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Map Projections for 
Satellite Tracking* 

A new series of map projections, on which satellite groundtracks are 
shown as straight lines, are derived. 

INTRODUCTION 

D URING THE past 15 years, images of the Earth 
have been obtained from satellites for many 

purposes such as meteorology and detection of 
resources. Although satellites circling the Earth 
near the equatorial plane in a 24-hour orbit (geo- 
synchronous orbits) have been used for other pur- 
poses, most image-taking satellites follow orbits 
with periods and inclinations such that sunlight 
and satellite position are optimum over regions of 

Colvocoresses first proposed a special projec- 
tion, the Space Oblique Mercator (SOM), that is 
especially suitable for mapping of satellite images, 
especially those of Landsat.' This map projection, 
now mathematically developed, is nearly confor- 
ma1.2 The groundtrack plotted on it, however, re- 
mains a curved line, so that the problem of plotting 
the tracks is not thereby simplified. 

This paper describes a new series of map projec- 
tions on which groundtracks are shown as straight 

ABSTRACT: New map projections to be used for plotting successive satellite 
groundtracks show these tracks as straight lines. The map may be made con- 
formal along any two parallels of latitude between the limits of latitude reached 
by the groundtrack, or the "tracking limits." If these parallels are equidistant 
from the Equator, they may both be made true to scale, and a cylindrical pro- 
jection results. If these parallels are not equidistant from the Equator, only one 
may be made true to scale, and a conic projection results. The groundtracks 
generally have sharp breaks at either tracking limit. If the tracking limit is one 
of the parallels at which the map is conformal, there is no break in the ground- 
track, and the conic projection may approach (but cannot become) an azimuthal 
projection. 

interest (sun-synchronous orbits). The ground- 
track of a geosynchronous-orbiting satellite is 
usually a figure 8 with one lobe above and the 
other below the Equator. The projections utilized 
for mapping the imagery generated from such a 
satellite may be of several different well-known 
types, all of which are based on the concept of a 
non-rotating Earth. 

If the orbit is not geosynchronous nor in the 
Equatorial plane, the groundtrack, due to Earth 
rotation, is a curved line from any viewpoint, ex- 
cept for inflection points commonly at the Equa- 
tor. The groundtrack plotted for this orbit remains 
a curved line, using any of the conventional map 
projections. 

* Publication authorized by the Director, U.S. Geo- 
logical Survey. 

lines. The advantage of such a series lies in the 
simplicity with which groundtracks and the re- 
gions viewed from satellites can be shown on the 
maps. 

One approach to the problem of showing ground- 
tracks as straight lines has been the use of B-charts, 
or the Breckman map pr~jection.~ This pseudo- 
cylindrical projection shows the groundtracks as 
vertical straight lines and the parallels of latitude 
as horizontal straight lines. The curved meridians 
and the coastlines are distorted considerably 
throughout the map. 

The following formulas for preparing graticules 
on cylindrical and conic map projections allow the 
plotting of groundtracks as straight lines without 
the distortions present in B-charts. The map may 
include two parallels of latitude along which there 
is no angular distortion, although in the conic 
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form only one of them can be true to scale. The 
portion of the map within several degrees of these 
two parallels is relatively free of distortion. These 
projections, called "satellite-tracking" since they 
can facilitate the locating of satellite groundtracks, 
are based on a circular orbit and the Earth taken as 
a sphere, sufficient for the usual scale of the map 
and for Landsat orbits. More complicated formulas 
may be derived for non-circular orbits and the 
non-spherical Earth if deemed necessary. Several 
of the formulas derived just below for the cylindri- 
cal projection also apply to the conic, discussed 
subsequently. 

To obtain the basic formulas for the groundtrack 
on a cylindrical satellite-tracking projection, it 
will be temporarily assumed that the satellite is 
orbiting a non-rotating Earth. In Figure 1, letA be 
the intersection of the groundtrack with the Equa- 
tor as it crosses from north to south (images from 
Landsat normally are taken as the satellite moves 
south). Assigning a longitude of zero to point A, let 
i be the inclination of the orbit (nominally 99.092' 
for Landsat), B the pole, and C another point along 
the groundtrack with geodetic latitude, +, and 
longitude, L. Longitude, L, where + intersects the 
groundtrack, is to be distinguished from a general 
longitude, A, elsewhere, both L and being posi- 
tive toward the east. 

From the elementary Laws of Sines and Cosines, 
it may be rather readily established that 

tan L = tan A' cos i 

0 (POLE) 

. 

