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1 Alternative "Scale Up" Estimators for 
1 Aerial Surveys where both Detection 

and Classification Errors Exist 

The best choice among these estimators may vary from application to 
application, depending upon the knowns and the actual values of the 
detection and identification parameters. 

I IN SOME remote sensing applications the detec- 
tion, classification, and identification of objects 

of interest is essentially a deterministic process. 
For many, if not most, applications, however, one 
or more of these steps is probabilistic in nature 
and the estimation process is statistical in char- 
acter. 

For some applications (see Kraus (1977), Green 
(1977), or Vizy (1974) for examples) detection itself 
is highly uncertain, and detection probabilities 

tical theory relevant to this problem is extant, but 
(to our knowledge) has not been extensively de- 
veloped or employed (see, however, Bauer et  al. 
(1978) for one clear exposition). 

This paper proposes and characterizes statistical 
estimators when both detection and identification 
errors are present. The context of discussion is for 
an individual image or frame. Extensions to re- 
lated aspects of sampling theory follow directly or 
are self-evident. Together with other work (see 
Maxim et al. (1980b) for a discussion of detection 

ABSTRACT: This paper develops, characterizes, and illustrates four statistical 
estimators to "scale-up" observed counts 0-f objects in aerial surveys where both 
detection and class[fication errors are present. Tables and charts are provided 
to illustrate the properties o-f these estimators. 

Knowledge o-f partial ground truth enables efficient estimators to be con- 
structed or can be used in lieu of either detection or identification probabilities. 
Three 0-f the four estimators make use o f  partial ground truth. 

need be explicitly factored into the estimation 
logic. Maxim et al. (l98la) have summarized the 
appropriate estimation logic in this situation. 

In yet other applications, object detection may 
be assured, but the identi-fication or classi-$cation 
steps may be probabilistic. This is often the case in 
agricultural examples (Ulaby et al., 1980), envi- 
ronmental pollutants (Vizy, 1974; Maxim a ~ l d  
Cullen, l977), and/or where automated classifica- 
tion rules are employed (HSII, 1978; Yiech, 1977; 
Shimahukuro et ul., 1980; or Steiner, 1970). Statis- 
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versus sampling errors, or the well developed 
theory of mensuration errors), it can be extended 
to the simultaneous consideration of detection, 
classification, mensuration, and sampling errors 
associated with any survey. 

The model presented here considers detection 
and classification as a two-stage process. For sim- 
plicity, only two types of objects are considered, 
termed Type 1 and Type 2. Matrix methods make 
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extension to more types of objects straightforward 
if tedious. Categories are defined so as to be mutu- 
ally exclusive and collectively exhaustive. Detec- 
tion probabilities are denoted p, and p,, and where 
detection probabilities are equal are represented 
by the common symbol, p. (False detections are 
not explicitly considered here but can easily be 
imbedded in this analytical framework.) Correct 
classification/identification probabilities are de- 
noted by 1 - a and 1 - p for Type 1 and Type 2 
objects, respectively. For some applications, de- 
tection and identification cannot be entirely sepa- 
rated into distinct events. For these cases, the de- 
tection probability is more properly a detection 
and preliminary classification probability, while 
the quantities 1 - a and 1 - p are conditional 
identification probabilities. In other cases, the 
detection of an object is not directly related to its 
classification, for example, when objects are not 
detected simply because they are too small. For 
these situations, the classification can be consid- 
ered a second and distinct step. 

Figure 1 presents an illustrative example where 
radar imagery is used to detect and identify ag- 
ricultural fields, as studied and reported by Ulaby 
et al. (1980). At the bottom of Figure 1 is repro- 
duced a portion of an experimentally determined 
classification matrix after Ulaby et al. (1980). In 
the notation of this paper, Type 1 objects are corn 
fields and Type 2 objects are soybean fields. (For 
illustrative purposes, it is assumed that the two 
categories are exhaustive. In the actual example, 
there were two additional categories: forests and 
pasture. This would therefore require a four crop 
model unless some categories were combined.) As 
shown on Figure 1, 25 of 37 corn fields were cor- 
rectly classified, so the value for a in this example 
is 1 - 25/37 = 0.32. The P value is 4/39 or about 
0.10. In this reference, Ulaby cites no value for the 
detection probability, p, but from the context it 
appears that p was close to unity. If so, almost all 
fields actually in the image were detected. 

