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Optimal Distribution of Control Points 
to  Minimize Landsat Image 
Registration Errors 

Using as an optimality criterion the mean square registration error for the 
whole image, the optimum location of ground control points was found to be 
around certain locations on the left and right edges of the 
Landsat-MSS image. 

T o TRANSFORM a digital image of the Earth's surface, taken by a satellite sensor, into a corrected image 
according to some cartographic projection, one needs to know the mathematical functions relating 

the coordinates of the two images (raw and corrected), and to have a rule to assign intensities to the 
pixels of the corrected image. 

For MSS images the problem of obtaining the geometric transformation functions is essentially that of 
finding the intersection of the scanner beam with the Earth's surface as a function of time, as time is 
easily related to the raw image coordinates. An accurate knowledge of the Earth's geometry, the trajec- 
tory of the satellite, its attitude, and the position of the scanner beam with respect to the satellite are 
necessary in order to derive the mapping functions relating the raw and corrected images. Once these 
functions have been determined, and a choice has been made regarding the resampling technique to as- 
sign the corresponding intensity values to the pixels of the corrected image, the actual mapping can be 
carried out (see Bernstein, 1976). 

ABSTRACT: TO precisely correct an ~ss-Landsat image, ground control points are 
necessary because of the inaccuracy of the satellite's attitude and altitude mea- 
surements. If the attitude and altitude are assumed to be described by certain 
polynomials of time, the corresponding coefficients can be estimated from the 
set of GCP'S, and their estimated error propagated to obtain an average regfstra- 
tion error over the whole image as a function of the ccp's coordinates. Minimiza- 
tion of this error leads to the result that ccp's should be chosen around certain 
locations on the left and right edges of the image. Some experiments are run to 
assess the practical value of this result. 

For Landsat images all necessary items to obtain the mapping functions will be assumed to be known 
with sufficient accuracy, with the exception of the attitude and altitude of the satellite which have to be 
estimated from a set of ground control points (GCP). Furthermore, following Bernstein (1973), it will be 
assumed that within a Landsat frame the three attitude angles can be adequately described by cubic 
polynomials of time, and the altitude by a linear one, reducing the estimation problem to one of deter- 
mining the corresponding 14 coefficients from the given set of GCP'S. 

Obviously, the error in the determination of these coefficients, and thus the registration error, will be 
dependent upon the number of GCP's, their location error, and their spatial distribution. The last item 
is the subject of this paper, and although the analysis is carried out for the attitude and altitude models 
stated above, other models can be treated along the same lines. 
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In what follows only the registration error due to the uncertainty in location of the GCP'S will be con- 
sidered (Earth geometry, satellite velocity, etc., are assumed to be perfectly known). This uncertainty 
will cause an error in the values of the computed coefficients of the attitude-altitude model, and thus an 
error in the position of each point to be transformed by the mapping functions. The average of this error 
taken over all points in the image will serve as a criterion for the goodness of registration of the image to 
the corresponding cartographic projection. The aim of this paper is to find the optimal spatial distribu- 
tion of GCP'S which will minimize this average registration error. 

A brief summary of the least-squares method used to obtain the model coefficients from the GCP'S 

seems in order to derive the expression for the registration error of a point in the image. 
Figure 1 shows the geometry of the problem, and by inspecting it one can derive the expressions for 

the differences in position for a GCP in terms of the attitude and altitude deviations about their nominal 
values. 

(Long track 
direction 

FIG. 1. Geometry of the problem: S is the actual position 
of the scanner (Sf is the nominal); LL is an actual scan 
line (L'L is the nominal position; P is the actual position 
of a point, P' is the position for nominal altitude, and P' 
is the position for nominal attitude and altitude. (All 
angles have been made much larger than they actually 
are for Landsat. The nominal altitude S'C' has been 
taken as unit length.) 

Assuming these deviations to be small, and measuring lengths in terms of the nominal altitude, the 
following dimensionless equations result: 

x = + + K tan G ( p )  
y = o [l + tan2 G ( p ) ]  + h tan G ( p )  

where p  is the GCP'S pixel number within the scan line measured from its center; G ( p )  is the correspond- 
ing scan angle, zero at the center of the scan line; +, o, and K are the attitude angles, pitch, roll, and yaw, 
and h is the relative altitude deviation, all corresponding to the instant in which the GCP was seen by the 
MSS; and x and y are the differences in position of the GCP along and across the orbital track on a plane 
tangent to the Earth through the nadir point of the image, and are computed as differences between the 
position of the GCP obtained from the given map coordinates and the position of the GCP obtained from 
transforming its raw image coordinates without consideration of any attitude or altitude deviations from 
the nominal values ( x  and y are made dimensionless with the nominal altitude). 

