz2 . wall 

Again the same storage locations can be utilized and this final step requires nlnzn: = n3N 
operations. 

NOTATIONAL SYSTEM 

The fundamental notational convention of array calculus expresses the summation 

by the so-called R-matrix or array multiplication 

A X = L 
mknknln2.. nk  . . n, n l n 2  "mk. .nf 

analogous to the notational system of matrix calculus. The superscript of matrixA now indi- 
cates whether A is a left, right, "back", etc., side matrix, i.e., it identifies the subscriptj, of 
array X and the column index ofA in regard to which subscript the summation is to be per- 
formed. Thus, for example, the matrix multiplications of Equation 5ab can be combined in 
the short expression 
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The final array L = K $ N is expressed 

where usually m, + n,,  m, # n2, m3 # n3. In the above example m, = n,,  m2 = n2, m, = n3 and 
the total number of operations for performing the triple summation (Equation 5 abc) be- 
comes in this special case 

op = nzn3nt + nln3n2, + nln2n2, 
= (n, + n, + n,) N 

N = nIn2n3. 

In the additional special case of n, = n2 = n3 = n, N = n3 

It will now be shown that the above interpolations im~licitely contain a rigorous linear 
solution ofN modeling parameters X : In the one-dimensional case L  = A A;' Lo the 

" 1 ~ 2 ~ 3  , I  mn nn n.1 

multiplication A;' L O  solves for the "transform" coefficients X, which then can be evaluated 
at points to be interpolated by L  = A X . Similarly the function 

m,l  m.n n.1 

can be fitted to values L o  by solving for 
nln2n3 

Compared to the tri-linear interpolation of Equation 5 abc, only the matrices K ,  = A,  A,;, 
Kz = A2A& K3 = A3A;d are replaced by the small inversesAii,A;:,A;$. The inversions re- 
quire approximately only nt + n3, + n3, operations, which can be neglected compared to the 
(n, + n, + n3)n1n2n3 operations of the R-matrix multiplications. 

It can be shown that mathematically the array solution is identical to the conventional 
solution where X, L o  are treated as long column vectors by stacking the columns of the arrays 
one on the other similarly to the internal treatment of arrays in a computer. Notice that for 
example 

equals the "long-hand" expression 
1 

The following section will detail a computer program for the array multiplications such that 
the reader can numerically verify the identity of the array solution with the conventional 
one. 

COMPUTATIONAL SOLUTIONS 

The consistent system 
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is to be solved by utilizing the special structure of matrix A n  in the fashion of array calculus. 
N,N 

The long columns of the extracted and rearranged columns of arrays X , L o  are  de-  
"lnzn3 "ln2"3 

noted XE1,2,3 , L[1,2.3 .According to the summation 
N ,  1 N .  1 

" I  "2 "3 
(10)rlrf3 = C C C (aol)rljl (a02)r2j2 (a03)r3j3 (X)jlj2j3 

j l=l  jz=l j3=1 

the large "conventional" design matrixAo has the special structure 
N,N 

The symbol @ denotes a tensor or Kronecker product having the property 

A;' =A,: @Ai: @A,%. 
N.N n l n l  n2n2 n3n3 

Thus the inversion of A,' is replaced by inversions of three small matrices requiring only 
N.N 

n j  + n3, + n3, operations in contrast to N3 = njn3,n: operations of the conventional matrix 
inversion. Construction of&' from the small inverses and the subsequent matrix multipli- 
cation Agl L,f1,Z,3 would require NZ operations, each. This "Kronecker solution" (Greville, 

N.N N,L 

1961) thereby requires in the order of N times less operations than the conventional case. 
A FORTRAN program will now be outlined for performing consistent "replacement" H- 

matrix multiplications, i.e., the dimensions of the input and output arrays remain the same 
and the small left, right and "back-side'' matrices Aol , Ao2 , A,, are square. These matrices 

"l"l "z"2 "3"3 
are to be  coded as arrays Al ,  A2, A3. The algorithm can be used for array solutions or evalua- 
tions of solutions depending on the mathematical content of the matrices A1 , A2, A3. In  order 
to solve for 

