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Spatial Postprocessing of 

I Spectrally Classified 
Landsat Data 

The technique, based on selecting the level of influence exerted on 
the central pixel by a predetermined set of nearest neighbors, uses a 
proximity function derived by analogy from a gravitational 
attractive force model. 

INTRODUCTION 

C OMMON COMPUTER classification techniques 
(e.g., histogram parallepiped, minimum Eu- 

clidean distance, maximum likelihood, etc.) usually 
operate in spectral, rather than image, space (for 
further information, see Kana1 (1974), Rosenfeldet 
al. (1978), Swain and Davis (1978), and others). 
Using these techniques, each picture element 
(pixel) is classified into a target category without 
reference to its spatial neighbors. 

Variability in the spectral distribution for the 
.I same training" target over an extended geo- 

postprocessing of spectrally classfied data based 
on the evaluation of a "proximity function" for 
each pixel, for each target class, in the initially 
classified dataset. The possibly revised classifica- 
tion status for each pixel is then passed, after this 
spatial postprocessing, to an output dataset. This 
technique has been used by the New Zealand 
group since 1977 to good effect in land use, forest- 
ry, and bathymetric classification projects (Ellis et 
al., 1978). 

Davis and Peet (1977) used a "filling in" method 
in their "minimum area recognized" technique. 

ABSTRACT: Usual spectrally based classijkation techniques make little allowance 
for the spatial relationship between surrounding picture elements. A process 
based on the evaluation of a proximity function is advanced that makes this 
allowance possible. This process reduces the classification "noise" brought 
about by a variable range of spectral signatures for a target over an extended 
area. The proximity function was derived by analogy with the scalar gravita- 
tional attractive force. 

I 

graphic area can lead to classification "noise" 
being introduced into a final thematic map. This 
variability can be produced by the influences of 
differing soil type, soil moisture regime, wind 
pressure on vegetation with the resultant change 
in radiance, individual farming practices, etc. 

Consequently, some form of spatial postprocess- 
ing is often desirable to aggregate like-classified 
pixels together by 'filling in' the unclassified gaps 
between lesser aggregates and by rejecting, or 
changing, the ascribed class for pixels that have 
been possibly misclassified due to spectral noise. 

A technique is described here for such spatial 
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The method outlined here considers internal con- 
sistency among the immediate nearest neighbors 
rather than filling in between classified conglom- 
erates. 

It remains for the user to choose the technique 
most appropriate to his application. 

The human eye and brain, when viewing and 
classifying a scene, act as a multidimensional clas- 
sifier. The combination senses color, shape, 
proximity of associated classes, and texture, among 
other information. Extensive work has been re- 
ported on the classification of features by shape 
and texture (Bernstein, 1978; and references 
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therein). Goldstein and Rosenfeld (1964) de- 
scribed texture as a function of two parameters: 
detail-the spatial distribution of contrast-and 
shape. Haralick (1979) regarded some texture as 
being decomposable into two dimensions. The 
first dimension described the primitive elements 
that constituted texture and the second dimension 
addressed the spatial organization of the primi- 
tives. Extending these ideas into spectral classifi- 
cation: the spectrally classified pixel may be re- 
garded as the first dimension, or primitive, in a 
spectrally and spatially ordered thematic map. 
The second dimension would then involve the 
spatial relationship between such spectrally clas- 
sified primitives. It is expected that future clas- 
sifiers will bring together textural and spectral 
systems just as the human eye and brain do now. 

Fu (1972) compared the use of a probability 
density function with other techniques in clas- 
sifying data in spectral space. His probability 
function was based on the concept of electrostatic 
potential. Such a potential function existed for 
each target class over all pixels. Here we are con- 
sidering the interaction between pixels that have 
already been classified into various target classes. 

To avoid the possibility of uncontrolled edge 
growth, it was decided to use an inverse square 
distance relationship (Fu, 1972, similarly used an 
inverse square distance dependence). Con- 
sequently, a "proximity function" based on the 
scalar gravitational attractive force function was 
chosen, i.e., Equation 1. (The need to minimize 
computer time acted against the choice of other 
than such a simple relation. The weighting factors 
were also chosen as integers to further minimize 
computer time.) 