Y, objects of Type 1 (e.g., Y, corn fields) are as- 
sumed to be located in the area covered by the 
sample frame, while Y, objects of Type 2 are 
likewise situated. The observed counts of Type 1 
and Type 2 fields are denoted x1 and x,, respec- 
tively. Note that x l  is distributed as the sum of two 
independent binomials. The first binomial has a 
probability of success of p l  (1 - a) and a sample 
size equal to Y ,. The second binomial has a proba- 
bility of success equal to p,p and a sample size 
equal to YI .  A similar structure holds for the dis- 
tribution of xI. To simplify the exposition, the de- 
tection and classification of objects are assumed to 
be statistically independent. (An obvious and 
polar alternative is to assume "common mode" 
identification failures, i.e., if one object of a given 
type is misclassified in a frame, then so too are the 
others. For this extreme case of dependent  

object-to-object classification, a two-point proba- 
bility mass function results. Actual applications 
are bounded by these extremes.) 

Given this notation and problem description, 
the questions addressed in this work are 

8 how can y ,  and y, be estimated from observed 
data (xi, xz) and various assumptions regarding 
knowledge of p,, p,, a, P? 

8 what are the statistical properties of these es- 
timators and which are to be preferred? 

In what follows it is assumed that estimation of 
one of these quantities, say yz, is of primary inter- 
est. Y, may be either assumed known (as from an- 
other source) or, alternatively, a nuisance param- 
eter. These questions are next explored. 

For specified values of p,, p,, a ,  p, y ,, and y,, the 
expected values of x, and x,, written E[x,] and 
E[xnl are, 

E [XI] = YIP ,  (1 - a) + yip&, 

and 

Equation 1, for example, follows from the logic 
that x, consists of two types of objects: those that 
are Type 1, detected and correctly identified (the 
expected number of these equals y ,p,(1 - a)), and 
those that are Type 2, detected but misclassified as 
Type 1 (the expected number of these equals 
y,p&). A convenient estimator of y l  and y, is found 
by the method of moments (which for this case is 

MATHEMATICAL FOP4 : CLASSIFICATION OUTCOME 

TYPE 1 TYPE 2 

TYPE 1 
CORRECT ERROR 

TRUE OBJECT 
CLASSIFICATION CORREC 

TYPE 2 

ENTRIES SHOW DECISION/PROBABILITY NOTATION 

I 

A PORTION OF A REAL EXAMPLE (AFTER ULABY -.l5) : 

CLASSIFICATION OUTCOME 

CORN 

TRUE 
SOYBEANS TYPE . 90  

TOTAL 29 47 76 

ENTRIES SHOW NUMBER OF FIELDS/PROBABILITY 

FIG. 1. An abbreviated classification matrix and nu- 
merical example. 
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identical to maximum likelihood) in which the ob- 
served counts, x 1  and x,, are set equal to their ex- 
pectations, E[x,] and E[x,], and the equations sol- 
ved for the unknown quantities, y, and y,. This 
leads to the estimators 0,  of y 1  and 0, of y2 shown 
below, 

(When the pis are equal to unity, the above results 
correspond, aside from notational differences, to 
those given in Bauer et al. (1980)). By taking the 
expectation of Equations 3, it can be shown that 
the estimator, designated A, is unbiased (i.e., E 
[Oil = y,). From Equation 3 it can be seen that 
there are circumstances where the estimators are 
negative, a logical impossibility. This will occur if 
(assuming a! + p  < 1) 

P X 2 either 3 < - or - < - . (4) 
X p  1 - p  x ,  1 - a !  

If either of these conditions occur, the usual prac- 
tice (e.g., restricted maximum likelihood) would 
be to set the appropriate estimator, gi, equal to 
zero. This scheme introduces a small bias into the 
estimate. 

Var [x,] (1 - a) (1 -  PI(^ - a)) 
+ YTpd (1 - P&). (7) 

The derivation of the covariance of x, and x, is 
more complicated and Appendix A is used to 
show that, 

and so x ,  and x ,  are negatively correlated. The 
strength of the association is a function of a, 
fl, p ,  p, and the relative magnitudes of y ,  and 
y,. Table 1 furnishes some idea ofthis association 
for the case y ,  = y,, in terms of the correlation 
coefficient, p, for selected values of a, P, and 
a common detection probability, p. As can be 
be seen, p values are close to unity when p, a, 
and p are large. p values are zero when a and 
P are zero and small when the detection prob- 
ability is small. The detection probability acts to 
control the maximum value of p that is attained 
when a and p approach unity. The assumption 
y ,  = y, makes the problem symmetric in a and 
p. When this is not the case, the symmetry dis- 
appears and either a or P becomes more dom- 
inant. 

