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Multiple Focal Setting Self-Calibration 
of Close-Range Metric Cameras 

The technique accommodates the geometric constraint that, at finite 
focus, symmetrical radial lens distortion varies linearly with 
magnification. 

E APPLICATION of analytical self-calibration methods in close-range photogrammetric surveys in- 
volving moderately large photographic scales is accompanied by the requirement to account for T" 

variations in lens distortion with changing focussed object distance. Since radial distortion is typically 
calibrated at infinity focus, the employment of finite focal settings gives rise to the need for further 
radial distortion functions appropriate to each focal setting. The apparent implication is that, if one em- 
ployed multiple focal settings in a survey, then multiple camera calibrations would be required. For- 
tunately, this is not the case. Magill (1955) has shown that the symmetric lens distortion changes linearly 
with variations in magnification. Based on an extension of Magill's work, Brown (1971) developed a for- 

ABSTRACT: Any application of fully analytical techniques in  precise close-range 
photogrammetric surveys involving large photographic scales and varying mag- 
nification between individual recorded images must account for variations in 
lens distortion wi th  changing focussed object distance. In this paper, a multiple 
focal setting self-calibration technique is developed which accommodates the 
geometric constraint that, at finite focus, symmetrical radial lens distortion 
varies linearly wi th  magnification. The required introduction of appropriate 
linear constraint equations into the normal equation system of the self-cali- 
brating bundle adjustment is outlined. Also, algorithmic aspects of the tech- 
nique are discussed, especially in  relation to the triangular decomposition of the 
resulting symmetric indefinite "bordered" normal equation matv-ix. An  experi- 
ment conducted to assess the practicability of the proposed multiple focal set- 
ting self-calibration technique is reported, and the results obtained are dis- 
cussed. 

mula relating the radial lens distortion function at any principal distance to the distortion functions at 
two focal settings, one being typically the infinity focus. Thus, a complete camera calibration need only 
be carried out for two focal settings to account for the variations in the radial distortion. 

In the extension of the self-calibrating bundle adjustment to accommodate multiple cameras or multi- 
ple focal settings, the construction of the additional parameter matrix is such that the parameters of the 
inner cone relating solely to a particular camera or magnification are linearly independent (see, for 
example, Fraser and Veress, 1979). However, the forniula of Brown (1971) expresses a linear depen- 
dence between the radial distortion functions at different focussed object distances and the conditions 
expressed in his formula must be satisfied in a multiple focal setting self-calibration solution for the dis- 
tortion coefficients at each magnification. Thus, if three or more finite focal settings are employed in a 
photogrammetric self-calibration, the adopted mathematical model will need to accommodate the inclu- 
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sion of linear constraint equations enforcing the relationship between radial lens distortion variations 
and changes in finite focus. 

In this paper, a multiple focal setting self-calibration technique is introduced, in which the normal 
equation system incorporates appropriate linear constraint equations enforcing a functional dependence 
between the coefficients of symmetric lens distortion at different magnifications. For the present theo- 
retical development, the case of three focal settings is detailed. 

THEORETICAL BACKGROUND 
MATHEMATICAL MODEL OF SELF-CALIBRATION 

The linearized form of the mathematical model of the self-calibrating bundle method of phototriangu- 
lation is given by the matrix equation 

where 

8, a, iY represent the vectors of corrections to the exterior orientation elements, the object 
space coordinates, and the additional parameters which comprise the systematic 
image error correction model; 

B, B, B refer to the matrices of partial derivatives of the extended collinearity equations 
with respect to the exterior orientation elements, the object space coordinates, and 
the additional parameters; 

V , v v are the vectors of residuals for the image point coordinates, the exterior orientation 
elements, the object space coordinates, and the additional parameters; 

e, i, Z, i? indicate the discrepancy vectors; and 
I is the unit matrix. 

