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The Contribution of Thermal Data in 
Landsat Multispectral Classification 

Thermal data provide additional information but must be used 
with care. 

INTRODUCTION 

T HE VALUE of Landsat multispectral scanner data 
for discrimination of some rock and mineral 

types, vegetation cover, crop discrimination, 
land-use evaluation, etc., has been fully estab- 
lished in the scientific literature (Harding and 
Scott, 1978; Rabchevsky et al., 1979; Scarpace et 
al., 1979; Thompson and Wehmanen, 1979). This 
conclusion results from the fact that the multi- 
spectral data provide a number of independent 
measurements of the reflective characteristics of 
each surface element observed. These spectral 
measurements yield a descriptor, or "spectral sig- 
nature," which is a function of the type of area 

desire to distinguish surfaces which are confused 
(virtually identical in terms of their four-band 
spectral response) leads naturally to an increase in 
the number of spectral channels in order to gain 
additional factors for discrimination. Data from the 
thermal infrared channel are considered in this 
context. 

It should be pointed out that an alternative ap- 
proach is available for the analysis of thermal in- 
frared data. The temperature behavior at the 
Earth's surface results from the balance of ra- 
dient, latent, sensible, and ground heat fluxes. 
This temperature behavior is readily susceptible 
to numerical modeling (Watson, 1975; Rosema, 
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observed. The identification of spectral signatures 
(e.g., grass, snow, sand, and water all have quite 
different signatures) provides the basis for classifi- 
cation; i.e., partitioning an image into a number of 
categories representing the different surface types 
present. Studies with data from Landsats 1 and 2 
have shown that the classification is sometimes 
not unique, as several distinct surface types may 
have similar or overlapping spectral signatures in 
the four bands of the multispectral scanner. The 
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1975), leading to the possibility of quantitative 
inferences about surface conditions (Pohn et al., 
1974; Price, 1980). Such an approach, though 
feasible, is quite different from the essentially 
empirical treatment which is carried out here. 
Clearly, research along both lines is desirable. 

This paper discusses the contribution of the 
thermal infrared channel (10.4 to 12.6 pm) of 
Landsat 3 in the classification of a scene acquired 
over New York State. The next section describes 
briefly the sensor characteristics and the statistical 
properties of the five channels of data. The third 
section presents the conclusions from classifica- 
tion of the scene using four reflective channels 
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(bands 4,5,6, and 7) and these four in combination were reduced in the image to be discussed 
with the emissive band (8). The physical basis of through a light smoothing of the thermal data. 
the results is described in the next to last section, The data selected for study were acquired on 18 
and conclusions are summarized in the final sec- April 1978 over southeastern New York State 
tion. (scene center 74" 24' west, 41" 36' north). The 

The characteristics of the multispectral scanner 
(MSS) on Landsats 1 to 3 have been described 
elsewhere (General Electric Space Division, 
1978; USGS, 1979). For the present study, the es- 
sential properties are the spectral characteristics; 
i.e., four spectral bands at 0.5 to 0.6 pm, 0.6 to 0.7 
pm, 0.7 to 0.8 pm, and 0.8 to 1.1 pm, and the spa- 
tial resolution at the ground (79 by 79 m) for Land- 
sats 1 and 2. The Landsat 3 ~ s s  acquires additional 
data in the thermal infrared at 10.4 to 12.6 pm. 
Due to considerations of lower incident energy 
and detector sensitivity, the field of view of the 
thermal channel is 237 by 237 m. As a result, a 
single thermal-band measurement corresponds to 
an area represented by nine measurements in each 
of the original four spectral bands. Both the re- 
flective bands and thermal-IR band are oversam- 
pled crosstrack (perpendicular to the direction of 
satellite motion), but the 9:l ratio is retained by 
maintaining the same degree of oversampling. 

Data in the thermal band are digitized to six-bit 
accuracy (0 to 63) over a range of incident energies 
corresponding to the temperature interval 260 to 
340°K. This equates to a quantization interval of 
approximately 1.2OK at 300°K, or 1.5"K at 280°K. In 
addition, the precision of the data is affected by 
noise in the detectors and amplifier circuits prior 
to digitization. 