Assuming a common detection probability, 
Equations 5, 6, 7, and 8 above can be combined 
and after much simplification, the following for- 
mula for the variance of the estimate is obtained: 

The variance of the estimator is an important 
quantity because it is necessary for the computa- 
tion of statistical confidence intervals. The vari- 
ance of the estimator, Q,, can be determined from 
the observation that 0, is a linear combination of 
two binomially distributed random variables, x ,  
and x,. The computation is somewhat complicated 
by the fact that x, and x, are statistically correlated. 
The derivation is summarized below. 

The variance of E,, a linear combination of ran- 
dom variables is given by (see Mood et al. (1974) 
for a general discussion) 

The equation for the variance ofg, is more compli- 
cated if the detection probabilities are not equal 
(but a closed form expression results). A conve- 
nient summary of the model, resulting observa- 
tions and their variance-covariance matrix, and 
estimators and their variance is shown in Figure 2. 

To illustrate the above, assume that Type 1 and 
Type 2 objects are corn and soybean fields, re- 
spectively, and that the misclassification matrix is 
as shown in Figure 1, i.e., a! = 0.32 and P  = 0.10 in 

The quantities x l  and x 2  are sums of independent accord with the results of Ulaby et  (11. (1980) using 
binomially distributed random variables, hence, L-Band radar. Assume further that the overall field 
Var [xz] = Y IP ,a (1 - P 1a) detection probability, p, is 0.8 (not provided in 

+ Y Z P Z ( ~  - P) ( 1  - p2(1 - PI), (6) Ulaby) and that imagery readout ofa given quadrat 
and produced x, = 78 apparent corn fields and x2 = 242 
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TABLE 1. CORRELATION COEFFICIENTS BETWEEN xI AND x2 AS A FUNCTION OF a, p, AND p WHEN y1 = yp 
(NOTE ALL SIGNS NEGATIVE. VALUES TRUNCATED AT THREE DECIMAL PLACES) 

Value of a 
Value Value 
of p 0 0.1 0.2 0.3 0.4 0.5 of P 

0 0 
0.1 0.631 0.773 SYMMETRIC 
0.2 0.753 0.826 0.858 
0.3 0.801 0.851 0.875 0.888 
0.4 0.822 0.863 0.884 0.895 0.901 
0.5 0.829 0.867 0.886 0.897 0.903 0.904 

0 0 
0.1 0.448 0.618 SYMMETRIC 
0.2 0.592 0.692 0.742 
0.3 0.657 0.730 0.769 0.790 
0.4 0.689 0.750 0.783 0.802 0.812 
0.5 0.700 0.757 0.788 0.806 0.815 

0 0 
0.1 0.213 0.350 SYMMETRIC 
0.2 0.327 0.429 0.489 
0.3 0.393 0.476 0.526 0.557 
0.4 0.430 0.503 0.547 0.575 0.590 
0.5 0.447 0.515 0.556 0.581 0.595 

0 0 
0.1 0.082 0.152 SYMMETRIC 
0.2 0.14 0.200 0.242 
0.3 0.179 0.233 0.270 0.295 
0.4 0.204 0.254 0.288 0.311 0.324 
0.5 0.218 0.265 0.297 0.318 0.329 

0 0 
0.1 0.029 0.056 SYMMETRIC 
0.2 0.051 0.077 0.096 
0.3 0.068 0.092 0.110 0.122 
0.4 0.079 0.102 0.119 0.130 0.137 
0.5 0.086 0.109 0.124 0.135 0.140 

0 0 
0.1 0.009 0.0196 SYMMETRIC 
0.2 0.017 0.0271 0.034 
0.3 0.023 0.0328 0.039 0.4459 
0.4 0.028 0.0369 0.043 0.0478 0.0506 
0.5 0.030 0.0394 0.045 0.0495 0.0518 

apparent soybean fields. Substituting these values 
into Equation 3 yields estimates g l  100 and gz 
301 for the actual number of corn and soybean 
fields, respectively. The variance of the estimated 
number of soybean fields can be calculated from 
Equation 9. To do so requires substituting the es- 
timated values, 9 ,  and g2, for their actual values. 
Calculated in this manner, the variance is 256 and 
thus the standard error is about 16. A 95 percent 
confidence interval on the estimate Q 2  is from 269 
to 333. Calculation of the hectareage in corn or 
soybean requires additional steps and is not 
treated here. 