The proximity function, Equation 1, is evaluated 
for a central pixel surrounded by nearest 
neighbors, for the set of classes. If the maximum 
value of the proximity function over the set of all 
target classes exceeds a user specified minimum 
value, then the central pixel is admitted as a 
member of the target set. Otherwise, it is rejected 
to the unclassified set. This applies whether or not 
the central pixel has already been classified as a 
member of the target set under consideration. 
(Weighting is used to favor the retention of the 
central pixel in its previously classified state, if 
classified. See later.) 

In some cases previously unclassified pixels 
will be included by this process in the final target 
classification; and in others, classified pixels will 
be declassified and excluded. The outcome de- 
pends upon the maximum value of the proximity 
function over the complete target set for that pixel 
with respect to the predetermined minimum value. 

The proximity function for each individual pixel 
is separately evaluated, in turn, from the 'raw' 

classification dataset and the result used to gener- 
ate the revised pixel value, in turn, in the spatially 
postprocessed dataset. 

The spatial postprocessing technique is only 
applied to a dataset where each pixel has been 
spectrally classified into one of j classes, or into 
the unclassified "zeroth" class. The proximity 
function Fj, for class j ,  for a central pixel P5 in a 3 
by 3 nearest neighbor matrix (Table 1) is evaluated 
from Equation 1 where only the non-diagonal 
neighbors are considered. (The non-diagonal 
neighbors-P,, P,, P,, Pghave the ability to be 
twice as effective as the diagonal members of the 
matrix (see Table A-1). This was considered to be 
cost effective from a computer time standpoint.) 

where 
di,s is the ground distance between the centers 

of the ith and 51h pixels 
(d,,  = d , ,  = 79 m; 
d , ,  = d , ,  = 57 m); 

qi and q5 are arbitrary weighting values for 
the ith and 5th pixels. If the ith pixel has 
been classified into the jth class, then qi = 
2, and 0 if not. If the central pixel has been 
classified in the jth class, then q5 = 2, and 
1 if not; and 

Fj is the value of the proximity function for 
class j. 

The proximity function, Fj, is evaluated over all 
i for each j and the results compared. The central 
pixel is then reclassified as a member of the target 
class j,,, corresponding to the maximum value of 
the proximity function Fjmax. If Fj exceeds the 
predetermined minimum value, tRe central pixel 
passes, possibly reclassified, into the output 
dataset. If not, it is passed as a member of the 
unclassified 'zero' class. 

The determination of the minimum value for the 
proximity function is discussed in the Appendix. A 

TABLE 1. THE 3 BY 3 NEAREST NEIGHBOUR MATRIX 
SURROUNDING PIXEL 5. ONLY THE NON-DIAGONAL 

(EVEN NUMBERED) PIXELS WERE USED I N  THIS SPATIAL 
PO~TPROCE~SINC METHOD. THE GROUND LEVEL 

DIMENSIONS OF EACH PIXEL ARE INDICATED. 

+57m+ 



SPATIAL POSTPROCESSING OF SPECTRAL LANDSAT DATA 

value of 12 x lo-, m-2 was derived from consid- 
ering the value of the proximity function for the 
three nearest neighbors (P2 + P8 + P4) where these 
neighbors were all members of class j, and P, was 
not. This value is also appropriate to (P, + P,) 
where sampling overlap along the scan line does 
occur. Such a value thus permits an improved clas- 
sification representation of an extended class type. 

If the value were set to 11 x m-2, edge 
growth, through the diagonal neighbors, would be 
introduced. 

If 13 x lop4 m-2 was selected for the value, ex- 
cessive rejection would occur. This value would 
exclude the filling in of an extended feature, sited 
across scan lines, where P, had been omitted from 
the classified data set. 

