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Errors Incurred in Estimating an 
Area of Uniform Land Cover 
Using Landsat 

1 A formula for the variance in estimating an area, due to including or 
/ excluding a pixel within the boundary of that area, is developed. 

T HE TECHNIQUE of determining the area of a re- 
gion by counting the squares or the points en- 

closed by the boundary has been used for many 
years. These techniques have been used in disci- 
plines ranging from engineering, where they have 
been used to calculate forces and moments, to 
forestry. The fundamental difference between the 
method of counting squares and the method of 
counting points is that with points there is always 
an integer number whereas with squares fractional 
values are included. The apparent loss of accuracy 
in point counting techniques is compensated for 
by treating the count as a form of statistical sam- 

be overlaid a number of times, then an accurate 
area estimate can be obtained. However, there are 
situations in which a single fixed overlay occurs, 
and so significant errors can occur in such an area 
evaluation. One such situation is when Landsat 
scans an area of uniform land cover. 

The theory of the point counting technique is 
also relevant to automated geographic data pro- 
cessing where a grid cell is either counted or not 
counted in an area evaluation. In automated geo- 
graphic data capture a raster scanning device scans 
an area of land, divides the land into regular grid 
cells, and records one or more spectral signals for 
each grid cell. The signals recorded can be used at 
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pling and, repeating the measuring process sev- 
eral times, using random locations of the point 
overlay, and averaging the results. Instruments 
have been developed which allow automatic 
counting and marking of counted points. Frolov 
and Maling (1969) have performed a theoretical 
error analysis of the point counting method. Bon- 
ner (1975) has determined the error of area esti- 
mates, when a point grid is used, by performing 
repeated overlays and deriving empirical relation- 
ships from the experimental results. Photographic 
techniques have recently been developed for 
superimposing the points on the original (see 
Mathews and Mason, 1979). If the point grid can 
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a later time to help determine the type and area of 
a particular class of land cover. The important 
feature is that the grid cells must be included or 
excluded in their entirety as there is no informa- 
tion at the sub grid cell level. 

The Landsat series of satellites have been ex- 
tensively used for determining ground cover and 
monitoring temporal change. These satellites re- 
cord spectral information in four bands, two in the 
visible region and two in the near infra-red region 
of the electromagnetic spectrum. The effective 
size of each grid cell (or pixel) is 57.10 by 79.06 m 
(or 0.45 ha) on the ground. The reflectance in the 
east-west direction is spatially integrated over 79 m 
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but with a sampling interval of 57.1 m. There- 
fore, to allow a common north-south boundary for 
adjacent pixels in the same scan line, the pixel is 
treated as being 57.10 m wide. Thus, each pixel in 
a scan line contains information derived from the 
two adjacent pixels in that line (for this reason the 
pixel is often stated to be about 80 by 80 m). It 
should also be remembered that atmospheric ef- 
fects can further reduce the resolution of the scan- 
ner, although the reduction is difficult to quantify. 

The spectral information can be used to allocate 
(or classify) a pixel to a land-cover category. The 
classification process can be supervised (delinea- 
tion of spectral and textural classes by man fol- 
lowed by machine searching for similar classes) or 
unsupervised. In each case, it is hoped that the 
derived spectral and textural signatures of distinc- 
tive land covers do not overlap. The area of a par- 
ticular type of land cover is then determined by 
counting the number of pixels whose signatures 
fall within predetermined limits and multiplying 
by the area of a pixel. This technique has been 
used extensively for several years (see Bauer et al., 
1979). In this paper an error variance for this area 
estimate is determined. 

Similar errors arise when a land-cover map is 
being coded to grid cells (called the coding prob- 
lem). The coding of biophysical data has become 
increasingly widespread. These data are stored in 
a computer in an array format and used as the 
input to land suitability, planning, or management 
models (see Miller and Carter, 1979). 

The errors arise in the perimeter cells, where a 
mixed signature occurs, and, depending on the 
tolerances of the classifier and of that particular 
spectral class and the type of classifier used, this 
pixel may or may not be included in the region of 
uniform land cover. For regions in which the 
region-to-pixel ratio is comparatively small this 

error can be quite significant. To make matters 
worse, these perimeter cells with mixed spectral 
signatures (which have been called "mixels", see 
Jupp et al., 1979) are sometimes not classified with 
the land cover on either side of the boundary but 
erroneously mislabelled as a separate class of land 
cover. There are many more perimeter cells than 
one would intuitively expect. Jupp et al. found 
that, for a mapping exercise in the Batemans Bay 
area of New South Wales, over 50 percent of pixels 
were mixels. For example, in Figure 1 an enclosed 
comparatively regular region is shown overlaid by 
a square grid. For this case if the grid cell area is 
0.45 ha (as for Landsat) then the region area is 40 
ha, i.e., the grid cell is 1.13 percent of total area. 
However, the number of perimeter cells is 45 per- 
cent of the total number of cells (where a perime- 
ter cell is defined as a grid cell through which R 

section of the boundary passes). 