X = (A,:)' (AG)2 (A&)3 L O  
"ln2"3 "lnl "Zn2 "3"3 "ln2"3 

the matrices Al ,  A2, A3 represent the inversesA;:,A;:,A;:. The dimensions n,, n2, n3 will be  
coded as N1, N2, N3. The algorithm for performing the fast array solution 

can be outlined as follows: 

DIMENSION XL (Nl ,  N2, N3), A(NMAX, NMAX), Y(NMAX) 
C NMAX IS MAX(N1, N2, N3) 

READ N1, N2, N3, XL(I, J, K), I = 1, N1, J = 1, N2, K = 1, N3 
C XL IS INPUT ARRAY (LO WHEN SOLVING FOR X AND X WHEN 
C EVALUATING L) 

READ A (I, J), I = 1, N1, J = 1, N1 
C A CONTAINS MATRIX A1 

DO1  1=1 ,N2  
DO1  J =  l , N 3  

1 CALL RMULT(A,Nl, XL(1, I, J), 1) 
READ A(I, J), I = 1, N2, J = 1, N2 
A CONTAINS MATRIX A2 
DO21  = 1, N1 
D O 2 J = l , N 3  

2 CALL RMULT (A, N2, XL(I, 1, J), N1) 

READ A (I, J), I = 1, N3, J = 1, N3 
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A CONTAINS MATRIX A3 
N1N2 = N1 N2 
DO31  = 1, N1 
D O 3 J = l , N 2  
CALL RMULT (A, N3, XL(I, J, I ) ,  NlN2) 
WRITE XL(1, J, K), I = 1, N1, J = 1, N2, K = 1, N3 
ST0 P 
END 

SUBROUTINE RMULT (A, NK, X, INC) 
DIMENSION A(1), X(1), Y( l)  
K = 0 
DO1  1=1 ,NK  
K = K + l  
S = 0. 
KX = -INC + 1 
KK = K - NK 
D O 2 J = l , N K  
KX = KX + INC 
KK = KK + NK 

2 S = S + A(KK) ' X(KX) 
1 Y (I) = S 

KKX = -INC + 1 
DO 3 1 = 1, NK 
KKX = KKX + INC 

3 X(KKX) = Y(I) 
RETURN 
END 

The storage space allocation is approximately N = nln,n3 elements and the number of 
arithmetical operations is ( n ,  + n ,  + n3)N. Thus, the array solution reduces the number of 
both arithmetical operations and storage elements from N 2  of the Kronecker solution to the 
magnitude N. It is concluded that already the non-sparse array equations can be solved 
extremely efficiently using array calculus. The same statement applies for the usage stage 
of the solution: In the present example the interpolations through the "transform domain" 
coefficients X are performed by applying the above program for A1 = A,, A2 = A2, A3 = A3 
and inputting X as array XL. This array will then be replaced by a new array L expressed 

" l n P 3  
as 

= A : A ; A f  (A; : ) '  ( A ; ; ) ,  (A; : )3  L o  

According to the last formula, Equation 17c, the values L can be directly interpolated with- 
out the intermediate step of first solving for X by inputting XL = Lo,  A1 = K ,, A2 = K ,, A3 = 
K,.  In practical applications with large values of n, ,  n,, n,, the "interpolation matriceswK1, 
K , ,  K 3  exhibit sparse structures resulting in further significant savings both in the number of 
arithmetical operations and storage locations. The fastest of such consistent solution al- 
gorithms require kN scalar additions, where l < k  < 20. The number of storage locations is 
k  n,,,, where nmi, = min(n,, n,) of a two-dimensional array nL o . 

I n~ . - 
Significant further acceleration of the computation time is achieved by tailoring parallel 

processing into the R-matrix multiplications. Using parallel array processing the n,n3 re- 
peated matrix by vector multiplications in, for example, 
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are computed simultaneously. Therefore a single multiplication K L o only 
nknk n l n 2  . . nk ' . . ni 

requires nf parallel operations or totally n: + nf + . . nf  parallel operations are needed for a 
consistent solution of N = n,n, . . . n, parameters. The fast banded cases require k(n, + 
n, + . . + n,) parallel operations standing in a high contrast to the n: n; . . . n j  . . . nf se- 
quential operations of the conventional linear solution. Finally the computational solution 
can be speeded, say 100-fold, by performing the operations in a tailored hardware algorithm. 
Thus, for example, if n, = n, = 1000, N = lo6 or one million parameters can be solved in 
(n, + n,) 10 ps = 0.02 seconds if one parallel operation requires ps. This time is less than 
the 1/30 sec. picture rate of a TV-system. By assuming that an image, constantly received by 
an eye, contains in the order of lo6 gray values it is tempting to compare the performance of 
the eye-brain system to the above outlined array algebra computer processing. 