The variance of estimator A as shown in Equa- 
tion 9 is a function of the detection probability, 
misclassification probabilities, and the true but 
unknown actual number of objects of each type, y 
and y,. As the above example shows, given the 
observed number of objects x ,  and x 2  and assuming 
a, p, and p are known, y, and y2 can be estimated 
and these estimates used in place of the actual 
values to estimate the variance. In actual applica- 
tion this is an appropriate computational proce- 
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TnEB DIAGM*: 

TRUE OBJECT 
IDENTIPICATION TYPE 1 TYPE 2 

NUMBER 

DETECTION 
OUTCOME 

IDENTIFICATION 
OUTCOElE 

APPARENT RESULT x1 X2 

OBSERVATIONSI 

EXPECTATION 

BLxll ' Y1pl(l-Q) + Y2p2B 

ELxzl - ylplo + y2p2(1-81 
p2B (1-p2B), -p1p28 11-8) 

VARIANCE/ Cov(xlx2) - y1 
COVARIANCE -plp28(1-6) ,pill-81 11-pl(l-811 
MATRIX 1 
ESTIMATORS: 

A (I-E)X~-BX~ A ( i - a ) ~ ~ - % ~  
Y1 = 

plll-a-aT 
Y2 - 

p2(1---8) 

FIG. 2. Summary of results, Estimator A. 

dure. More generally, however, it is interesting to 
note the sensitivity of the variance to the parame- 
ters a, p, and p as these values are often at least 
partially controllable. For example, the balance 
between a and p (technology held fixed) can often 
be varied by altering the multiple classification 
decision rules or weights (see Maxim and Cullen 
(1977) for a discussion and Appendix B for a nu- 
merical example). The choice of platform, film 

be the total number of objects. Now when y, = y - 
y, is substituted into Equation 9, it can be ob- 
served that, for fixed y, the numerator is linear in 
y,. Thus, the variance is maximized with respect to 
yz when yZ is set at one of two extreme points, i.e., 
y2 = y or yz = 0, depending upon whether the sign 
ofthe coefficient of y, is + or -, respectively. After 
some simplification, it can be shown that the value 
of this maximum variance is given by 

Y 1 - 2a 
[a (1 - a)], if c p .  

P (1 - a  - PI2 (1 - a  - P) 

type, access geometry, or season, for example, can With this substitution, the quantity 
alter both detection and identification prob- 
abilities (see Green et a1 (1977) for one illustra- [Q~I, 
tion). Max I).. Var (-) 11 

3.4  om Equation 1 the variance is not only a 
?7 

function of a, p, and p but also of y, and y,. The is an upper bound to the actual variance that is 
dependence upon y, and y, must somehow be independent of y and solely a function of a, p, and 
'factored out' to see clearly the significance of a, P, p. Figure 3 shows an illustrative contour (equal to 
and p. This can be done as follows. Let y = y, + y, 6.0) for the Function 11 as calculated by Equation 
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1 lo 
FIG. 3. Surface of maximum value of variance of esti- 
mate of Y, as a Function of a, p, and p. 

10 in a, p, p space. As can be seen, though the 
surface is somewhat complex, the maximum value 
for the variance of Estimator A is an increasing 
function of a and p and a decreasing function of p. 
The variance becomes infinite as the sum a + P 
approaches unity or as the detection probability 
approaches zero. 

As the upper bound to the variance of Q z  was 
found by maximizing Equation 9 with respect to 
y,, given the sum y ,  so too the lower bound on the 
variance can be found by minimizing the same ex- 
pression. It is easily seen that the minimum is 
given by Equation 10 with the inequality condi- 
tions switched, i.e., 

Min Var [o,] = 

Yz 

will be used in a later section to compare alterna- 
tive estimators. 

It may happen in practice that other sources of 
data can be used to estimate y ,  (or, in general, one 
or more of the quantities of interest). An indepen- 
dent agricultural survey, for example, might have 
estimated the size of the corn crop. The question 
posed in this section is, how can this increased 
knowledge help the estimation process? 

The answer to the above question is in two 
parts. First, knowledge of y, can be used to de- 
velop estimates ofy, when one or more parameters 
(e.g., a, p, p) are not known. Second, knowledge of 
y ,  enables more efficient estimators for Q, to be 
developed. The efficiency gains are functions of p, 
a, and p and can be substantial in some cases. 
These points will be illustrated in what follows. 

As an illustration of how knowledge of y ,  can be 
used as a partial surrogate for knowledge of other 
parameters, suppose that a and p are known, but 
that a common detection probability, p, is not. x ,  
and xz are observed quantities as before. If x, ,  xz, 
y ,, and y z  were known, then an obvious estimate of 
p would be given by 

the observed fraction of objects detected. Now y z  
is not known, but an estimate Q2 is available from 
Estimator A (Equation 3). Substituting this esti- 
mate of y z  into Equation 13 results in a quadratic 
equation in p that has a non-zero real root, 

Having estimated p in this manner, this can be 
used in Equation 3 to estimate y,. Upon substitu- 

[a (1 - a)], if 
1 - 2a 

(1 - a - p)  p. 