The error, which occurs in the estimation of the 
area of a region with uniform land cover, will be 
confined to the perimeter pixels. Following Good- 
child and Moy (1976), the number of perimeter 
pixels is estimated as a function of the total area. If 
A and L are the exact area and perimeter of the 
region, respectively, then 

L = 2K1 (1) 

where K, is the shape factor. The shape factor is a 
measure of how contorted is the region (see Crap- 
per, 1980 for a discussion of the parameter). A cir- 
cle which has the minimum perimeter for a given 
area has K, = 1 whereas for a square K l  = 1.128. 
Higher values of K, occur for regions having 
longer perimeters for a given area. 

Now when a grid with rectangular cells is ovar- 
laid on the region, the total perimeter, L, is given 
by 

i=Nb 

L =  C k, 
i=1 

where li is the length of the it" boundary pixel and 
N n  is the number of boundary pixels. Th_e average 
length of perimeter per boundary pixel 1 is given 
by 

where Kz is a measure of the average within pixel 
distortion and L is the average length of a straight 
line laid across a rectangle. Thus, the average 
number of perimeter pixels, Nb,  is given by 

L 2 K 1 m  
FIG. 1. A comparatively regular polygon overlaid by a N b  =r= 

1 KZ (3) 
square grid. The grid cell area is 1.13 percent of the 
total area; however, 45 percent of total cells are Of the Nb perimeter pixels, on average half will 
perimeter cells. The hatched cells are perimeter cells. be recorded as belonging to the region under con- 
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sideration and half will be recorded as belonging 
to adjacent regions. In the former case an error of 
commission occurs in which the region area will 
be overestimated and in the later case an error of 
omission occurs in which the region area will be 
underestimated. However, in both cases the error 
is the smaller section of the pixel which has been 
divided by the boundary and so for any one pixel 
the maximum error is half a pixel. 

The error variance for one pixel is equal to the 
mean square of the smaller area obtained when a 
random straight line is laid across a pixel (A2) and 
hence the overall error variance u2 is given by 

The error variance is thus dependent on the 
number of pixels and the distortion parameters, K, 
and K,, and is given by 

In order to evaluate the error variance, it is thus 
necessary to calculate the average length of a ran- 
dom line laid across a rectangle and the mean 
square area under it. Initially this problem may 
appear simple; however, some reading in the field 
of geometric probability (see Kendall and Moran, 
1963) would soon dispel this belief. The difficulty 
is that, for many apparently simple problems, 
there appears to be more than one 'correct' answer 
depending on how the randomness is defined. 

One of the classic problems in the field is the 
Bertrand problem. The problem is to find the 
probability that a 'random chord' of a circle of unit 
radius has a length greater than <3, the side of an 
inscribed equilateral triangle. Kendall and Moran 
(1963) present three solutions to this problem, viz. 
?h, %, and Vz, and conclude by saying that all solu- 
tions are correct but they relate to different prob- 
lems depending on how the random chord was 
defined. Each of the three previous solutions can 
be defined by a different joint probability dis- 
tribution. Thus, to define the distribution of a 
geometric element, one must first determine a 
system of coordinates which defines the element 
uniquely, and then define a probability distribu- 
tion on the range of those coordinates. 

There are some problems in which insufficient 
information is provided to allow one to determine 
a system of coordinates which uniquely defines 
the element (so called ill-posed problems). In such 
cases additional restrictive assumptions can be 
made to determine such a system of coordinates. 
An alternative approach is to seek solutions which 
are invariant under the transformations of transla- 
tion, rotation, and reflection. Kendall and Moran 
(1963) conclude that, for the Bertrand problem, 
there is only one solution (Vz) which is invariant to 

the transformations of translation, rotation, and re- 
fl ection. 

Jaynes (1971) has re-examined the Bertrand 
problem in considerably more detail than Kendall 
and Moran (1963). Jaynes also found that, if one 
seeks solutions which are invariant under the 
transformation group, then unique solutions could 
be determined for apparently ill-posed problems. 
His invariance arguments and experiments ver- 
ified the solution quoted by Kendall and Moran 
(1963). 