I n  the form given by Equation 1, all parameters are treated as observed or pseudo-observed quantities 
of known a priori reliability. The block-diagonal weight matrix, P, expressing a priori precision is 
given as rw 1 

I .. ... L 

where W, W, W, Ware the weight matrices of the image coordinates, the elements of exterior orientation, 
the object space coordinates, and the additional parameters. 

The normal equations for a linear least-squares solution of the parametric system, Equation 1, assume 
the form 

B T W j j  i~wjj' 
iiTWii+w iTG 

...TG + @ 

symmetric 

Equation 2 represents the general system of normal equations for the self-calibrating bundle adjust- 
ment of a photogrammetric block generated by any combination of image coordinate measurements and 
parameters of the exterior orientation, the object space reference system, and the image correction 
model. For a comprehensive review of the fine structure of portions of Equation 2, the reader is referred 
to Brown (1976). 
ADDITIONAL PARAMETERS 

The additional parameters, & with coefficient matrix, B, describe the correction model for systematic 
image coordinate errors. In expanded form, the model adopted for the present application is given by 
the following equations, in which Ax and A y  indicate the image coordinate corrections: 

Here, AxF and AyF contain correction terms which relate to a specific Gaussian focal length or principal 
distance ci: 



where 

and 
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x',yl  are the observed image coordinates; 
xo,yo are the coordinates of the principal point; 

ci is the Gaussian focal length, or principal distance; 
dc i  is the correction to c,; 

K 3  are the coefficients of symmetric radial lens distortion (see Equation 6); and 
Pil,Pi2 are the decentering distortion coefficients. 

In the following discussion, the additional parameters which relate to a specific principal distance, 
namely K,,&2K3,Pi, ,Pi2,  and dci, will be referred to as focal setting-invariant parameters. 

The expressions for the image coordinate corrections AxB and AyB comprise terms which are treated 
as block-invariant in nature: 

Consideration of the interior orientation parameters xo and yo as block-invariant is based on the assump- 
tion that the camera is fiee of significant lens barrel misalignment. Of the remaining block-invariant 
parameters, a ,  through a ,  and b, through b, ,  the linear terms in x and y account for a lack of orthogonality 
and a differential scale component between the image coordinate axes. Schut (1978) has reported that it 
is immaterial whether the two linear terms are used to correct x, y, or both. The larger depth of spacing 
typically encountered in close-range object target arrays makes it appropriate to retain the terms a , x y  
and b3xy  rather than the two omitted second-order terms in x2 and y2.  Gotthardt (1975) has presented an 
illustration of the geometric effect of each of the empirical terms in Equations 5, for an image having a 
standard 3 x 3 point configuration. 

Perhaps the distinguishing feature of the image correction model, Equations 3, is that it facilitates 
the recovery of inner cone parameters of the camera, thus providing a physical insight into the system- 
atic error attributable to radial and decentering distortion, and to biases in the elements of interior orien- 
tation. This self-calibration approach has been adopted by a number of investigators (see, for example, 
Kenefick et al. ,  1972; Salmenpera et a l . ,  1974; Brown, 1974; Brown, 1976). Alternative formulations of 
the image correction model which incorporate orthogonal polynomials (Ebner, 1976; Griin, 1978) or har- 
monic functions (El Hakim and Faig, 1979) may be viewed as providing systematic error compensation 
without giving any precise indication of the nature of the individual error sources. 

VARIATION IN LENS DISTORTION WITH CHANGING FOCAL SETTING 

Based on the original formulation of Magill (1955) and the subsequent developments by Brown 
(1971), Abdel-Aziz (1973) has derived the following formulae for the description of symmetric radial 
lens distortion at three different focal settings: 

and 

where 
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Here, Arc, and Arc, are the radial distortion hnctions for principal distances c ,  and c,, whereas A&, is the 
unknown distortion at any other principal distance c,. The expression for a can also be given in terms of 
the focal length of the lens,f, and the focussed object distance, sf; Brown (1972) has given Equation 8 in 
the form 

s - s  s - f  a = 2 3 . 1  
8 2  - S l  S 3  - f  

By referring to the standard thin lens equation 

1 1  1 - + - = -  
S f  c* f 

the equivalence of the two expressions for the variable, a, can be readily shown. In the context of apply- 
ing constraint equations enforcing the linear relationship between the coefficients of the three distor- 
tion functions, it is preferable to recast Equations 7 into the form 