Unfortunately, the Landsat 3 thermal band did 
not function properly due to several unexpected 
causes. Rapid outgassing from within the instru- 
ment caused plating of contaminants on the ther- 
mal detectors, with a resultant gradual loss of de- 
tector sensitivity. The decrease in detector output 
voltages was corrected by a compensating increase 
in the gain of the preamplifier circuitry, at the ex- 
pense of a corresponding decrease in the signal- 
to-noise ratio. When the maximum gain setting be- 
came insufficient to provide adequate voltage out- 
put, the instrument was put through a heating 
cycle that drove off the material on the detectors 
and restored sensitivity. During the seventh such 
cycle, one of the two thermal detectors failed after 
four months of operation. 

A second defect occurred in a circuit defining 
the zero setting of the relationship between scene 
radiance and detector output. This resulted in a 
noticeable striping of the data, due to both the 
differing performance of the two thermal detectors 
(along track effect) and an apparent change in sen- 
sitivity as the detectors swept perpendicular to the 
satellite motion (across-track effect). These effects 

image was selected for its variety of surface char- 
acteristics, including low mountains, turbid water, 
clear water, snow, a large city, small patches of 
vegetation, and a few scattered clouds (Figure 1). 
On this date, the thermal channel (Figure 2) was in 
gain step 4 during the second day following a 
four-day outgassing cycle. An apparent noise fig- 
ure (digitization plus detector) of 1.5OK at 280°K 
was obtained by assessing the variability in a small 
area which showed no evidence of temperature 
gradients (a central portion of Long Island Sound). 
Figure 3 displays the histogram of the thermal data 
for the entire image, showing that relatively few 
levels are available for signature separation during 
the classification procedure. Five levels represent 
71 percent of the image area; nine levels represent 
more than 90 percent. The low variability of ap- 
proximately 15°C in the thermal image is ascribed 
to the time and season of image acquisition; 10:OO 
A.M. local time, early spring. The temperature 
contrast would be considerably greater (order 40 
to 60 percent) for observations during the early 
afternoon in midsummer. In addition, the low 
spatial resolution tends to average out thermal 
contrast. 

The differing fields of view of the original Land- 
sat channels (bands 4 to 7) and the thermal chan- 
nel (band 8) necessitates a procedure regarding 
the treatment of the data. 

In the present study, it appears that a single 
band 8 measurement would be of little value in 
differentiation or classification of the nine higher 
resolution pixels nested within it. Accordingly, the 
band 4 to 7 data were averaged to yield pixels 
equivalent to the band 8 data, despite a significant 
reduction in the variability of the data. As shown 
in Table 1, the 9:l averaging greatly reduces the 
potential for discrimination of spectral signatures: 
many of the large pixels evidently are averages of 
subareas representing differing surface character- 
istics. However. this degradation does not affect 
the objectives of this stuudy, i.e., to determine the 
contribution of the band 8 data in multispectral 
classification. As a compensating benefit, the re- 
duction in data volume permitted quantitative 
study of the entire scene. 

The effect of averaging was further analyzed 
through computation of the band-to-band correla- 
tion matrices and reduction to principal compo- 
nents for both low and high spatial resolution data. 
In addition, this permitted assessment of the 
statistical correlation between the emissive band 
and the four reflective bands. 

Table 2 presents the correlation matrix for the 
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FIG. 1. Landsat visible (band 5) image of southeastern New York State. The Hudson 
River runs down the right center of the scene. The tip of Long Island South is visible at 
the lower right. 

four-channel 79-metre data. The eigenvectors re- 
sulting from the principal axis transformation are 
displayed in Figure 4. As expected, the variability 
associated with the dominant eigenvector repre- 
sents all four spectral intervals having the same 
sign and nearly the same magnitude. The eigen- 
vector is thus roughly equivalent to a broadband 
(0.5 to 1.1 pm) reflectivity measurement. The sec- 
ond ranked eigenvector is associated with the 
contrast between the short wavelength mea- 
surements of bands 4 and 5 and the longer 
wavelength measurements in bands 6 and 7; i.e., a 
signature typical of vegetation. 