The above elementary introduction of array calculus only dealt with the consistent special 
case which is not completely new for the so called "fast transform" technology (Good, 1958; 
Cooley and Tukey, 1965; Rivard, 1977). The distinguishing feature of array algebra allows 
the expression and general solutions of the multi-linear equations 

In array algebra n,, n,, . . . , n,, m,, m,, . . . , mi can be completely arbitrary numbers and 
there are no restrictions to the structure or ranks of matrices A ,,A ,, . . - , A  i .  The problem 
area is extended from the inflexible consistent Fourier, Haar, Hadamard, etc. transforms to 
the more typical problems of linear algebra where the problem maker has free hands in the 
design of parameters X and the functional model resulting in matrices A ,,A ,, . . . ,A,.  

n.n.. . n: 
1 s  -. 

Further, the observed values L need not form an evenly distributed grid with unit a 
mlm2 . mi 

priori weights as in the conventional fast transforms. 
The first practical applications of array algebra have yielded solutions which most often 

cannot be solved using the conventional transforms nor even the theoretical array algebra. 
However, certain "cheating" a la Gordian knot has opened ways for utilization of array alge- 
bra. Such modified solutions do not yield exact solutions to the original (often conventional) 
problem definition, but for many real world problems it sufficies to have the modified and 
"nearly conventional" solutions-and who cares about an exact rigorous solution if it cannot 
be computationally realized. Such applications as volumetric computations of photogram- 
metrically measured liquid natural gas carriers, array correlation and feature extraction, fast 
solutions for the fundamental problems in photogrammetry, physical and geometric geod- 
esy, fast multidimensional finite elements solutions, digital terrain modeling, TV-tracking, 
and fast image processing only show a part of the diversified field of array algebra applica- 
tions. Most of these new fast solutions are so general that the use of conventional fast trans- 
forms would fail. 

ARRAY ALGEBRA FFT 

The conventional fast transforms are centered around the monolinear fast discrete Fourier 
transform, EFT, which can be characterized as a "reverse array calculus" and will be demon- 
strated next. 

The very special structure of the Fourier transform matrix 
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to yield the complex transform coefficients X = A-I L allows some form of arraying of 
N.1 N,N N. 1 

L . One way of doing the arraying, (Rauhala, 1976), is to split X into the even term column 
Y . l  .v, 1 . - 
X and odd term column,$yl, and to split k1 into , ,..; by W12.1 

Here N is assumed to be a power of2 for simplicity. Now the multiplication A-'  L can b e  
N,N N.1 equivalently performed as 

Similar splitting can be used for the multiplication C ,  Y ,, C Y 2. Therefore, only the post- 
multiplications by the small matrices B are performed at each stage until at last of the log&' 

2.2 

steps, only the premultiplications by matrices C need be performed to yield the final coefi- 
2.2 

cients (usually in reversed binary ordering). Matrices B have the special structure 
2.2 

and the rule of finding the power, k, follows the simple branching and halving pattern 

The following simple complex numbers 

occur in the first few splitting stages where the columns to be multiplied still are long. 
Therefore, it pays off to bypass (precompute) the complex multiplications for wN, wNI2, wNI4 
and to reduce the four scalar multiplications of a general complex multiplication into only 
two scalar multiplications (with factor l l f i )  for wNI8. Therefore, these savings become pro- 
portionally large for small values of N (Rauhala, 1976, p. 80). These prederived algorithms 
can then be utilized for large values of N by factorizing the one-dimensional transform into 
some bi-linear forms (Silverman, 1977). Table 1 is an example which, for N = 16, demon- 
strates the one-dimensional algorithm of array algebra FIT. 
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TABLE 1. 