Taken together, equations 11 and 12 bound the tion and simplification, the estimate, called Es- 
actual variance given by Equation 9. These results timator B, is 
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Assume observations and parameters as given 
in the first numerical example but further that p 
is unknown and that y ,  is known and equal to 110. 
The estimate of 0 of p from Equation 14 is computed 
as 0.721, while the estimate B of Q, from Equation 
15 is 334, somewhat higher than for Estimator A. 

The properties of Estimator B are difficult to 
determine since it involves a ratio of random 
variables. Appendix B provides an approximation 
to the variance of this estimator and some re- 
marks concerning the bias. 

As a second illustration of how knowledge of 
y ,  can be helpful, suppose now that a common 
detection probability, p, is known, but that a and 
p are unknowq. In this case an obvious choice 
for estimating y ,  is 

To see this, note that ( x ,  + xz)lp is an estimate of y, 
the total number of objects. Subtracting the known 
number of objects of Type 1 from this quantity 
gives an estimate of y,. It is easily seen (by taking 
expectations) that this estimate is unbiased and 
further that the variance is 

1 - P  Var Lo2] = - [ Y ,  + Y Z ] ,  
P 

A numerical example will show that Estimator C 
can be very eGcient. Consider the data given in 
the first numerical example, x ,  = 78, X ,  = 242 (a  
and P values are not needed for this estimate and 
will be disregarded). Finally, assume that there 
are 110 known corn fields ( y  , = 110). Then Es- 
timator C is calculated as 290 from Equation 16 
and the variance of this estimate is computed to be 
100 from Equation 17. The standard error, 10, is 
only 63 percent of that from estimate A (see exam- 

A. This comparison is shown in Tables 2 and 3, 
respectively. As can be seen, the standard error of 
Estimator C is less than or at most equal to the 
maximum standard error of Estimator A (see Table 
3). Depending upon the values of a,  P, and p, it is 
sometimes less than the minimum value of the 
standard error of Estimator A (see Table 2). In 
particular, Estimator C is preferred to Estimator A 
when p approaches one and a and P grow large. 
For example, the standard error of Estimator C is 
only 40 percent that of the minimum possible 
standard error of Estimator A when p = 0.95, a = 
0.15 and /.? = 0.20; excellent performance for an 
estimator that does not require knowledge of 
either a or p. 

Estimator D assumes knowledge of a, P, p, and 
y ,  and promises increased efficiency over Es- 
timator C. It follows from the moments Equations 
1 and 2 when it is assumed that y, is known. In this 
case there are two estimates of y ,  that are possible. 
The first, denoted z,,  results from Equation 1,  i.e., 

where x ,  is used as an estimate of E [ x , ] ,  while 
the second, denoted z2, results from Equation 
2, i.e., 

In general, 2 ,  and z2 as defined above will differ. 
For instance, using the data from example one and 
assuming that y ,  is known to be 110 as in the third 
example, z ,  and z ,  are computed as 227 and 297, 
respectively. The central idea in Estimator D is to 
form a convex combination of these estimators as 
9 ,  = wlz l  + ( 1  - w , )  z2 where the weights are 
non-negative and sum to unity. The weights can 
be chosen so as to minimize the variance of 9,. By 
taking expectations of both sides of Equation 19, it 
is easily shown that E [z , ]  = y ,  and likewise that E 
[z2] = y,, and therefore that these estimators are 
unbiased. So too will a linear combination w ,z, + 
( 1  - w , )  z,, so that E [Q,] = y ,  and thus this es- 
timator is unbiased. The variance of this linear 
combination is given by (see Mood et al. (1974) or 
Marpet and Maxim (1979) for a general discus- 
sion of the problem) 

ple one). Var Q ,  = w,2 Varz, + ( 1  - w,)'Varz, + 2wl 
A general comparison of the variances of Es- 

timators A and C is complicated by the fact that the (1 - w1) cov (~1.22) .  (21) 

variance of Estimator A depends upon both y ,  and Denoting Var z ,  by the symbol a, Var z ,  by the 
y ,  rather than their sum as does Estimator C. A symbol b, and Cov ( z , ,  z,) by the symbol c, it is 
convenient approach is to compare the standard easy to show that the value of w , ,  w9, which 
error of estimate C to both the minimum and the minimizes the variance of the estimate of y ,  in 
maximum values of the standard error of Estimator Equation 21 is given by 
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b - c  
w*, = 

(a + b - 2.)  