Table 3 and Figure 5 present equivalent infor- 
mation for the five-channel low spatial resolution 
data. Several features are evident: 

band does, indeed, contain independent infor- 
mation. 

The five-channel eigenvectors are closely similar 
to those of the original four channels. The second 
eigenvector is new, being predominately as- 
sociated with the band 8 data. (It is true that 
eigenvectors 2 and 3 are similar in bands 4-7. In 
this sense 2 and 3 represent a partitioning of the 
number 2 eigenvector in the 4 channel data. 
However, the band 8 component contributes eSz 
= 83.7 percent of the spectral signature to 
number 2, while eSZ = 15.8 percent of the number 
3 eigenvector.) The others are essentially unaf- 
fected, except that the third and fourth eigen- 
vectors in the high resolution data are inter- 
changed, becoming the fourth and fifth in the 
low resolution data. 

The spatial averaging greatly increases the cor- 
relations hetween the visible  near-^^ channels. Since the thermal-IR channel is relatively un- 
The correlation of the band 8 data with other correlated with the others, one may anticipate 
bands is strikingly low. It is apparent that this some impact on the classification procedure. 
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Fxc. 2. Thermal-infrared (band 8) image corresponding to Figure 1. The aspect has not 
been corrected during conversion from computer tape to image following digital contrast 
enhancement. 

The  classification of the  five channel low- 
resolution scene was carried out on an interactive 
display system (GE Image 100) that uses paral- 
le lepiped spectral  signatures obta ined from 
training areas. Where necessary, spectral signa- 
tures were built up through summation of signa- 
tures from several training sites. (In symbolic 
logic, the operation is designated as "or" (Copi, 
1954).) Training-site selection was aided by the 
use of maps, but was affected mainly through pre- 
vious familiarity with image classification. A 
rigorous partitioning was felt to be  unnecessary, 
both because the principal goal was to identify the 
incremental value of the band 8 data and because 
the thermal data properties described in  the pre- 
vious section introduced considerable random- 
ness ("noise") into the results for five-channel 
classification. The 240 by 240 m effective resolu- 
tion element would make comparison with ground 
truth data somewhat speculative in any event. 

Initially, the band 4 to 7 image data were classi- 
fied into the following surface types with some 
uncertainty and ambiguity as noted in the follow- 
ing paragraphs. Because surface-truth information 
was not readily available (the area in question 
being a full Landsat frame representing more than 

3 x lo5 km2), the classification was carried out 
subjectively based on differences in the total re- 
flectivity and in the color tones in the image. The 
differing surface types are listed in approximate 
order of increasing reflectivity: 

(1) Open water (Long Island Sound and some 
lakes, upper Hudson River); 

(2) Clear water in some lakes, cloud shadows on 
ground, and saturated organic soils (south of 
Middletown, New York); 

(3) Turbid water (mostly lower Hudson River); 
(4) Dense urban areas (New York City and nearby 

cities); 
(5) Suburbs of New York City and smaller cities; 
(6) Vegetation (mostly parks and undeveloped 

areas in and near New York City); 
(7) Soil, rocks, and dormant vegetation (low re- 

flectivity); 
(8) Soil, rocks, and dormant vegetation (higher re- 

flectivity); 
(9) Soil, rocks, dormant vegetation, and evergreen 

vegetation; 
(10) Snow; and 
(11) Clouds. 