t8  = lo - m8 = t ,  + it, S ,  = m, + w h ,  X ,  = s, + ws, 
t lo = l2 - l 3  ml0 = t l0 + it,, s, = m,, + w%n,, X, = s, - ws, 

m9 = t,, + it,, slo = m, - w h ,  X 6  = sIo + w5sIl 
m,, = t I4  + it,, s,, = ml0 - w h , ,  X I 3  = s10 - w5sll 

mult 
add 

total 
14 
60 

In the example the complex multiplication with wNiS = w2 is counted to require two scalar 
multiplications and additions. The total number ntot of scalar multiplications, required for 
typical small N FFT'S, are shown in Table 2. 

ntot 2 14 54 163 454 

The multidimensional array FFT can be performed in analogy to the computer program of 
Section 1.3. The subroutine RMULT and its calling statements have to be replaced to perform 
the above type of prederived one dimensional FIT'S. 

GENERAL MONOLINEAR OPERATIONS 

The FFT is restricted to evenly distributed and homogeneous observed values L inX = A-I 
L and usually to the factorization N = 2i. Array algebra is based on the general monolinear 
estimation theory which is then successively used in higher dimensions through the compu- 
tational rules of array calculus. Thus, the rigorous mathematical concept "algebra" separates 
array algebra apart from the purely computational and grammatical rules of array calculus 
and the conventional fast transforms. 

Array algebra is essentially linked to the general concepts (unbiasness, minimum vari- 
ances) of mathematical statistics. Therefore, the monolinear starting point of array algebra is 
centered in solving the inconsistent system 

A X # L ,rank ( A )  ~n 
mn 1.1 1.1 mn 

under the Gauss-Markov model 

where E denotes the expectation operator. The classical linear algebra, started in the field of 
the adjustment calculus of mathematical surveying sciences, developed recipies for the full 
rank least squares solution 
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= A1 L - 1 1  L - AX [ I 2  = min. 

A' = (ATA)-I A T ,  rank ( A  ) = n. 
n n nm mn 

The following discussion will outline some generalized linear operators for solving the 
above system. For a more detailed presentation the reader is referred to Rauhala (1974,1976, 
1978b). 

The theory of generalized matrix inverses (Rao and Mitra, 1971) extended the least- 
squares solution to 

where U can be arbitrary. The general least-squares operator G fulfills the only condition 

ATA G = A T  (294 
which can be converted into the two conditions 

The explicit expression ofA7 is (Rauhala, 1976, p. 93), 

ATr =(ATA)O AT, 

where U can be arbitrary. The subscript "r" denotes the reflexivity property that if G A G = 
G thenG € A r .  

In analogy to the theory of least squares the norm 1 1  8 1 1 2  can be minimized yielding for 
the inconsistent system (Rauhala, 1976, p. 96), 

One of the main findings of the theory of generalized inverses is the realization that if 
r(A) < n, or precisely in the non-full rank cases of general inverses, the parameters X are 
mn 

not unbiasedly estimable (Rao and Mitra, 1971; Bossler, 1973; Grafarend and Schaffrin, 
1974; Rauhala, 1974, 1975, 1976, 1978b). This fact has been overlooked and misinterpreted 
in one of the few surveying textbooks on this subject (Bjerhammar, 1973) as discussed in 
more detail in Rauhala (1976, 1978b, 1979). 

For the case rank ( A  ) < n the minimization of the bias ~ i e l d s  the estimator (Rauhala, 
mn 

1976, p. 100, 1978b, p. 45) 

2 = A g L  + U T ( Z  - A & ) L .  (31) 

The general minimum variance biased estimator was found to be (Rauhala, 1976, p. 100) 

The left side loop inverses usually satisfy these two conditions (Rauhala, 1974), i.e., the 
general operator to yield minimum variances need not necessarily satisfy the g-inverse con- 
dition. The estimate 

has all of the above properties, i.e., least squares, minimum variance, minimum norm, mini- 
mum bias. For the full-rank case this solution yields the zero bias Gaussian least-squares 
solution. The remainder of this section will describe the estimation technique of loop in- 
verses where the biased estimates are bypassed through a simple parameter transformation 
to unbiasedly estimable "problem parameters"Lo = A. X . 