This spatial postprocessing procedure is applied 
to the complete spectrally classified data set with 
the exception of the first and last lines and the first 
and last pixels in each line. To minimize storage 
requirements, only three lines are read from disk 
store for operations on the central line. A further 
line is read later from disk following a line shuffle. 

Unmodified supervised histogram parallepiped 
classification results are   resented in Fieure 1. - 
(For details of the technique, see Swain and Davis 
(1978), and references therein. Thomas et al. 

(1979) provides details on this operational im- 
plementation.) Four targets were classified in this 
2595 hectare subscene of Landsat scene 2282- 
21254 recorded over Central Canterbury, New 
Zealand on 31 October 1975. As outlined in the 
Appendix, these were the "noisy" targets Bare 
Ground and Kopara Wheat; the "medium" target 
Alfalfa (or Lucerne); and the "quiet" target Exotic 
Forest. (The "noise" of a target has been qualita- 
tively defined as the departure from spectral sig- 
nature homogeneity for each target class. That is, 
the Exotic Forest is here assumed to have a 
homogeneous unimodal spectral signature dis- 
tribution.) 

Following spatial postprocessing, using a dis- 
crimination value of 12 x m-2 for the proxim- 
ity function, the modified map for the same area, 
targets, and spectral signatures is presented as 
Figure 2. 

The major tasks for the spatial postprocessing 
module are to reduce the noise and to improve the 
spatial coherency of the spectrally classified data. 

However, the applicability of both the classifi- 
cation technique and the additional spatial post- 
processing module to actuality must first be 
evaluated. The "quiet" target, Exotic Forest, is 
used for this evaluation with the expectation that, 
if the classification module is operating correctly, 
the areas deduced from ground measurements and 
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FIG. 1. Supervised histogram parallelepiped classification 
applied to the indicated agricuItural subscene recorded over the 
Central Canterbury Plains on 31 October 1975. The character 
codes are as follows: (1)-Bare Ground, (3)-Kopara Wheat, (6)- 
Alfalfa (or Lucerne), and (9)-Exotic Forest. 
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FIG. 2. The same region as in Figure 1 has here been classified 
by the supervised histogram parallepiped method with identical 
spectral signatures to those used for Figure 1. Spatial postprocess- 
ing with a minimum proximity function discrimination level of 
12-x 10-4m-2 has then been applied. In this case the character 
codes are (A)-Bare Ground, (C)-Kopara Wheat, (F)-Alfalfa (or 
Lucerne), and (I)-Exotic Forest. 

from the computer classification should agree, 
within experimental limits. Further, if the spatial 
postprocessing module is functioning correctly, it 
should neither add nor subtract from the above 
area figures for such a "quiet" homogeneous 
target, again within experimental limits. 

Within the sample region there are two major 
forest plantations. The plantation extending be- 
tween scan lines 1761 and 1790 (portrayed in Fig- 
ures 1 and 2) constitutes the 2.376 by 0.190 km 
shelter belt between Auchenflower and Home- 
bush Roads on Sheet S75 of the NZMS 1 Map 
Series, Department of Lands and Survey, Octo- 
ber 1973. This shelter belt is subsequently re- 
ferred to as the Selwyn Forest. The other major 
plantation, which runs obliquely southeast from 
scan line 1791, has mean dimensions of 1.426 by 
0.285 km and adjoins the West Coast Road on the 
same map sheet. (The other minor plantation, 
between scan lines 1806 and 1809, is excluded 
from the following evaluation as it is only partially 
included within the sample region, unlike the 
complete inclusion of the other two plantations.) 

The known ground area of each forest is now 
compared with that estimated from both the raw 
classification and the additional spatial postpro- 
cessing process, for a discrimination value of 12 x 

m-=. The ground dimensions were checked 
by on-site inspection. 

If one assumes that each picture element repre- 
sents 79 by 57 m (across by along a scan line), then 

the Selwyn Forest maps to 30 r 1 by 3 +- 1 pixels, 
where the uncertainties allow for pixels straddling 
target boundaries. Consequently, an area of 41 + 
15 ha could be expected to be recorded by Land- 
sat. The raw classification process yielded an area 
for this forest of 36.9 ha, and after spatial postpro- 
cessing the area was found to be 38.3 ha. 