Theme 2 definitely represents a mixture of dif- 
fering surface types. The  distinction between 
themes 7, 8, and 9 is essentially arbitrary, as the 
spectral signatures vary continuously over the 
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TABLE 2. CORRELATION MATRIX (SYMMETRIC) FOR THE 

FOUR-CHANNEL HIGH-RESOLUTION LANDSAT DATA 

Band 4 5 6 7 

4 0.75 0.51 0.15 
im 5 1.00 0.74 0.42 

a 
5 (10 

6 1.00 0.68 
a 7 1.00 8 im 

8 m 
a s course, this is partially due to the "noisy" charac- 

J ,O 
ter of the data. However, this does not preclude 

a the use of band 8 data for further separation of the 
g w four-channel themes. To test this possibility, each 

of the 11 themes was partitioned into two domains 
40 representing lower (colder) and higher (warmer) 

ranges of thermal values. The threshold digital 
m value used to separate cold and warm subthemes 
10 was then varied in an effort to optimize the sub- 

division into recognizably distinct surface classes. 

PIXEL VALUE 
The combined effects of relatively low spatial res- 

FIG. 3. Histogram of the thermal data. During olution, low thermal sensitivity, and high instru- 

processing the six-bit (0-63) data are expanded to ment noise made the exercise qualitative, at best. 
seven bits (0-i27), leading to some spacing be- Nevertheless, the utility of the thermal data for 
tween permitted valves. discrimination was apparent in a number of 

categories (Table 4). 
In only two cases was the thermal subdivision 

large areas of wilderness and dormant farmland indicative of a difference of surface type. For 
representing the majority of the scene. The sep- theme 2, the thermal signature permitted the dis- 
aration of populated areas into themes 4 and 5 also tinction of water, which has a moderate and rela- 
results from a subjective choice of threshold spec- tively constant temperature throughout the day, 
tral values. Finally, themes 10 and 11 have some from cloud-shadowed areas that remain in the cold 
spectral overlap, due mainly to the mixed pixel predawn condition when direct solar radiation is 
effect at the borders of otherwise highly reflecting intercepted by clouds. In the case of theme 11, the 
clouds. tops of the low cumulus clouds present in the 

Following the completion of the classification scene were measureably colder than the snow 
using bands 4 to 7, the incremental value of the present on the top of some mountain ridges. 
thermal data was studied. For each previously de- In all other cases, the thermal data either were 
fined theme, the thermal signature was obtained not useful (i.e., themes 3, 6, 7, and 8) or were as- 
by the appropriate training procedure. Although sociated with a physically parameter that is not 
the small number of possible digital values in the directly related to surface type (themes 1, 4, 5, 9, 
thermal channel would suggest some ambiguity in and 10). Separation of the latter into subthemes 
the thermal signatures, this tendency is in fact would be quite subjective in the sense that a 
quite pronounced, as displayed in Figure 6. In this well-defined threshold or spectral boundary for 
figure, normalized histograms are displayed for partitioning does not exist. Physical arguments 
the 11 themes. The substantial spectral overlap or suggest that factors other than the surface type 
confusion suggests that the thermal signature by must be considered. In the next section, these 

I itself is less specific to surface type than are the factors are discussed and a general interpretation 
four-channel, visible near-IR signatures. Of of Landsat thermal data is suggested. 

TABLE 1. STATISTICAL PROPERTIES OF THE HIGH- AND LOW-RESOLUTION DATA 

Mean Standard Deviation Standard Deviation 
Band (counts) (high spatial resolution) (low spatial resolution) 

4 24.6 12.4 6.3 
5 25.6 13.5 7.9 
6 35.9 14.7 9.8 
7 17.3 11.6 4.7 
8 49.5 5.6 
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OF VARIANCE -tt 
FIG. 4. Spectral eigenvectors for high,resolution 
(79 m) data. Eigenvectors are normalized such that 
the sum ofthe squares of the components is unity. 