EQUATOR 

FIG. 1. Satellite groundtrack as projected onto 
the globe. 

and 

sin A' = -sin +/sin i ,  

where A' is the "transformed" longitude propor- 
tional to time along the orbit, with A' atA called 0. 

As discussed in the development of the SOM4, a 
"satellite-apparent" longitude, At, should be sub- 
stituted in place of L in Equation 1 to take into 
account the Earth's rotation, where 

Pz is the time of the revolution of the satellite 
(103.267 min. for Landsat), and PI is the time for 
the Earth's rotation with respect to the ascending 
node of the orbit. For Landsat, the satellite orbit is 
sun-synchronous, equating P, to the length of the 
solar day (1440 min.). If the orbit were sidereally 
fixed, P, would equal the approximately 1436 min. 
of the sidereal day, etc. 

To change Equation 1, for a non-rotating Earth, 
into the corresponding equation for the rotqting 
Earth, 

tan A t  = tan A' cos i .  

Rearranging Equation 3, 

where At and A' are found from Equations 4 and 2, 
respectively. 

If a cylindrical projection is to be devised show- 
ing, as is common, parallels of latitude as unequal- 
ly spaced, horizontal lines, and meridians as equal- 
ly spaced, vertical lines, the successive ground- 
tracks may be shown as straight lines, provided 
the parallels of latitude, +, are spaced at distances, 
L, from the Equator. Such groundtracks would be 
inclined 45" to the Equator. It  is desirable, how- 
ever, to stretch or compress the projection ver- 
tically to produce conformality along a chosen pair 
of latitudes, 2 +,, equidistant from the Equator. 
For pairs of latitudes not equidistant, the conic 
form, below, must be used. 

For conformality, it is necessary that the scale 
factor, h, along the meridian equals the scale fac- 
tor, k, along the parallel. For a regular cylindrical 
or conic projection, this is also sufficient. 

For a cylindrical projection, 

h = dyl(R d+) 
k = dxl(R cos + dh), 

where the x- and y-axes are taken in the plane of 
the map projection, usually horizontal and vertical, 
respectively, and R is the radius of the globe at 
the scale of the map. 

For conformality at +,, h = k, and therefore 

dy = dxl[cos +,(dhld+),,]. (8) 

For true scale at 4,, from Equation 7, 

k = 1.0 = dxl(R cos +,dA). (9) 
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Integrating, Introducing a new symbol, F, the angle on the 

(10) 
globe between groundtrack and meridian, let x = RA cos 4,. 

This is the general equation for x, with vertical tan F = [(P,/P,) cos2 t#~ - cos i]l(cos2 4 - cos2 i)Ii2. 

meridians. From Equation 8, partly integrating, (20) 

and inserting Equation 10, Then 

Y = {l/[cos 4l(dMd4)m1]} Rh cos 41 dLld4 = tan Flcos 4. (21) 
= Rhl(dhldq3)*,. (I1) If 4 equals 4,, from Equation 12, 

For groundtracks plotted as straight lines, it is 
necessary to make y a linear function of h along y = R L cos +,Itan F,, (22) 

the groundtrack. This is done by substituting the where L is found from Equations 2,4,  and 5, and 
above longitude, L, for A in Equation 11: tan F1 = [(P$P,) cos2 4, - cos i]l(cos2 4, - cos2 i)I1'. 

y = R Ll(dLld~)m, (12) (23) 

Differentiating Equations 5, 4, and 2 in order, 

dLldd, = dAtld+ - (PdP1)dh1ld4 (13) 
sec2At(dhtld~) = sec2A' cos i (dXfld+) (14) 

.cos A'(dA1ld4) = - cos q'~/sin i. (15) 

Combining Equations 14 and 15, 

(dAtld4) = - cos i cos @(sec2htsin i cos3A'). (16) 

Substituting from Equations 15 and 16 into 13, re- 
arranging, and then substituting from Equation 4, 

dLld4 = (cos +/sin i cos A')[P JP, - cos il(1 
- sin2 A' sin2 i)]. (17) 

Substituting from Equation 2 into Equation 17 to 
eliminate A', 

dLld4 = [cos @sin i (1 - sin2 $~lsin~i)"~] 
[P JP, - cos il(1 - sin2 4)] (18) 

= [(PJP,) cos2 Cp - cos i] 
/ [(cos2 4 - cos2 i)lI2 cos 41. (19) 

The graticule may then be drawn according to 
Equations 10 and 22 (see Figure 2). The ground- 
tracks are shown as a series of parallel lines, in- 
clined at angle F I  to the meridians, since the tan- 
gent, dxldy, of this angle, from Equations 8 and 
21, is 

dxldy = cos 4, (dLld+)*, 
= tan F,. 