To illustrate, assume in Step (1) that w, = 0.5. 
(22) Then from g2 = w,z, + (1 - w , )  zz, Q2 1 262, Pro- 

Now 

b = Varz, = 
1 

and 

c = Cov (z,zz) = - - p) ] [Y IPza ( l  - a )  + yyr2P(1 - P I ] .  

Thus, the optimal weights can be computed and 
used for the estimate. This procedure requires an 
iterative solution, however. It. is best illustrated 
with a numerical example. 

Using the above data and parameter estimates, 
z,  and zz are computed as 227 and 297, respec- 
tively. The computation of w*, from Equation 22 
requires a, b, and c as inputs. These, in turn, re- 
quire knowledge of x,, xz, p, a, p, y,, assumed 
known, but also yz, which is unknown. 

An iterative algorithm proceeds as follows: 

ceeding to Step (2),  the computed values of a, b, 
and c from Equations 23,24, and 25 using Q 2  = 262 
are 7276.6,142.3, and -527.95, respectively. Now, 
from Equation 22, a new value of w: can be com- 
puted as 0.07909. Since this differs appreciably 
from the value (0.5) assumed in Step (I), the pro- 
cess is repeated, using wl = 0.07909 for this trial. 
Table 4 shows the results of subsequent iterations 
of this algorithm. The procedure converges 
rapidly; in this instance agreement to four decimal 
places in the weights occurs after three iterations. 
The final estimate, Q2, is 291.4. The computed 
value of the standard error, 9.839, is slightly 
smaller than that for Estimator C and substantiallv 

Step (Itassume weights W I ,  (1 - W I )  then compute beneath that of Estimator A. For this example thk 
gZ from Qn = wlzt + (1 - w,) z~. efficiency gain of Estimator D over Estimator C 

Step (2)-from zb X% VI, a, P, and 9 2  compute@, b, does not justify the added computational 
and c from Equations 23,24, and 25. 

Step (3)-from a, b, and c compute w:, from Equa- The ready availability of computers facilitates the 

tion 22 and the optimum variance from use of Estimator D for all but 'on the spot' compu- 
Eauation 21. If the computed value of w: tations. 
issufficiently close to-that assumed in THE CHOICE AMONG ESTIMATORS 
Step (I), stop; otherwise go to Step (1) and 
repeat the procedure using the value ofw: Four estimators have been proposed, illustrated, 
computed in this step. and characterized in this paper. The best choice 

[ABLE 2. RATIO OF STD ERROR OF ESTIMATOR C 
TO MINIMUM STD ERROR OF ESTIMATOR A 

Assumed 
Value of a 

Value Value - 
ofp .fa o 0.05 0.10 0.15 0.20 

0 x 1.000 1.000 1.000 1.000 
0.05 x 0.923 0.657 0.634 0.610 

0.95 0.10 2 0.872 0.596 0.488 0.463 
0.15 x 0.821 0.559 0.438 0.377 
0.20 x 0.769 0.522 0.407 0.335 

0 x 2.18 1.50 1.19 1.000 
0.05 x 2.06 1.42 1.12 0.938 

0.75 0.10 x 1.95 1.33 1.05 0.875 
0.15 x 1.84 1.25 0.980 0.813 
0.20 1.72 1.17 0.910 0.750 

0 x 3.08 2.12 1.68 1.41 
0.05 x 2.92 2.00 1.58 1.33 

0.50 0.10 x 2.76 1.89 1.49 1.25 
0.15 x 2.60 1.77 1.39 1.15 
0.20 x 2.43 1.65 1.29 1.06 

TABLE 3. RATIO OF STD ERROR OF ESTIMATOR C 
TO MAXIMUM STD ERROR OF ESTIMATOR A 

Assumed 
Value of o! 

Value Value 
ofp ofp o 0.05 0.10 0.15 0.20 
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among these estimators may vary from application 
to application, depending upon the knowns and 
the actual values of the detection and identifica- 
tion parameters. First, the knowns serve to limit 
the available choices. Table 5 summarizes the es- 
timators, their variance, and the required input pa- 
rameters. Note, for example, that only one choice 
(Estimator A) is available if y1 is not known. Re- 
quired knowledge about the other parameters may 
further limit options. Thus, if neither a nor P is 
known, Estimator C is the only choice. If data exist 
to support more than one estimator, the variance of 
each estimator can be computed from the appro- 
priate equations and the minimum variance es- 
timator selected. 

As mentioned, perhaps the most useful and 
easiest generalization of this work is to consider 
multiple categories of objects of interest. Esti- 
mates analogous to Estimator A generalize readily 
using matrices. The properties of these estimators 
also follow directly, though the dimensionality of 
the problem varies as the square of the number of 
distinct objects considered. The cases that follow 
where y, is known increase in combinatorial fash- 
ion with the number of distinct objects, though, 
aside from tedious algebraic bookkeeping, this is 
not a formidable task. 