The West Coast Road forest lies almost diagon- 
ally across the Landsat scan lines. Consequently, 
the mean forest dimensions are transformed into 
dimensions along and across the scan lines, in in- 
tegral pixel units. Thus, the forest area, from the 
map and ground data, could be represented by 6 r 
1 pixels along 13 -t 1 scan lines. This led to pre- 
dicted area of 35 2 8 ha in comparison to a raw 
classification of Landsat data yielding 31.5 ha as 
against a spatially postprocessed result of 31.1 ha. 

One can therefore conclude that the classifica- 
tion plus spatial postprocessing process has 
applicability to typing actual ground targets, with 
the qualification that a "quiet" homogeneous 
spectral signature has been assumed for the forest 
areas. The spatial postprocessing module, with a 
discrimination value of 12 x 10-4m-2, apparently 
functions also in the desired manner neither add- 
ing nor subtracting from actuality within experi- 
mental limits. 

The questions of effectiveness in noise reduc- 
tion and improvement in spatial coherency must 
now be considered. 

This assessment of the capability of the spatial 
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postprocessing module to reduce noise- 
misclassified pixels in the final thematic m a p  
rests on the above conclusion that a discrimination 
value of 12 x 10-4m-2 is applicable to the spatial 
postprocessing of a "quiet" target. Classification 
noise is manifest as an increase or decrease in the 
classified area of a ground target with respect to 
actuality. The departure from the actual ground 
area of the target will increase as the spectral sig- 
nature departs from the homogeneous unimodal 
state. For a "quiet" (possessing a homogeneous 
unimodal signature) target, the departure from 
actuality wouId be minimal and the spatial post- 
processing would have minimal influence on the 
classified area. Such is the case for the "quiet" 
target in this test for a discrimination value of 12 x 
10-4m-2 (see Table A-2). (The percentage decrease 
referred to in Table A-2 is obviously a combination 
of the exclusion of pixels initially misclassified 
into the target class and not surrounded by like 
classified pixels, together with those pixels ini- 
tially excluded, but surrounded by consistently 
classified pixels, which were then included in the 
class by the spatial postprocessing procedure.) 

For a value of 12 x 10-4m-Z, the "noisy" targets 
(Bare Ground and Kopara Wheat) experienced a 
"noise" reduction between 30 and 55 percent and 
the "medium" target (Alfalfa) had a "noise" re- 
duction of around 25 percent. These figures were 
confirmed by data from a ground truth visit to the 
area at the time of the satellite overpass. This visit 
took note of the location, type, and area of the test 
classes in the evaluation region and formed the 
base data for the above noise assessment study. 

(Obviously the above figures will vary for other 
test areas and other targets. However, additional 
trials we have conducted support the results given 
here for the three target "noise" categories for the 
preset discrimination proximity function value of 
12 x 10-~m-~.) 

Spatial coherency improvement was qualita- 
tively evaluated by visual comparison of line 
printer maps (e.g., Figures 1 and 2) for the range of 
discrimination values. Comparison was made 
against the unmodified histogram parallelepiped 
classified output. I t  was found that, for the "quiet" 
target, a discrimination value of 12 x 10-4m-2 
yielded the closest agreement with the ground 
truth, as discussed earlier. 

A ~rocedure has been demonstrated for improv- 
ing the target consistency in computer classified 
thematic maps. 

The process also recognizes some of the spatial 
inter-relationships between picture elements that 
have been independently classified, in spectral 

1 space, into various target classes. 
The simple supervised histogram parallel- 

epiped classifier was here set up to evaluate the 

picture element into classes in a specified order 
(see Thomas et al., 1979). The inclusion of the 
spatial postprocessing option permits some com- 
pensation for this sequential classification process 
to be included, if so desired. 