Although Equations 10 represent linear condition equations in terms of the coefficients &,, G2, and &,, 
the expressions are non-linear with respect to the principal distances c, ,  c,, and c,. The introduction of 
approximate values for the parameters, and linearization by Taylor series expansion yields for the r3 
term of the distortion polynomial 

where d&, dK,,, d&, are corrections to current values of the radial lens distortion coefficients. 
Similar expressions can be derived for the fifth and seventh order terms of the radial distortion func- 

tion; however, only the condition equation for the term in r5 is included here as the coefficients, I<(,, 
were at no time statistically significant in the practical self-calibrations conducted. The linearization of 
the expression relating the coefficients, K,,, is given by 

(c, - c2)c:dK12 + (c1 - CJCZ~KZZ + (c2 - c1)c3dK32 
+ [5c:(c3 - c,)K,, + (1 - c,)cZK,, + (c, - l ) c ~ , K ~ , ] d c ,  
+ [(c,  - l)c:KIZ + 5c$(c1 - c3)KZ2 + (1 - C ~ ) C ~ ~ K , ~ ] ~ C ~  

+ [ ( l  - c,)c:Kl, + (c ,  - l)c5,K2, + (c,  - c , ) 5 c ~ ~ , ~ ] d c ,  
+ [ ( c ,  - ~2)c:KlZ + (cl - ~31~52K22 + ( ~ 2  - ~1)~3K32] = 0 

In matrix notation, Equations 11 and 12 can be written as a combined expression: 

HT* + F = o 
For a multiple focal setting self-calibration employing three finite object distances, neglecting the 
seventh-order terms of the distortion polynomials, Equation 13 can be given in the expanded form 
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INCORPORATION OF DISTORTION COEFFICIENT CONSTRAINT EQUATIONS 

The linearized equations, Equations 11 and 12, represent geometric conditions between the radial 
lens distortion coefficients, &, which are themselves unknown parameters to be solved for in the self- 
calibration adjustment. The appropriate observation equation form in cases where there is a functional 
dependence between the parameters of the mathematical model, can be given by the parametric system 

-v +A$ - L = 0 ; P  
H 6 , + F = O  (15) 

where A  is the design matrix,X the vector ofu unknown parameters (XT = [ 8 ~  gT f T ] ) ,  L the discrepancy 
vector, V  the vector of residuals, and P  the weight matrix. 

With the incorporation of k linea;.~onstraint equations, the following system of normal equations is 
formed, noting that the parameters 6, are contained in X: 

This system is square, representing (u + k) equations in (u + k) unknowns. With the inclusion of the un- 
knowns &, which are the individual lagrangian multipliers or correlates, the number of degrees of free- 
dom in the adjustment is incremented by k. From Equation 16, it is apparent that the usual normal equa- 
tion matrix ATPA has been "bordered by the equations expressing the functional dependence between 
the parameters. The original derivation of this method is attributed to the German geodesist and mathe- 
matician. Helmert. - - 

The bordered normal equations of the photogrammetric self-calibrating bundle adjustment, incor- 
porating geometric conditions between additional parameters, follow from a substitution of the matrices 
in Equation 2 into Equation 16: 

+ w BTWB B T W ~ ~ '  
..TW* + + ..TW* 

*TG + i i j  (17) 

-F 

COMPUTATIONAL CONSIDERATIONS 

Typically, the rank (u + k) of the bordered normal equation matrix in Equation 17 exceeds that of the 
usual normal coefficient matrix by only two or three. Therefore, with k << u, it is computationally ad- 
vantageous to consider a direct solution for the bordered system. So long as the mathematical model has 
been constructed correctly, and assuming that the coefficient matrix is not excessively ill-conditioned, 
the bordered matrix will lend itself to inversion by standard techniques. 