A PHYSICAL EXPLANATION 

The explanation for the relatively low utility of 
thermal data in multispectral classification in- 
volves the differing source of the observed radia- 
tion in the visible near-IR channels (bands 4 to 7) 
versus that in the thermal-infrared (band 8). In 
general terms, bands 4 to 7 represent reflected 
solar energy, while band 8 is dominated by ther- 
mal emission from the Earth's surface. Quantita- 
tive verification may be obtained through evalua- 
tion of approximate expressions for the radiance 
measured by the satellite in the respective spec- 
tral intervals. As a first approximation atmospheric 
effects may be neglected in both intervals., Re- 
flected solar radiation at wavelength A may be ap- 
proximated by 

RsuN(~) 
= B(A,TsU,)(RIL)2 a(A) cos q watts/m2/ster 

where B is the Planck function, TsUN is the sun's 
apparent temperature (5700 K), RIL is the ratio of 
the sun's radiu_s to the Earth-sun distance, a is the 
albedo, and q is the solar nadir angle. The 
radiance due to thermal emission is given by 
REARTH(A) = E(X)B(A,TEA~~~), where E is the surface 
emissivity. Numerical results are obtained 
through substitution of representative values 

Band 4 5 6 7 8 

4 1.00 0.95 0.79 0.63 -0.05 
5 1.00 0.87 0.75 0.04 
6 1.00 0.96 0.13 
7 1.00 0.19 
8 1.00 

1) 
BAND 

, 8 4 5 6 7 8  

FIG. 5. Spectral eigenvectors for low-resolution (237 
m) data. Eigenvectors are normalized such that the sum 
of the squares of the components is unity. 

leading to the estimates (Rs,, reflected)/(REARTH, 
emitted) = loZ0 at 0.8 pm, (RSUN, reflected)/ 
(REARTH, emitted) = 3 x lo-* at 11.5 pm. The ratios 
provide the quantitative basis for ignoring the ef- 
fect of emitted radiation in the shorter wavelength 
interval, and for ignoring reflected sunlight in the 
thermal infrared. The situation in the two 
wavelength ranges is shown in Figure 7. In the 
visible near-infrared, the intensity of reflected 
solar radiation depends principally on the intrinsic 
reflective characteristics of the surface being im- 
aged. The intensity of reflected radiation is also 
somewhat dependent on the aspect of the surface 
because the slope and direction of the slope affect 
the angle between the sun's rays and the surface. 
In multispectral classification, this effect of topo- 
graphic variation may be reduced through the use 
of band-ratioed data (e.g., 415, 516, 617) instead of 
the original data with resultant cancellation of the 

factor. If several thermal-IR channels 
were available, a similar improvement could be 
expected by ratioing these bands (Smith, 1977). In 
the visible near-infrared ratioing leaves variability 

0 0 1 8 4  
COUNTS COUNTS 

FIG. 6. Histogram of thermal data representing the 
11 themes indicated in the text. Each histogram is 
normalized to unit amplitude. The figure has been 
split into two parts for purposes of illustration. 
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TABLE 4. CHARACTERISTICS OF ''COLD" AND "WARM" SUBTHEMES AS DETERMINED USING BAND 8 DATA 

Theme Surface Type Cold Subtheme Warm Subtheme 

1 Clear Water Center of Long Island Rivers, shallow areas 
Sound in Long Island Sound 

Water, cloud shadows, 
saturated soil 

Turbid water 

Urban areas 

Suburbs, small cities 

Vegetation 

Soil, rocks, dormant 
vegetation 

Cloud Shadows 

No separation-striping 
due to line-to-line jitter 

Lower population density 

Lower population density 

No separation 

No separation 

Soil rocks, dormant No separation 
vegetation 

Soil, rocks, evergreen Higher elevation 
vegetation in mountains 

Snow Highest areas in 
mountains 

Water, saturated soils 
are warmest 

Higher population density 
industrial areas, commercial 

Higher population density, 
commercial areas 

Lower elevation 

Lower elevations 

I 11 Clouds (some snow) Clouds Snow and cloud edges 

associated with nonuniformity of bidirectional re- 
flectance as the only evidence of topographic ef- 
fects. 

The explanation for the satellite-observed 
radiance in the thermal-infrared region of the 
spectrum is much more complex. Emitted radia- 
tion is a function of surface temperature, which 
results from the balance among a number of 
energy fluxes, as illustrated in Figure 7. 