The problem of the average length of a random 
line laid on a unit square is also ill-posed. Two 
separate analytical methods have been found in 
the literature for this problem giving two distinct 
answers. Only one of the methods, fortunately, 
was found to be invariant under transformations of 
translation, rotation, and reflection, and this is the 
method of Goodchild and Moy (1976). In order to 
check the result, a computer method was devel- 
oped which was also invariant to the transforma- 
tion group. In this method the random number 
generator was used to define a point on the line 
and the gradient. Using this method and a large 
number of trials, of which only a comparatively 
small number intersected the square, a satisfactory 
agreement with the Goodchild and Moy result was 
obtained. The method to be used in Appendix A 
for determining the average length of a random 
line laid on a rectangle is based on an extension of 
the Goodchild and Moy method. 

The errolvariagce u2 is found by substituting 
values for A2 and L (as calculated in Appendix A) 
into Equation 5 and is given by 

where A is measured in hectares. Now the shape 
factor, K,, of an area of land cover, deemed uni- 
form by Landsat, depends on many factors in- 
cluding previous history and present vegetation, 
landform, soils, etc., and it would be impossible to 
theoretically derive an average value. Crapper 
(1980) has determined shape factors for 1605 re- 
gions defined by a polygonal data base on the 
south coast of New South Wales. These regions 
were defined on the basis of relative homogeneity 
in the spatial pattern of the biophysical properties. 
The regions covered a total area of 6000 km2 and 
included significant variations in landform, vege- 
tation, and soils. Crapper found that the shape 
factor varied with landform and varied slightly 
with area. Ignoring the variation with region area 
and averaging the values for different landforms, 
K, = 1.82. As the characteristics which delineate 
areas of uniform land cover, according to Landsat, 
and the above regions are similar and as K 1  has 
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been assumed to be independent of area, it seems 
reasonable that the processes which determine the 
shape of the perimeter are common to both and 
hence the average shape factors are approximately 
equal. 

The within cell distortion parameter, K2, is even 
more difficult to evaluate as it depends on the re- 
gion to pixel area ratio as well as K , .  Also, the 
length of many biophysical boundaries depends 
on the scale at which they are measured. The finer 
the scale the greater the length. Mandelbrot (1977) 
has called those curves, which do not approach a 
limit as the scale is made finer, fractals. For our 
present purposes the scale of resolution is one 
pixel, and if the region-to-pixel ratio is compara- 
tively large, then the segment of the perimeter 
within each pixel can be accurately represented 
by a straight line, i.e., K, = 1. For most land cover 
mapping exercises the region to pixel area ratio is 
quite high and so Kg 1. Hence Equation 6 re- 
duces to 

where A is in ha. The value of A, calculated by 
counting pixels, is an unbiased estimate of the area 
and so it can be used in Equation 7. 

The relative error (sometimes called the stan- 
dard error or S.E.) is given by 

This curve is displayed on Figure 2 from which it 
can be seen that for a relative error of 1 percent A 
= 132 ha, for a relative error of 5 percent A = 15 
ha, and for a relative error of 10 percent A = 6 ha. 

In the above calculation an average value has 
been used for the shape factor (i.e., k, = 1.82). 
There are, however, some situations in which rea- 
sonably accurate estimates can be made for the 
shape factor. One such situation is the shape of the 
areas used for wheat production. Typically, wheat 
fields in the United States are rectangular with 
aspect ratio 5 and average area 500 ha, in the 
U.S.S.R. and Australia wheat fields are typically 
square with areas 1000 ha and 150 ha, respec- 
tively, and in China wheat fields have irregular 
shape with typical areas of 2 ha. The shape factor 
can be calculated from Equation 1 and, after sub- 
stituting into Equation 6, the relative error can be 

A (ha) 

FIG. 2. The log of the relative error (%) is plotted 
against the log of the area, A, in ha. 

found. The shape factors, areas, and relative errors 
in area estimates are shown in Table 1. For smaller 
areas, as typified by Chinese wheat fields, the rel- 
ative errors in area estimates are so large that great 
caution should be exercised when working with 
area estimates. 

In conclusion, the Landsat series of satellites 
provides a convenient and comparatively accurate 
method for estimating areas of uniform land cover. 
However, when the areas are small or when the 
boundaries are highly contorted (e.g., lakes or 
coastal boundaries), considerable care must be 
exercised before using area estimates because the 
relative errors in the area estimate may be very 
high. 

The author acknowledges with gratitude many 
helpful discussions with Dr D. L. Jupp and help- 
ful comments made by Dr A. A. Green and Dr 
F. R. Honey. 