In the present investigation, a Cholesky factorization utilizing symmetric storage mode has been em- 
ployed as the solution algorithm of the normal equations, Equations 2, for the self-calibrating bundle ad- 
justment. However, such an algorithm cannot be used for the solution of the bordered system. The 
Cholesky factorization involves a decomposition of a matrix, N, into the form LLT, where L is a lower 
triangular matrix. The product, LLT, is always positive semi-definite, so the decomposition will fail in 
exact arithmetic unless the matrix, N, is positive-definite. Algorithmically, failure in exact arithmetic is 
associated with severe instability in finite precision. The introduction of a null principal submatrix of 
order two in the formation of the bordered normal matrix causes the matrix to become indefinite. Thus, 
an alternative to the Cholesky factorization must be found. 

At first sight Gaussian elimination with partial or complete pivoting may appear to present a useful 
alternative solution technique. In typical Gauss elimination the matrix, N, is factored into the form, 
LDLT, where D is diagnonal. In applying complete pivoting, the first trailing submatrix produced will 
generally no longer be symmetric. However, it is both advantageous and economical to employ a sym- 
metric storage mode and, thus, a factorization which maintains symmetry is preferred. TO preserve this 
symmetry, the choice of pivots is restricted to the diagonal elements as the interchange of two rows must 
be accompanied by the interchange of the same two columns. But the bordered matrix has a null prin- 
cipal submatrix which will give rise to zero pivots. 

A block Gaussian elimination technique which takes advantage of the symmetry of an indefinite ma- 
trix and circumvents the problem of zero pivots has been developed by Bunch and Parlett (1971). The 
scheme involves a decomposition of the matrix, N, to MDMT, where D is a symmetric block diagonal 
matrix and M is a unit lower triangular matrix. Each block of D is of the order 1 or 2, and Mi+l.r = 0  
whenever Di+,, # 0 .  The algorithm for this factorization is faster than Gauss elimination and almost as 
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stable as Gauss elimination with complete pivoting. For the solution of the bordered normal equation 
system, Equation 17, such an algorithm has been used. 

In addition to the requirement for a direct solution of the parameters &, g, and % (K, is typically not 
required), the cofactor matrix, Qxx, is needed in order to carry out an evaluation of the a posteriori pre- 
cision of the parameters. It can be shown that Q,, is equal to the leading principal submatrix of the in- 
verse of the bordered normal equation matrix. That is, from Equation 16 

A direct inversion of the bordered normal equation matrix will therefore yield cofactor matrices, Qid, for 
the elements of exterior orientation, Q;; for the object point coordinates, and @-for the additional 
parameters: 

Qi; Qi; QQ;a 
Qm = [ QE =] (19) 

symmetric 

From the theoretical and computational aspects presented in the foregoing discussion, a practical multi- 
ple focal setting self-calibration method can be developed. 

DETAILS OF T H E  EXPERIMENT 

In order to verify the proposed simultaneous multiple focal setting self-calibration technique and also 
to assess its practicability, an experiment was conducted. In the following paragraphs details of the 
experiment relating to the photographic procedure, the camera used, the geometry of the system, and 
the initial data processing are presented. 

The Camera. The camera selected for the experiment was an MK-70 metric Hasselblad (serial no. 
1146) with a Biogon 60mmj75.6 lens. While a film camera with a wide angle lens does not represent the 
most desirable system for a conclusive experimental verification of the proposed self-calibration tech- 
nique, it does display a few practical advantages. In the case of the Hasselblad, the incorporation of a 
reseau grid contributes to a minimizing of the effects of film deformation, although residual deformation 
components of 3-4 pm seem to persist regardless of the adopted image transformation and subsequent 
analytical phototriangulation technique. 