If the full orbits are shown, there is a sharp break 
at the northern and southern limits of latitude 
reached by the groundtrack, or the "tracking 
limits", so the tracks appear to be a sequence of 
zig-zag lines. 

For the scale factors at any given latitude, 4, 
from Equations 6, 12, and 21, 

h = (dyldL)(dLldd)lR 
= cos 4, tan F/(cos tan F,), 

FIG. 2. Cylindrical satellite-tracking projection (standard parallels 30" N and S). Land- 
sat orbits. 
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TABLE 1. RECTANGULAR COORDINATES FOR CYLINDRICAL SATELLITE-TRACKING PROJECTION 
Landsat orbits: i = 99.092" 

P, = 103.267 min. 
P, = 1440.0 min. 

Globe radius: R = 1.0 

41 0" 230" + 45" 
F I  13.09724" 13.96868" 15.71115" 
x 0.017453h0 0.015115h0 0.012341A0 

++ * Y h k 2 Y h k + Y h k 

TL* 7.23571 m 6.32830 5.86095 m 5.48047 4.23171 m 4.47479 
80" 5.35080 55.0714 5.75877 4.33417 44.6081 4.98724 3.12934 32.2078 4.07207 
70 2.34465 6.89443 2.92380 1.89918 5.58452 2.53209 1.37124 4.03212 2.06744 
60 1.53690 3.18846 2.00000 1.24489 2.58266 1.73205 0.89883 1.86473 1.41421 
50 1.09849 2.01389 1.55572 0.88979 1.63126 1.34730 0.64244 1.17780 1.10006 
40 0.79741 1.49787 1.30541 0.64591 1.21328 1.13052 0.46636 0.87601 0.92306 
30 0.56135 1.23456 1.15470 0.45470 1.00000 1.00000 0.32830 0.72202 0.81650 
20 0.35952 1.09298 1.06418 0.29121 0.88532 0.92160 0.21026 0.63921 0.75249 
10 0.17579 1.02179 1.01543 0.14239 0.82766 0.87939 0.10281 0.59758 0.71802 
0" 0.00000 1.00000 1.00000 0.00000 0.81000 0.86603 0.00000 0.58484 0.70711 

Tracking limit, 80.9W = (1W - i )  
See Appendix for other symbols. 

and from Equations 7 and 10, with the above formulas, since there is no ground- 

k = (dxldh)l(R cos +) track in those regions (the denominator of Equa- 

= cos +,/cos +. (26) tion 20 becomes imaginary). Such latitudes may 
be plotted arbitrarily for esthetic reasons, or 

Coordinates and scale factors for the graticule of omitted altogether. 
Figure 2, as well as alternates with 4, = 0 and 
2 45", are given for representative purposes in 
Table 1. If 4, is zero, there is only one standard 
parallel. No coordinates of latitudes nearer to the 
poles than the tracking limits may be calculated 

FIG. 3. Elements of the conic satellite- 
tracking projection. 

0 (POLE) 

CIRCLE OF 

LIMIT 1 \ /  

FIG. 4. Circle of tangency for the conic satellite- 
tracking projection. 
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While the cylindrical form of the satellite-track- 
ing projection is of more interest if much of the 
world is to be shown, the conic form applies to 
most continents and countries, just as do the usual 
cylindrical and conic projections. In Figure 3, 
showing elements of a conic satellite-tracking pro- 
jection, AB is the radius, p,, of the circular arc rep- 
resenting the Equator, BC is the radius, p, of the 
circular arc for latitude, 4, and e is the angle be- 
tween the central meridian, AB, for which A is 
zero, and line BC representing longitude, h. When 
applied to the longitude of the groundtrack at 
latitude 4, e is called 8+ and A is again called L. 
The groundtrack is to be a straight line passing 
through C and A, the equatorial crossing. 

The cone constant, n, is defined, as usual, as the 
ratio of e to A, and therefore of 8+ to L, or 

where longitude is measured east of the central 
meridian. 

If so is the angle of intersection at the Equator 
between the groundtrack and the meridian on the 
map, the Law of Sines leads to 

p = p, sin sJsin (e+ + so). 

For a conic projection, scale factors may be cal- 
culated as follows: 

h = - dpl(R d 4 )  
k = p nl(R cos 4). 