Shape Typical area Relative error 
Country factor (ha) (%) 

USA 1.51 500 0.33 
USSR 1.13 1000 0.17 
Australia 1.13 150 0.72 
China 1.82 2 23 

Let us consider a random straight line laid across a rectangle. With no loss of generality, the rectangle 
can be considered fixed with the longer side horizontal, and one vertex can be treated as the reference 
vertex. If a is the shorter side, b the aspect ratio, a x b (subsequently written ab) the longer side, and a 
is the angle between the random line and the base, the lines being extended if required, then there is a 
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uniform probability of a falling within the range 0 < a < 180". By symmetry we need consider only the 
range 0 < a < 90'. Furthermore, this range can be subdivided into Part I, 0 < a < a,, and Part 11, at < 
a < 90°, where tan a, = llb. For convenience, Part 11 has been redefined to 0 < a < a, with the longer 
side vertical, where a, = rr/2 - a,. The problem will be treated in these two parts and the results will be 
combined at the end. 

PART I, 0 < < ffl  

If L is the length of the random line, A is the area under it, and R is the perpendicular distance from 
the line to the reference vertex, as shown in Figure A-l(a-d), then for 0 < R < ab sin a 

L, = R tan a + Rltan a and 
A, = R2/(2 sin a cos a) 

and for ab sin a < R < (ab sin a + a cos 412 
(by symmetry, we only need consider half the-rectangle for the calculation of L and only want to con- 

, sider half the rectangle for the calculation of A2). 

where 

Thus, 

L2 = ablcos a 
A, = (ablcos a) (R - ab sin d 2 )  
al = tan-' l/b 

ab sin a + a cos a 

ab sin a 

L, (a) = ( J L , ~ R +  J 
ab sin a + a cos a 

- - ab 
b sin a + cos a 

ab sln a 

- - ab ln tan a, 

a tan a,/2 
ab sin a + a cw a 

,ab sln a 2 

(a) = ( J A : ~ R +  J 
ab sin a + a cos a 

0 ab sin a 

= a4b2 (b3 sin3 a + 5 cos3 a) 
(b sin a + cos a) 60 cos2 a 

a4b2 4 
= - (b2 (tan a, - a,) + b in cos a, + a, + - 

60 a, 1 + b2 

(a, + b In (COS a, + b sin a,)) ) 
PART 11, 0 < a < a2 

The meaning of the symbols is explained in Figure A-l(e-h). For 0 < R < a sin a 

R 
L3 = R t a n a + -  

tan a 
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- R2 
A3 - 2 sin a cos a 

ab cos a + a sin a 
and for a sin a < R < 

2 
a 

L4 = - 
cos a 

where a2 = tan-' b. 
Thus, 

ab cos a + a dn a 

- 2 
L2(a) 

= a b m s a + a s i n a  (I L 3 d R +  L ~ ~ R )  
0 a sin a 

- ab  
b cos a + sin a 

a2 
- 1 
L2 = -I a 2  L (a) da 

- - ab tan a, 

a2 V i T F  
ln 

tan a2/2 
ab cos a + a sin a 

z (a) = ( J A : ~ R  + J A : ~ R )  
ab  cos a + a sin a 

0 ab sin a 

- - a4  
(5 b3 cos3 a + sin3 a) 

(b cos a + sin a) 60 cos2 a 

a4 4 
=-(tana, - a, + blncosa,  + b2a2 +- 

60 a, 1 + bZ 

b cos az + sin a2 
(b a2 + In ( 

b 

Now, as random lines over the range 0 to a, and 0 to a, (or a, to r/2) are both equally likely, the 
average length and mean square area under the random line are as follows: 

- 2 - 
L = - (a, L1 + a 2  L2) 

r 

- - 2 ab 1 
r In ( tan (a,/z).tan (ad2) 

- 2 - - 
A2 = - (a, A: + a, A;) 

r 

- - ~ ( b ~  (1 + In cos a,) + b (1 + In eos a,) + 
30 .rr 
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For the simple case of random lines laid over a square ( b  = l ) ,  Equations A-1 and A-2 reduce to 

= 0.7935 a and 
A2 = 0.0619 a4, 

which agree with the  results of Goodchild and Moy (1976). For a Landsat ~ i x e l  a = 57.10 (m) and b = 
1.3846 and, hence, 

f, = 0.9288 a 
= 53.036 (m) and 
= 0.1 194 a 4  
= 1.269 x lo6 (m4) 
= 1.269 x (ha2). 
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