For a successful recovery of the Gaussian focal length, convergent photography and a well distributed 
three-dimensional object target field are typically required. The large depth of field obtained using a 
60mm lens at f-stop 32 makes it possible to employ highly convergent camera axes and a large depth of 
spacing in the target field. In the present experiment the extreme case was reached where at a focal 
setting of 1.6 m, the range of the acceptable photographic distance within the field of view, was from 1 m 
to 2.7 m. At f-stop 32 all targets appeared in focus and the variation of distortion throughout the photo- 
graphic field, obtained using the formulae derived by Brown (1971; 1972), was a maximum of 5 percent 
and typically less than 0.5 pm. 

Geometry of the System. The configuration of the exposure stations and the geometry of the object 
target field are illustrated in Figure 1. The three-dimensional target range partly comprised a planar 
field, namely a wall, consisting of 29 points, each target point being the 4-mm diameter spherical head 
of a map tack. In addition, two piano wires were suspended as plumb lines 36 cm out from the wall at 
a separation of 60 cm, symmetric about the center of the target field. On each of the wires six 3-mm 
diameter seed-beads were fixed to serve as targets. The approximate overall dimensions of the target 
range were 2.6 m wide, 2.3 m high, and 0.4 m deep. 

As illustrated in Figure 1, 12 camera stations were employed, four corresponding to each of the three 
adopted focal settings, of 3 m, 2 m, and 1.6 m. All camera axes were directed toward the center point of 
the target field, which at the 3 m range gives rise to phi rotations of magnitude approximately 45" at 
exposure stations 1 and 2 (angle of convergence of 90"). At these same exposure stations the cameras 
were inclined with an omega rotation of 6", while at camera station 4 the omega rotation was - 12'. At 
station 3 the camera axis was approximately normal to the XY plane. By simply scaling down the expo- 
sure station configuration at 3 m in proportion to focal setting, similar camera configurations were set up 
at object distances of 2 m and 1.6 m. 

A large divergency of swing angles was incorporated to enhance the precise recovery of interior orien- 
tation elements xo and yo. The kappa rotation at any of the four camera stations for a particular focal 
setting was either 90" or 180" different from the value at the remaining three stations. 
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O - Camera Stations :t 

FIG. 1. Object target field and camera configuration. 

Object target point density was such that, on the average, 25 image points appeared on the photo- 
graphs taken at the 1.6-m focus, whereas the number of points imaged at 2-m and 3-m focal settings 
averaged 30 and 39, respectively. Of the 41 object points in the target field, all but three appeared on at 
least four photographs. On each exposure, points were well distributed throughout the image format 
with their layout affording a wide distribution of radial distance. 

Photographic Procedure. All 12 photographs were exposed over a 1-hour period on the same role of 
70 mm film. Each exposure time was M sec. at f-stop 32. Only three focal settings were used: 3 m for 
exposure stations 1,2,3 ,  and 4; 2 m for stations 5,6,7, and 8; and 1.6 m for stations 9, 10, 11, and 12. 

Data Reduction. Image coordinate observations were camed out on an OMI-Bendix AP/C analytical 
stereoplotter, with each negative being viewed monocularly. In addition to measuring the x,y coordi- 
nates of all points which were clearly definable, the coordinates of eight reseau crosses were observed. 

The computations presented in this paper were carried out using two main computer programs, SELCAL 

and MULFOC. The former is a self-calibrating bundle adjustment specifically written for close-range 
applications, the latter is a modified version of SELCAL, which incorporates the bordering of the normal 
equations by the linear constraint equations, Equations 14. 