The extension to multiple quadrats is trivial (if 
a, p, and p are approximately constant, the quad- 
rats can be 'pieced together' and regarded as one 
quadrat), except when the quadrats are decidedly 
non-homogeneous. In this situation, various strat- 
ification schemes can be employed. 

When multiple quadrats are considered, it may 
be the case that (in the notation of this paper) y is 
not known on a quadrat by quadrat basis, but 
rather only in aggregate. In this case the multi- 
dimensional proration ideas of Deming et al. 
(1940) and Stephan (1942) are applicable, though 
computation of the properties of the resulting es- 
timator is likely to be difficult. 

The authors wish to thank the referees and the 
editors for their useful comments and suggestions 
on an earlier draft of this paper. 

To show that the covariance of x, and x, is as 
given in Equation 8, consider a single Type 1 
field. If it has been detected, then it is either clas- 
sified correctly as a Type 1 field and sox, = 1, x2 = 
0 or misclassified as a Type 2 field and x, = 0 and 
x, = 1. By definition, 

Cov (x,x2) = E (xlx2) - E (x,) E ( ~ 2 ) .  

Since xl.x, = 0 regardless of the classification, the 
above expression reduces to 



Assumed Knowns 

Detection Misclassification 
Probability Probability Estimator 

Y Designator Formula Variance 

( 1  - a ) x 2  - a x I  1 
Yes Yes No A Q 2  = 1 ~ 1 a ( l - a ) + y ~ [ ~ ( l  - P )  + (1 - p ) ( l  - a - ~ ) ~ ] ]  

~ ( 1  - a - P) ~ ( 1  - a  - P)' 

Yes Yes 
( 1 - a - P ) y l  

Complex, approximation available, see Appendix B 

Yes C X I  + X 2  
Yes Q z =  7 - Y I  

Yes Yes Yes D Qz = WIZI + w2zz Iterative algorithm required, see text 
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Cov (xlx2) = -E ( x , )  E (x,) 
- 

Var ( 0 2 )  = P [ Y Z P  (1  - P )  + Y I { ~  (1  - a )  
- - P I  (1  - a).pz (a) .  + ( I  - P )  (1  - a - P ) ~ } ]  

If there are yl Type 1 fields, the covariance is sim- COV ( " IVZ)  = -P ( f f  ( 1  - f f )  Y I + P - P )  yz) 
ply the sum of y, such outcomes, and so Substituting these quantities into Equations B3 

and B4, the approximate mean and variance of 
Cov (~1x2) = - Y I P I P Z  (1 - a )  a. Q 2  is given by 

A similar argument applies assuming there are y2 For the numerical example given earlier, when 
Type 2 fields. Summing these two expressions p = 0.8, a = 0.32, P = 0.1 and assuming y, = 110, 
gives Equation 8. Equations B5 and B6 become 

APPENDIX B 
E ( Q z )  = 0.272 + 1.0043 y z  + 0.0000093 ~ 2 '  

This appendix calculates the approximate ex- 
pected value and variance of Estimator B: and 

(B1) 
Var ( Q 2 )  = 29.92 + 0.7406 y 2  + 0.0042 y,' 

+ 0.00000744 yz3. 

9 2  = Y I [V 1 / ~ 2 ] ,  say, 032) Substituting the estimated value of y,, 334, into 

where u l  and are random variables that are these results, E ( Q 2 )  is estimated to be 336.75, indi- 
linear functions of the observation and x2. N ~ ~ ,  cating a positive bias equal to 2.75, while the vari- 
the expected value and variance of the ratio of two ance is estimated to be 1023.03. The standard de- 
random variables is given approximately by the viation (31.98) is substantially larger than those 
formulas (Mood et al., 1974) calculated for three other estimators proposed in 

and 

+ Var (v2) 2 Cov ( ~ 1 ~ 2 )  
Var (u ,/v2) = - 

EZ(uz) E ( U I ) E ( U Z )  

From the results given in Figure 2, it can be this report. This estimate, however, does not re- 
shown that quire knowledge of the detection probability, p 

and further that, 

(although estimates of the mean and variance, 
Equations B5 and B6, do). 

This appendix discusses the relationship be- 
tween the misclassification errors, a and p, and the 
variance of Estimator A given in Table 5, i.e., 
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xC=4.36 

FIG. C1. A two crop classifier. 