Combining Equations 29 and 31, 

k = n p, sin SJ[R cos 4 sin (8+ + so)]. (32) 

Combining Equations 29 and 30, 

h = sin so cos (em + so)/R sin2(@+ + so)] d8Jd4. 
(33) 

and 

(27) Differentiating Equation 27, and substituting 
from 21, 

d Odd4 = n dLld4 = n tan Flcos 4. (34) 

FIG. 5. Conic satellite-tracking projection (conformality at par- 
allels 45" and 70" N). Landsat orbits. 
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Substituting into Equation 33 from Equation 34 
and then from Equation 32, 

h = k tan Fltan (O* + so). (35) 

If conformality is to exist along latitudes 4, and 
+,, h = k at each of these parallels, or, from Equa- 
tion 35, 

tan (01 + so) = tan F1 

and 

tan (0, + so) = tan Fz, 

or 

and 

Then 

and 

0, - 0, = F, - F1. 

Substituting from Equation 27, 

where F,, is calculated from Equation 20 and L.,, is 
calculated from Equations 5, 4, and 2, applying 
the same subscripts to F and 4, and to L and 4. 

Although conformality occurs along 4, and 4,, 
these parallels are not of equal scale. If 4, is chos- 
en to be the latitude which is true to scale, k in 
Equation 32 equals 1.0 when 4 equals 4, and O* 
equals 0,. Combining Equations 32 and 36 for 
this condition, 

po = R cos 4, sin Fll(n sin so). (39) 

Substituting Equation 39 into Equation 29, 

p = R cos 4, sin ~ , l [ n  sin (O* + so)]. (40) 

Note that F cannot be substituted for (0, + so). 
We now have the polar coordinates of the conic 

satellite-tracking projection, from Equations 40, 
38, and 28, as well as Equations 20, 5, 4, and 2. 
For rectangular coordinates, the usual conversions 
are employed: 

x = p sin 0 
Y = Pmo - P cos 0, 

where 4, is the arbitrary latitude which intersects 
the central meridian at the origin of coordinates 
(x, y = 0). Equation 35 is simplest to use for com- 
puting h, and Equation 31 for k. 

As on the cylindrical projection, the straight 
groundtracks will break at the tracking limit, ex- 
cept as noted later, but the groundtracks are no 
longer parallel to each other. They are similarly 
placed with respect to the radiating meridians, 
however. 

AAer drawing the basic graticule, the plotting of 
the straight groundtracks can be facilitated if the 
map extends near enough to the northern or south- 
ern tracking limit to permit including a "circle of 
tangency" to which every projected groundtrack is 
tangent. Referring to Figure 4, the dashed inner 
circle, to which groundtrack AC is tangent, has a 
radius p,, where 

p, = AB sin so = po sin so 
= R cos 4, sin F,/n. (43) 

after substitution from Equation 39. 
Figure 5 shows a graticule with coastlines for 

Landsat groundtracks with the circle of tangency. 
Conformality occurs at latitudes 45" and 70" N. 
The polar coordinates for this map, and for a map 
with conformality at a different pair of latitudes 
(30" and 6O0), as well as for Figure 6, are given in 
Table 2. These coordinates can serve as a check 
for those using the formulas. 

If the tracking limit is beyond the limits of the 
map, it is necessary to make sure each ground- 

FIG. 6. Conic satellite-tracking projection (conformality 
at parallels 45' and 80.9" N). Landsat orbits. 
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TABLE 2. POLAR COORDINATES FOR CONIC SATELLITE-TRACKING PROJECTIONS WITH 

Two CONFORMAL PARALLELS 
Landsat orbits (i, P,, PI same as Table 1) 
Globe radius: R = 1.0 