I It is possible to cany out multiple focal setting self-calibration adjustments either with or without the 
inclusion of the constraint equations enforcing a linear variation in radial lens distortion with changing 

1 principal distance. Where the constraint equations are not applied, there is no correlation between the 
lens distortion parameters at the different focal settings, and the adjustment becomes a special case of 
the multiple camera self-calibration (see, for example, Fraser and Veress, 1979). A distinguishing fea- 
ture, however, is that, unlike the multiple camera case, it is possible to carry the interior orientation 

I elements xo and y o  as block-invariant parameters in the adjustment. 
The bordering of the normal equations of the bundle adjustment with constraint equations can give 

rise to a few practical problems. It was found that the decomposition of the symmetric indefinite bor- 
dered system was unstable in situations where the additional parameter set included terms which were 

1 not statistically significant. For this reason the self-calibration adjustment with constraints was only car- , ried out after a number of SELCAL runs were made. This enabled the determination of the most appro- 
priate focal setting-invariant and block-invariant parameter sets and also enabled the suppression of 
additional parameters which were not statistically significant. 

Having determined the most appropriate terms for the correction model, the self-calibration with 
linear constraints could be carried out. The inclusion of the same inner cone and film deformation 
parameters in the MULFOC runs then facilitated a direct comparison of the results with those obtained 
using the self-calibration program SELCAL. 

IMAGE CORRECTION MODEL 

Of a number of additional parameter sets chosen for individual runs of SELCAL, the correction model 
which produced the most favorable results from the point of view of statistical significance and the 
minimization of the mean square estimate of image coordinate residuals was as follows: 



and 
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Initial adjustments were carried out in which the coordinates, x,, and yo, of the principal point were 
incorporaatd as focal setting-invariant parameters. However, the calculated values at each magnification 
differed by significantly less than the one sigma level. In the absence of any distinguishable lens barrel 
misalignment, the two interior orientation parameters were then assumed to be block-invariant. In treat- 
ing xo and y, as block-invariant, the strong correlation between these parameters and the coefficients of 
decentering distortion, Pi, and Pi2, at each focus is considerably reduced. Typically, the values of the cor- 
relation coefficients dropped from about 0.9 to about 0.65. Such a reduction in the extent of linear de- 
pendence between parameters can only enhance solution stability. 

The statistical significance of the block-invariant additional parameters was verified by examining the 
null hypothesis that the derived estimates were equal to zero. Since there is little correlation between 
the individual parameters, a hypothesis H, of rank (H,) = 1 was selected, the chosen significance level 
being 5 percent (confidence level of 95 percent). For all six block-invariant additional parameters, the 
null hypothesis had to be rejected. 

Perhaps the most notable feature of the derived optimum block-invariant additional parameter set is 
the lack of significant second-order terms. The absence of terms in xy, xZ ,  and y2 indicates that to a large 
degree the linearized projective equations used for the initial two-dimensional image coordinate trans- 
formations accounted for the second-order film deformation. However, higher order residual deforma- 
tion remained and a small first-order component was introduced. 

Of the focal setting-invariant parameters, the dominant term of the decentering distortion function 
was found to be significant at all three principal distances and the derived decentering profile displayed 
a systematic variation with changing focal setting. The variation was, however, by no means linear and 
can perhaps be attributed to a slight misalignment between the axis of the focusing barrel and the axis of 
the lens (see Brown, 1971; 1972). Variations in the decentering phase angle were consistent with the 
measured angles of rotation of the lens barrel between the three focal settings. 

RADIAL DISTORTION AND GAUSSIAN FOCAL LENGTH 

The derived least-squares estimates for the radial distortion coefficients, GI and Kz, and for the Gaus- 
sian focal length at each of the three focal settings are listed in Table 1. Also shown in the table are the 
a posteriori standard errors of these parameters. For each focal setting the following a priori precisions 

TABLE 1. LEAST-SQUARES ESTIMATES AND STANDARD ERRORS OF RADIAL LENS DISTORTION COEFFICIENTS AND 

GAUSSIAN FOCAL LENGTHS 

Unconstrained Constrained 

Parameter Estimate f Std. Error aZ Estimate f Std. Error aZ 

1.6m 
cl (mm) 63.840 0.015 63.848 0.015 
Kt1 (mm-9) -0.1883-5 0.513-6 -0.1303-5 0.463-6 
K1z (mm-') 0.103~-8 0.443-9 0.6523-9 0.383-9 