The spatial postprocessing algorithm, based on a 
modified gravitational attractive force model with 
a minimum value for the permitted proximity 
function of 12 x 10-4m-2, has been found to be 
useful for New Zealand classification work. This 
value, based on selecting the level of influence 
exerted on the central pixel by a predetermined 
set of nearest neighbors, has been supported by 
operational examples. 

It is a pleasure to acknowledge helpful discus- 
sions with colleagues Dr. P. J. Ellis, Mr. G. M. 
Allcock, and Dr. M. J. McDonnell of PEL and Mr. 
D. L. Hicks of New Zealand Ministry of Works 
and Development. 
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The minimum value for the proximity function 
Fj,, was determined from the following analysis. 

Comparative values for the function for varying 
selections of neighbors are presented in Table A-1. 

An area of 2595 hectares of Central Canterbury, 
New Zealand, recorded on 31 October 1975 in 
Landsat scene 2282-21254, was classified by 
supervised histogram parallelepiped classifica- 
tion. .--.. 

In determining the operational value for the dis- 
crimination level for the proximity function, spa- 
tial postprocessing was applied to this histogram 
parallelepiped classified data set with varying dis- 
crimination values. Four target classes were cho- 
sen. Bare Ground and Kopara Wheat were re- 
garded as "noisy" targets, as each class included 
wide variations within each spectral signature 
parallelepiped. Alfalfa, or Lucerne, was regarded 
as a "medium" target and Exotic Forest as a 
"quiet" or "well defined" target. 

The percentage decrease in the classified area 
for each value of the preset discrimination level 
for each target class was compared against the area 
for the unmodified parallelepiped results. This 
comparison is presented in Table A-2. 

(In the analysis proceeding from Table A-2 the 
value for PI + P, + P, was excluded because, like 

TABLE A-1. PROXIMITY FUNCTION VALUES, FROM 

EQUATION 1, SUMMED OVER SPECIFIED SURROUNDING 
PIXELS REFERRED TO THE CENTRAL PIXEL Ps FOR TWO 

CASES: WHERE P5 IS OF  CLASS^,,, ( I N  WHICH THE 

NEIGHBOURS ARE CLASSIFIED WITHIN  SET^,,,) AND 

WHERE PS IS NOT OF THAT CLASS. 

Proximity 
Function Ps + L a x  PI 

Relationship Value $10000 m-a *lo000 m-* 

3 nearest 

2 nearest 

2 diagonal 
3 diagonal 
2 nearest 

plus 
1 diagonal 
2 diagonal 

plus 
1 nearest PI + P, + P4 10.4 20.7 
4 nearest P, + P, + Ps + P, 18.8 37.4 
4 diagonal P, + P, + P5 + P, 8.4 16.8 

P, + P, + P,, it fell into an 'edge growth' situation. 
Alternatively, like P, + P, + P,, it could be an 
unstable 'noise growth" state.) 

As a result of the analysis discussed in the 
Evaluation section of this report and the data 
tabulated here, a minimum value of 12 x 10-4m-2 
was selected for the discrimination level of the 
spatial postprocessing proximity function. 

TABLE A-2. A COMPARISON OF THE PERCENTAGE DECREASE IN THE CLASSIFIED AREAS BETWEEN THE SPATIALLY 
PO~TPROCESSED PRODUCT AND THE UNMODIFIED HISTOGRAM PARALLEPIPED CLASSIFIED RESULTS FOR THE SAME AREA 
WITH THE SAME SPECTRAL SIGNATURES. THE VARIOUS VALUES OF THE PRESET PROXIMITY FUNCTION ARE INDICATED. 

IN 2595 HECTARES, HISTOGRAM PARALLEPIPED CLASSIFICATION YIELDED 58.0 ha BARE GROUND, 25.7 ha KOPARA 
WHEAT, 84.5 ha ALFALFA, AND 74.8 ha EXOTIC FOREST. 

Targets 
Preset Value 

for the Noisy Medium Quiet 
Proximity Bare Kopara Alfalfa Exotic 
Function Ground Wheat (Lucerne) Forest 

( x 10000m-2) (% decrease) (% decrease) (% decrease) (% decrease) 