41 30" 45" 45" 
4% 60" 70" 80.908' 
n 0.49073 0.69478 0.88475 

F I 13.96868' 15.71115" 15.71115" 
Pa 0.42600 0.27559 0.21642 

4 P h k P h k P h k 

TL* 0.50439 m 1.56635 0.28663 m 1.26024 0.21642 1.21172 1.21172 
80" 0.59934 3.72928 1.69373 0.33014 1.93850 1.32093 0.23380 1.08325 1.19121 
70 0.98470 1.61528 1.41283 0.57297 1.16394 1.16394 0.40484 0.90832 1.04727 
60 1.22500 1.20228 1.20228 0.75975 1.00596 1.05572 0.55875 0.87290 0.98871 
50 1.41806 1.03521 1.08260 0.93154 0.97914 1.00689 0.71504 0.93344 0.98421 
45 1.50659 0.99771 1.04556 1.01774 1.00000 1.00000 0.79921 1.00000 1.00000 
40 1.59281 0.98135 1.02035 1.10669 1.04212 1.00374 0.89042 1.09569 1.02840 
30 1.76478 1.00000 1.00000 1.30060 1.19708 1.04342 1.10616 1.40901 1.13008 
20 1.94551 1.08181 1.01599 1.53188 1.47984 1.13263 1.39852 2.00877 1.31675 
10 2.14662 1.23677 1.06965 1.82978 1.98371 1.29091 1.84527 3.28641 1.65780 
0 2.38332 1.49781 1.16956 2.25035 2.94795 1.56351 2.66270 6.72124 2.35583 

- 10 2.67991 1.94172 1.33539 2.92503 5.10490 2.06361 4.79153 22.2902 4.30472 
-20" 3.08210 2.75586 1.60953 4.26519 11.6380 3.15356 29.3945 898.207 27.6759 

ML** -60.65" (p = m) -38.52" (p = m) -21.86O (p = m) 

Tracklng llmlt, 80.908' = (1W - I)  

** Minimum latitude, at ~nfinlte radlus 
See Appendix for other symbols. 

track is inclined with respect to the intersecting 
meridian at an angle F ,  at parallel $,, or F ,  at 
parallel 4,. At other parallels the angle on the map 
is not F, but (Om + so). 

If a tracking limit coincides with $,, one of the 
two parallels at which conformality is specified, 

1 TABLE 3. POLAR COORDINATES FOR NEAR-AZIMUTHAL 
CONIC SATELLITE-TRACKING PROJECTION 

Landsat orbits (i, P,, PI same as Table 1) 
Globe radius: R = 1.0 

cP1 = 80.908" 
n = 0.96543 
F, = +90" 
p, = 0.16368 

TL* 0.16368 1.00000 
80" 0.17953 1.00076 
70 0.35986 1.09115 
60 0.57095 1.36647 
50 0.85650 1.99000 
40 1.31643 3.53452 
30 2.28682 8.83705 
20" 6.22402 58.0828 
ML** 13.70" (p = m) 

* Tracking limit, 80.W8' = (180" - i )  
** Minimum latitude, of infinite radius 
See Appendix for other symbols. 

FIG. 7. Conic satellite-tracking projection (standard 
parallel 80.9" N). Landsat orbits. 
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Substituting from Equation 23 into 46 and from 
Equations 46 and 19 into 45, inserting subscripts, 

sin 4 , [ ( ~ 4 ~ , ) ( 2  cosZi - cos2 4,) - cos i] 
n = 

[ ( P J P ~ ) C O S ~  4, - cos ~ ]{ (P~ /P~) [ (P~ /P~)cos~  4, - 2 cos i] + 1) 
(47) 

the circle of tangency coincides with the tracking 
limit, and the straight groundtracks have no break 
at this point, as they do in the foregoing cases. In 
this case, from Equation 23, since the denomina- 
tor is 0 and the numerator is not, F, = & 90". From 
Equation 2, A '  = - 90"; from Equation 4, At = 90°, 
if i > 90"; from Equation 5, L, = 90".(1 + P2/P1), 
if i > 90". For other constants, 8, = n L, (hom Equa- 
tion 27), and so = F, - 8, (from Equation 37). If 
the tracking limit is c$~ (with conformality, but not 
true scale), the same values apply with 2 instead of 
1 as the subscript. 

Figure 6 illustrates this form of the projection 
for Landsat groundtracks with conformality at 
latitudes at 45' N. and the upper tracking limit, 
80.908" N. Polar coordinates are given in Table 2. 

It may be desirable to show equal intervals of 
time along the orbit on any of these projection 
forms (or, for Landsat groundtracks, various row 
numbers, which are spaced at equal time inter- 
vals). Equation 2 may be used to determine the 
value of 4 corresponding to a given A', which in 
turn is directly proportional to time for the circular 
orbit, and various meridians or the edge of the 
map can be marked with the equivalent time (or 
Landsat row number). 