(pKlklZ = -0.95)** ( ~ ~ I I K ~ P  = -0.95) 
2m 
Cz 0.016 63.284 0.014 
KZI 0.433-6 -0.7963-6 0.333-6 
Kzz 0.353-9 0.2793-9 0.243-9 

(~KZIKZZ = -0.96) (PKz~KPF -0.88) 
3m 
C3 62.560 0.018 62559 0.017 
Kal -0.4353-6 0.453-6 -0.1033-6 0.423-6 
Kn -0.2583-9 0.30E-9 -0.2523-9 0.293-9 

(PK31K32 = -0.85) ( P K Z P ~ Z  = -0.84) 

** Correlation CoetYicien~ 
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were assigned: a,, = k0.1 mm, UK,] = +0.5E-5 and uKi2 = +0.5E-8. Plots of the radial distortion curves 
obtained in the adjustment are presented in Figure 2, along with the one sigma limit of the distortion 
polynomial relating to the 2-m focal setting. 

A comparison of the radial distortion polynomials obtained in the unconstrained adjustment with 
those obtained in the self-calibration with linear constraints will be treated in a following section. HOW- 
ever, it is useful at this time to consider the statistical significance of the derived symmetric lens distor- 
tion functions, which have the form 

Ar, = &,r3 + &,r5 (22) 

To ascertain the statistical significance of the coefficients &, and &,, a null hypothesis Ho of rank (Ho) 
= 2 is required because of the high correlation between these two parameters (Hamilton, 1964; Grun, 
1978). The null hypothesis becomes 

Ho:&,  = O;&, = 0 

The statistic T is calculated from the matrix equation 

where GI,  &, are the least-squares estimates; and &&,, 64, are the a posteriori variances of the estimates. 
The null hypothesis can only be rejected at the 5 percent significance level when T is greater than the 

Fisher statistic F2,m,o.o,; that is, when 

T > F,,m,o.os = 3.0 

Application of the above test to the estimates for &, and &, at each of the three focal settings yielded the 
following results: At a confidence level of 95 percent the null hypothesis could be rejected for focal set- 
tings of 1.6 m and 3 m. However, the hypothesis could not be rejected for the distortion polynomial at 
2 m. Thus, the derived radial distortion function for the 2 m focal setting cannot be regarded as statis- 
tically significant at the specified confidence level. 

IMAGE CORRECTION MODEL 

In the multiple focal setting self-calibration adjustment, program MULFOC, the image correction model 
comprised the same terms as those used for the self-calibration without linear constraints. The adjusted 
values and a posteriori precision of the block-invariant parameters and the decentering distortion CO- 

emcients obtained via the program MULFOC were not significantly different from the corresponding esti- 
mates determined in the unconstrained adjustment. 

RADIAL DISTORTION AND GAUSSIAN FOCAL LENGTH 

Preliminary testing of the multiple focal setting self-calibration program MULFOC which incorporated 
the constraint equations, Equation 14, indicated that a satisfactory convergence to the linear conditions 

?& - 1u region 

quivalent curve 2n1 

-30 L -25 

FIG. 2. Symmetric radial lens distortion-uncon- FIG. 3. Symmetric radial lens distortion-con- 
strained adjustment. strained adjustment. 
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was achieved only when the a priori estimates for the principal distances, ci, were given large weights 
(say, a,, = 0.010 mm). To overcome the lack of satisfactory numerical determinacy of the linearized con- 
straint equations in cases where loose a priori weights were assigned to the estimates c,, the terms in dci 
were suppressed. This arbitrary assignment of selected coefficient values to zero did not effect the final 
adjustment solution and overcame the convergence problems. Thus, for the following discussion Equa- 
tion 14 is modified to the form: 

The incorporation of Equation 20 into the program MULFOC enabled a self-calibration to be carried out 
in which the assigned a priori variances of the additional parameters were of the same value as those 
used in the SELCAL runs. The adjusted values of the parameters c, and &,, & obtained in the constrained 
solution are listed in Table 1. Plots of the derived radial distortion polynomials are shown in Figure 3. 