9.1 pn  n.1 

The idea of array calculus and algebra started from an estimation technique called loop in- 
verses. The idea is already reflected in the first example of this paper where the parameters 
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X = A,' Lo in L # A  A;' Lo are exchanged into Lo to yield the linear system of equations 
n.1 nn n,l m.1 m n  nn n,l 

in parameters Lo  by L # K  Lo , K  = A A;'. In typical modeling problems L can be in- 
m,l m n  n.1 m n  m n  nn m, I 

terpreted as interpolations from the unknown fictitious observables Lo  = A, X . In higher 
n.1 nn n,l 

dimensions it is intuitively simple to realize the grid structure requirement of Lo, L through 
the "dimensionwise" one-dimensional interpolations and also the associated computational 
rules of array calculus can be intuitively derived and experimented. In the simplest mono- 
linear case we choose m > n and now parameters Lo can be solved from 

The least-squares estimate to is the compacted and filtered representant of the interpola- 
tion function and called "elevation array" in digital terrain modeling. In the special cases of 
evenly distributed and homogeneous observations L the solution K i  L = H L boils 

111, 1 n m  m.1 

down to the convolution integral of signal processing 

Here FT denotes the Fourier transform, IFT is its inverse transform and * denotes the dot multi- 
plications of the frequencies. Now the main portions of the "filter matrix" H =K1 are cir- 
culant, i.e., the rows are identical with exception of some column shifts. The identical row 
coefficients conform the "impulse response" h whose Fourier transform is called the "trans- 
fer function" of the system. It can be easily verified that the transform domain solution 

yields exactly the least-squares estimateto by A, a , i.e., 
n.1 nn n.1 

Published and non-published simulations of operators K, K 1  (Rauhala, 1972a, 1974, 1976, 
1977, 1978a, 1978b; Rauhala and Gerig, 1976; Kratky, 1978) have opened new vistas for such 
typical signal processing problems as separable filter design, replacement of non-separable 
filters with separable ones, recursive array filters, fast interpolators, array Kalman filters, 
array algebra finite elements, integrators, derivators, correlators, detection and extraction of 
blunders, discontinuities, edges, features, patterns, etc. These new concepts can be com- 
bined with their relatives of the similar existing techniques speeding the applications of 
array algebra in several real world problems. The new data snooping philosophy of Rauhala 
(1977, p. 182) offers one example of these applications which often can be realized in real- 
time systems because of their computational speed and requirement for a fixed production 
pattern. A combined array calculus data snooping allows, for example, the "more than real- 
time" control of relative orientation of a photogrammetric plotter system while the rank of 
the design matrix is not yet full. 

The above estimation technique of Rauhala (1972a) was generalized to singular systems 
and a whole family of new linear operators called loop inverses (Rauhala, 1974). For 
example, the replacement of A,' to yield the parameter transformation from the consistent 

nn 

relationship 
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can be done through the operator 
A", A; (A, A; )-I. 
np  np Pv 

Now 

f = A ? C o + ( I  -A?Ao)U 

= A L m  L + (I - A h A ) U ,  (41) 
where U can be arbitrary and the lm-inverse exhibits a typical structure of loop inverses, 

n. I 

namely, 

A'" = A? (A A?)'. (42) 

If p = rank ( A  ) the Im-inverse creates the pseudo-inverse A + as a special case but the 
mn 

operator 

H = (A A';)' 

still yields the Gaussian least-squares solution f o r t ,  = H L = A, 2 . 
P , l  pm m,l p n  n, 1 

I t  can be shown that the observables L = A X are always unbiasedly estimable (Rao and 
Mitra, 1971); therefore, L o  can be chosen as an independent subset of L such that  A, 

P, I m, I pn 

forms a basis of the row space of A 3 A,. Then, by a proper ordering of rows, matrix A 
partitions as 