If, in Equations 20, 5,4, and 2 ,4 ,  is made equal 
to 4z, for a conic projection with one standard 
parallel, Equation 38 becomes indeterminate, al- 
though Equation 40 is usable, if n is known. Since 
this form is of some interest, especially in a near- 
azimuthal case to be described, the actual cone 
constant is derived: As 4, approaches +,, the 
numerator and denominator of Equation 38 ap- 
proach dF9 and dL,,, respectively, where 4, is the 
one paralle\ at whicli confonnality is to occur. It is 
also made true to scale and is, thus, a standard 
parallel in the same sense as that on common con- 
ic projections. Then 

which is equivalent to 

To find [ d ~ l d 4 ] ~ , ,  Equation 20 is differentiated: 

CONIC SATELLITE-TRACKING PROJECTION 
NEAREST TO AN AZIMUTHAL PROJECTION 

Probably the most useful application of Equa- 
tion 47 is to make 4, equal to the upper tracking 
limit i, if i < 90°, or (180" - i), if i > 90". In either 
case, cos2 4, = cosZ i. Considerable simplification 
is possible: 

n = sin il[(PJP,) cos i - 11 '. (48) 
This form of the satellite-tracking projection is 

the closest approximation to an azimuthal form, 
but it remains a conic projection, with n < 1. As in 
the conic projection with conformality at two par- 
allels, of which one is a tracking limit, the ground- 
tracks extend straight across the map through the 
polar approach without a break, the tracking limit 
is the circle of tangency, and constants F,, A', etc., 
are the same for both variations. 

Polar coordinates for Landsat groundtracks in 
the near-azimuthal form are given in Table 3, and 
the graticule is shown in Figure 7. Because of the 
near-polar orbit, this cone as developed is less 
than 4 percent (n is 0.96543) from a full circle. 
With orbits of lower inclination, the approach to 
azimuthal becomes less. 
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sin 4 cos I$[(P J P , ) ( ~  coszi - cos24) - cos i l  
sec2F(dFld+) = 

(cos2 - c o ~ ~ i ) ~ ~ ~  
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APPENDIX Subscript n is equal to 1 or 2 or is omitted, as re- 
SUMMARY OF FORMULAS FOR CALCULATION quired by preceding formulas. 

1. Cylindrical Satellite-Tracking Projection: If the maximum angular deformation w is de- 
sired, the following formula applies to all of the 

x = R h cos 4, (10) above cases: 
y = R L cos +,/tan F, (22) 
h = k tan Fltan F, (25) sin ?4 o = I (h  - k)l(h + k)l (49) 
k = cos ~#J,/COS 4 (26j 

(see below for additional formulas) 

2. Conic Satellite-Tracking Projection: 

x = p sin 8 (41) 
y = p.$, - p cos 8 (42) 
p = R cos I$, sin F,ln sin (em + so) (40) 
so = F~ - el (37) 
0 =nA (28) 

O m = n L  
el = n L, 

(27) 
(27) 

n = (Fz - F,)I(L2 - L,), for (38) 
conformality at two parallels, 
one of which is also standard 

Symbols: 

+>A geodetic latitude and longitude, re- 
spectively. 
polar coordinates (radius and polar 
angle, respectively). 
rectangular coordinates. 
scale factors along meridian and 
parallel, respectively. 
cone constant. 
standard parallel (true to scale and 
with conformality). 
second parallel at which confor- 
mality is specified. 
radius of globe at scale of map. 

sin 41[(~#,)(2 cos2i - c 0 s ~ 4 ~ )  - cos i I 
n = 

[ ( ~ d ~ , ) c o s ~ I $ ~  - cos i { ( P ~ P ~ ) [ ( P ~ P , ) C O S ~ I $ ~  - 2 cos i] + 1) I for one standard para1 el 

n = sin iI[(P21~,) cos i - 112 
for standard parallel only 

at tracking limit 
p, = R cos 4, sin F,ln (43) 
h = k tan Fltan (Om + so) 
k = pnl(R cos 4) 

(35) 
(31) 

Applicable to Cylindrical or Conic forms: 
Ln = Atn - (PdP1)A1n (5) 

tan &, = tan A', cos i (4) 
sin A', = - sin $,/sin i (2) 
tan F, = [ ( ~ ~ l ~ ~ ) c o s ~  & - cos ill  

(cos2 $,,, - ~ o s ~ i ) ~ ~ ~ .  (20,231 

inclination of groundtrack to merid- 
ian at latitude 4,. 
inclination of satellite orbit to 
Earth equatorial plane. 
period of revolution of satellite. 
period of rotation of Earth relative 
to satellite orbit. 
radius of circle to which ground- 
tracks are tangent on map. 
radius of circle for latitude crossing 
central meridian at x,y = 0. 