0 2 =  [(I - 4 x 2 -  - I ] ~ [ P  (1  - a - PI]. Such classification rules typically have the form 
that, if a variable or linear combination of variables 

In many applications, especially when the infor- exceeds some critical value, then the field would 
mation from the aerial survey has been digitized, be classified as crop 1, else it would be classified 
statistical discrimination schemes are developed as crop 2 (in the two crop problem). Figure C1 
to classify agricultural fields into the various crops. illustrates this structure, assuming some numeri- 

& x, - 3.89 tl = a  
x , - 5  

1 
t* = - 

Assumed 0.5 B a  + B Var (92) 

3.89 0 0.50 -2.22 0.013 0.513 227.1 
3.90 0.010 0.496 -2.20 0.014 0.510 226.7 
3.95 0.060 0.476 -2.10 0.018 0.494 222.7 
4.00 0.110 0.456 -2.00 0.023 0.479 220.3 a, P choice 
4.05 0.160 0.436 - 1.90 0.029 0.465 219.3 to minimize 
4.10 0.210 0.417 - 1.80 0.036 0.453 220.1 variance 
4.15 0.260 0.397 -1.70 0.045 0.442 222.9 
4.20 0.310 0.378 - 1.60 0.055 0.433 227.0 
4.25 0.360 0.359 - 1.50 0.067 0.426 233.5 
4.30 0.410 0.341 - 1.40 0.081 0.422 242.6 
4.35 0.460 0.323 - 1.30 0.097 0.420 253.9 

a, p choice 
4.36 0.470 0.319 - 1.28 0.100 0.419 255.4 to minimize 

a + P  
4.40 0.510 0.305 - 1.20 0.115 0.420 267.2 
4.45 0.560 0.288 -1.10 0.136 0.424 285.1 
4.50 0.610 0.271 - 1.00 0.159 0.430 305.3 
4.55 0.660 0.255 -0.90 0.184 0.439 329.4 
4.60 0.710 0.239 -0.80 0.212 0.451 358.3 
4.65 0.760 0.221 -0.70 0.242 0.463 388.2 
4.70 0.810 0.209 -0.60 0.274 0.483 431.4 
4.75 0.860 0.195 -0.50 0.309 0.504 480.2 
4.80 0.910 0.181 -0.40 0.345 0.526 534.6 
4.85 0.960 0.169 -0.30 0.382 0.551 601.2 
4.90 1.010 0.156 -0.20 0.421 0.577 677.9 
4.95 1.060 0.145 -0.10 0.460 0.605 771.3 
5.00 1.110 0.134 0 0.500 0.634 883.1 

Assumptions: p2 = 5 u2 = 0.5 p = 0.8 y, = 100 y2 = 300 
p, = 3.89 u, = 1.0 

if x P x, call type 2 
Decision Rule = 

if x < x, call type 1 
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cal attribute (e.g., reflectance) of both crops is 
normally distributed with regard to the chosen 
variable (the normality assumption is not required 
for that follows, however). 

As can be  observed, lowering the critical value 
x, will reduce the number of times crop 2 is mis- 
classified as crop 1, 8 ,  but will increase the mis- 
classification rate for crop 1, a*. Everything else 
being equal, x, would often be  chosen, ultimately, 
so as to minimize the sum of the misclassification 
rates. However, if the aerial survey is being per- 
formed to estimate crop 2 alone, using Estimator 
A, above, then a and p might better b e  selected so 
as to reduce the variance of this estimator (see 
Equation 9) given by 

Var (y,) = [ llp 1 - a - p),] [ ~ , a  (1 - a )  
+ Y 2  t P (1  - P) - (1  - P) 
( 1  - a - ,3)2]. 

To illustrate the possible gains from such an ap- 
proach, note that when the critical value is 4.36, as 
in Figure C1, then a = 0.32 and P = 0.1 and, in 
fact, this x, minimizes the sum, a + p. Assuming 
the true number of type 1 crops, y ,, is 100 and type 
2 crops, y,, is 300 as in previous examples with p = 
0.8, then Var (9,) = 255.4. Table C 1  presents the 
results of this and similar calculations for values of 
x, from 3.89 to 5.00. This table shows that a cutoff 
point, x,, equal to 4.05 minimizes Var (y,) and at 
this point the variance is equal to 219.3. This is a 
14 percent reduction over the base case and illus- 
trates the benefits of a judious selection of a and P 
errors. Similar remarks obtain for other estimators 
whose variance depends upon a and P. 

* For an interesting paper on actual error ratio in dis- 
criminant analysis based upon small samples, see Sayre, 
J. W., The Distribution of the Actual Error Rates in 
Linear Discriminant Analysis, Journal of the American 
Statistical Association, Theory and Methods Section, 
Vol. 75, Number 369, March 1980, pp. 201-205. 
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