The filter matrix now simplifies to 

The  e s t i m a t e t o  = H L usually "solves the problem", i.e., there is no need for computing 
P.I  p m m . 1  

the biased estimates, p < n, 

or this computation becomes simple. 
The above estimation technique was designed to solve for bad-conditioned photogram- 

metric systems closely related to the problem of collocation (Moritz, 1972) and has been 
applied in self-calibrating block adjustments and free net adjustments (Rauhala, 1972a, 1974, 
1975). Some features of the above discussed full-rank starting idea of loop inverses have 
been partially reproduced in Bjerhammar (1975), where the application in Wiener-Hopf re- 
lated prediction was discussed. The general mono- and multilinear cases were presented in 
Rauhala (1974, pp. 112-126). The over-constrained case, p < rank (A) , and multiloop in- 

mn 
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verses with or without the multilinear cases of array algebra have created unique linear 
operators previously not treated in the literature of linear algebra (as far as the author is 
aware). 

ARRAY ALGEBRA 

The general monolinear operators can be converted into the multilinear array operators 
through the use of array calculus. Depending on the generality of the monolinear operators, 
one can distinguish the following three categories for solving the array equation: 

Conventional multilinear fast transforms. The equation system is consistent such that 

and usually n k  is a power of 2. The full rank square matrices Ak , k = 1, 2, . . . i, all have 
"k"k  

the very special structure of Equation 20 such that a single R-matrix multiplication (A;')' L 
requires n ,  n,  . . . nk-, nk+, . . . ni repeated one-dimensional conventional fast transforms. 

Gaussian array solution. If all of the rectangular matrices A , k = 1,2, . . . i, have full 
rnknk 

ranks, the least-squares estimate f becomes unique 

Separable a priori weights Pk = (m)' can be included in the solution by the premul- 
tiplications 

General array solution. The existing knowledge of linear algebra can be included in the 
array solution 

Any operator G k ,  k = 1,2,  . . . , i ,  may represent any general operator of monolinear alge- 
bra. As shown in the theory of loop inverses (Rauhala, 1974, pp. 37-38), there exist no bounds 
to the generality of these operators. For example, a single third loop inverse like 

represents an operator of a singular system with additional constraints. This expression boils 
down to Cayleyan matrix inversions because the 1- and m-inverses only contain full rank 
matrices. Thus, the theory of loop inverses solves the problem of generalized matrix inverses 
without any computational use of the g-inverse AY, which has formed the starting point of 
the previous theories of general inverses. 

The mathematical statistics of the general array solution should be developed, because the 
present concepts are more or less restricted to the monolinear case. On the other hand, the 
main multilinear applications favor the Gaussian least-squares array solution with a simple 
transition to the classical concepts (Rauhala, 1976, p. 111). 

Multi stage array solutions. Some further generalized array equations deal with the array 
version of Kalman filtering or batch processing of array equations yielding the general case 
of constrained array equations (Rauhala, 1974, pp. 113-114; 1976, p. 79; 1977, p. 179). A two- 
dimensional special case of this problem is treated in Buchanan and Thomas (1968), and a 
further restricted special case for inclusion of one single constraint is discussed in Jancaitis 
and Magee (1977) and Snay (1978). 

Recent application oriented research of array algebra has brought forth, in connection with 
a new correlation concept, a general system of array equations (Rauhala, 1977, p. 183). The 
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solutions of some special cases of array correlation may cause rethinking in the correlation 
technology. 

The first section, "Why Bother with Array Algebra," illustrated the elementary computa- 
tional principles of array calculus, pointing out the physical relation of these "generalized 
fast transforms" to multilinear interpolations, matrix multiplications and inversions, solu- 
tion of multilinear equations, and filtering. A simple FORTRAN program was devised for com- 
puting three-dimensional non-sparse array multiplications. Then the very fast sparse case, 
parallel processing, and array hardware were used to demonstrate the potential power of this 
technology. 

In the next section, "Generality of Array Algebra," array algebra EFT was outlined by a suc- 
cessive arraying of the Fourier transform vectors. Then some general linear operators and 
loop inverses were introduced. The application of these general monolinear operators into 
array calculus created the general concept of array algebra. In conclusion, array algebra is 
indeed a generalized form of the conventional linear algebra and fast transforms, possessing 
great power and potential for use in many sciences, technologies, and specific problems. 
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