Surface temperature is only slightly affected by 
the visible near-IR albedo in bands 4 to 7 because, 
for a representative range of albedos (10 to 30 per- 
cent), the major portion of the solar flux is ab- 
sorbed. All other fluxes at the Earth's surface can 
vary substantially, independent of the surface re- 
flective characteristics. The chief variables af- 
fecting surface temperatures are: 

VISIBLE NEAR INFRIRW I 
FIG. 7. Factors influencing satellite-observed radi- 
ation in the reflective and emissive wavelengths. 

(1) Sky-emitted radiation. This energy flux de- 
pends on the vertically decreasing moisture con- 
tent of the atmosphere. As a consequence, surface 
temperature is generally related to elevation, with 
higher locations being cooler than low-lying areas. 
The tendency is quite pronounced in the present 
scene with snow present only on the highest (1300 
m) elevations. 

(2) Heat flux into the surface. This flux is re- 
lated to the density, heat capacity, and thermal 
conductivity of the near-surface layer, which are 
functions of the surface type and hence presuma- 
bly related to the visible near-IR spectral signa- 
ture. However, this flux is also related to the sur- 
face slope. At the 10 A.M. Landsat overpass time, 
the surface temperature is typically increasing 
rapidly as the sun rises higher in the sky. The 
phase of the diurnal temperature variation is af- 
fected by the surface properties response to the 
incident solar flux, which depends on surface 
slope. Thus an east-facing slope will by warmer at 
this time than a west-facing slope, other things 
being equal. The phase lag between incident heat 
flux and surface temperature is itself a function of 
the surface material properties (Watson, 1975). 
However, it is also dependent on the relative 
magnitude of heat transfer to the atmosphere as 
compared to ground heat flux. This phase vari- 
ability of the surface temperature change causes 
the time of measurement to be less than optimum 
for Landsat. 

(3) Sensible and latent heat transfer to the at- 
mosphere. These fluxes depend on windspeed, air 
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temperature, and humidity near the surface; veg- 
etative cover; surface roughness; and availability 
of water for evapotranspiration. In  fact, the cooling 
effect of evapotranspiration can be  species depen- 
dent, yielding a dependence of satellite observed 
temperature on the type of vegetative cover. This 
effect was not evident in the early spring scene 
which was studied. It may be  possible to regard 
meteorological factors as reasonably constant over 
a Landsat-size area if the terrain is sufficiently flat. 
However, surface characteristics can vary and thus 
affect surface temperature even for a given surface 
type (tall trees, short trees, wet soil, dry soil, etc.). 
Idso e t  al. (1975) have suggested the use of abledo 
measurements to infer near-surface soil moisture, 
but only under idealized conditions. 

In summary, it is clear that different physical 
mechanisms come into play in establishing the 
radiances observed by Landsat in the reflective 
channels and in the thermal IR. The thermal IR 
signature (surface temperature) is not a simple 
function of surface type, but instead is related to 
the physical processes involved in the surface 
energy budget. 

The thermal channel on the Landsat 3 multi- 
spectral scanner acquires new and statistically in- 
dependent information that is valuable for map- 
ping the  thermal characteristics of the Earth's 
surface. However, the numerous physical pro- 
cesses governing thermal radiation lead to a de- 
pendence on surface slope, altitude, and surface 
energy-balance effects such as ground heat flux, 
atmospheric heating, and surface evaporation. 
These effects do not influence the spectral be- 
havior in the reflective channels. Instead, the 
band 4 to 7 data are simply characterized as re- 
sulting from the reflective properties of the area 
imaged. Because of the differing physical prop- 
erties of the thermal data, its use in classification is 
subject to ambiguities and dependencies on other 
factors that make analysis prone to error. In effect, 
the thermal data may introduce "noise" in a clas- 
sification sense. Indiscriminate use of the thermal 
data as an adjunct to the visible near-IR data ap- 
pears to be  undesirable because of many pos- 
sibilities for misinterpretation and the fact that the 
thermal "signature" is not a direct indicator of 
surface type. 

I am indebted to Ms. Tina Lien for assistance 
with the image processing. 
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