From a comparison of the results listed in Table 1, it is possible to draw a few tentative conclusions 
regarding the a posteriori precision of the distortion coefficients and the Gaussian focal lengths. It is 
first notable that, whereas the distortion polynomial for an object distance of 2 m was not found to be 
statistically significant in the solution without constraints, in the constrained adjustment this distortion 
function was found to be significant at a 5 percent significance level. 

At focal settings of 1.6 m and 3 m there is very little difference between the constrained and uncon- 
strained solutions. A marginal improvement in the a posteriori precision of the lens distortion coeffi- 
cients is apparent, but there is no change in the correlation coefficients. Estimates of the Gaussian focal 
length at 1.6 m and 3 m obtained in the two self-calibration solutions differ by an amount which is con- 
siderably less than the one sigma level. 

However, whereas the constrained and unconstrained self-calibrations produce similar results for the 
1.6 m and 3 m focal settings, there is a more substantial variation between the solutions at an object dis- 
tance of 2 m. Here, the calculated values of the coefficients and &, obtained in the constrained ad- 
justment display 25 to 30 percent smaller a posteriori standard errors than the unconstrained estimates. 
In addition, the correlation coefficient is reduced from a magnitude of 0.96 down to 0.88. 

Because there is a coupling between radial lens distortion and Gaussian focal length, the large varia- 
tion in the values of the distortion coefficients between the SELCAL and MULFOC solutions is also matched 
by a variation of 190 pm between the two adjusted principal distances at 2 m. To enable a direct com- 
parison to be made between the two symmetric radial distortion polynomials determined for the 2 m 
focal setting, an equivalent distortion curve has been calculated by balancing the first polynomial so that 
the equivalent principal distance of the unconstrained solution matches the value obtained in the con- 
strained solution. This equivalent distortion polynomal is shown in Figure 3. 

In order to appreciate the attainable accuracy of a multiple focal setting self-calibration using the Has- 
selblad MK-70, one need only consider the root-mean-square (RMS) values of the image coordinate 
residuals, and the derived precision of the object space target point coordinates. In the self-calibration 
with linear constraints, RMS values of s, = k3.3 pm and s, = 3 . 5  pm were obtained, whereas in the 
constrained adjustment these values were reduced in magnitude to s, = k3.1 pm and s,  = 23.2 pm. 
The a posteriori standard errors of the (X,Y,Z) coordinates for points in the midfield of the target range 
were of the order of a, - a, = 50 pm and az = 90 pm (with respect to the assigned reference coordinate 
system). Expressed in the form of a ratio of the standard error over the diameter of the object target field, 
the precision in X and Y coordinates is about 1160,000, whereas the figure for the Z coordinate deter- 
mination is approximately 1135,000. The coordinate precision of points on the wires and points in the 
outfield is less than that just given; however, the poorest estimate is still on the order of 1125,000. It is 
considered unlikely that such high accuracy will be achieved in similar close-range photogrammetric 
surveys employing a metric film camera with a lens of 60-mm focal length, unless an analytical self- 
calibration technique is adopted for the phototriangulation. 

In conclusion, the principal advantage of the proposed multiple focal setting self-calibration tech- 
nique is considered to be the fact that self-calibrated radial distortion polynomial coefficients at dif- 
ferent principal distances, which have hitherto been treated as uncorrelated functions in the adjust- 
ment, display a linear relationship with magnification which is consistent with established theory. Even 
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though a long focal length camera with a pronounced distortion profile would probably have been a 
more appropriate camera to use in the present experimental program, the results obtained using the 
Hasselblad MK-70 with a Biogon 60 mm lens suggest that the proposed multiple focal setting self-cali- 
bration provides a useful one-step calibration technique for close-range metric cameras. 
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