Equations 1 and 2 show that pitch and yaw are decoupled from roll and altitude, and therefore the 
corresponding estimation problems can be treated independently. 
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It has been previously stated that the attitude angles and the altitude of the satellite are assumed to be 
well presented by cubic and linear polynomials of time; time and scan line number are linearly related 
if the scanning time is considered negligibly short; therefore, the attitude angles and the altitude may 
be considered as cubic and linear polynomials of the scan line number or of any linear function of it. In 
what follows a normalized line number coordinate will be used, taking the values -1 and 1 at the top 
and bottom of the image respectively. One may then write: 

I where 1 is the normalized line scan number in the interval ( -1 ,  1); c$~, w,, K,, and h, (i=O . . . 3, j =  1) are 
the 14 unknown coefficients to be determined; and P i ( l )  are the orthonormal Legendre polynomials of 
ith degree (see, for example, Courant and Hilbert (1953)). 

The reason for using the Legendre polynomials instead of the successive powers of 1 is to simplify the 
expression for the mean square registration error when integrating over the image. 

Substituting the expressions in Equations 3 into Equations 1 and 2, calling F = tan G ( p ) ,  and intro- 
ducing the vectors oT(l)  = [Po(l), P z ( l ) ,  P l ( l ) ,  P 3 ( l ) ] ,  uT(l)  = [Po(l), P 1 ( l ) ] ,  c,T = (+0 . . . h, KO . . . and 
c: = (oo . . . W Q ,  hO, h,) ,  results in 

Writing Equations 4 for N ground control points with raw coordinates given by the normalized line 1 scan number 1, and F, = tan G ( p j )  0 = 1 . . . N), the following set of equations is obtained 

s = b T ( 1 j ) ,  FpT(lj)l. cx + erj 

1 where ex, and e, are the location errors associated with the jth GCP. 

In matrix notation these equations are rewritten as 

X = W r  . C r  + E r  

Assuming the errors associated with different ccp's to be statistically independent, with zero mean and 
the same variance for all, though different in the two directions, the solution of Equations 6 in a least- 
mean-square sense is given by (see for example Hamilton (1964)) 

I where w: and rr,2 are the variances of the location error of the GCP'S, 
l 

and 

The covariance matrices of the estimates are given by 

Cov (6,) = By' 
Cov (6,) = B;' 
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And the variance of the propagated registration error in a point (1, F )  is (cf Equation 4) 

var (E,) = ( v T ,  F v T )  B;' kV 1 
var (4) = [ ( l  + F2).uT, FuT]  B i l  F? .u) 

The expected value of the square of the total registration error in one point is 

c(1,F) = E { ~ , 2  + E ; )  = var (E,) + var (E , )  

and the average over the whole image 

where FM is the maximum value F can take over the image (the origin is taken at the center). 
The mean square registration error, t l F ,  which through B;' and B;' depends on the GCP'S coordi- 

nates, shall be the criterion to be minimized with respect to the locations of the GCP'S; the square root of 
this quantity will give a good indication of how well the raw image can be corrected with a given set of 
GCP'S. 

Note that, although has been called the mean square registration error, it is computed on a plane 
tangent to the Earth at the nadir point of the image, not in the cartographic projection coordinate system. 

Some comments on several points of this paragraph should be made: 

The use of linear expressions in the deviations from nominal attitude and altitude as written in Equations 1 
and 2 might not be accurate enough for some Landsat image. This can be overcome by an iterative procedure, 
including in the left-hand side of the equations the corresponding non-linear terms, with a guessed set of 
values for the attitude and altitude coefficients. From there a new set of values is obtained through Equations 
7 and 8, and the process is repeated until the differences between the values in two successive iterations are 
less than prespecified amounts. Due to the smallness of the non-linear terms, their effect on the optimal dis- 
tributions of GCP'S is expected to be negligible, though their effect on the registration error in some parts of the 
image could be important. 
The effect of considering one image line per scan, as is done in writing Equation 3, instead of considering six 
lines per scan, the actual case in Landsat image, is assumed to be negligible. 
To assume that all GCP'S have the same variance for the location error is probably not far from the truth if the 
method followed to locate the ccds in the raw image does not rely on finding a single point, but rather a set of 
them. For example, locating a GCP by optically or otherwise superimposing a map on an area around the GCP 

taken from the raw image (after some corrections have been applied) is believed to produce a location error 
which will be quite independent of the feature (road junction, dam, airport) represented by the surroundings 
of the GCP. 

The variances of the location error, assumed to be the same for all GCP'S, can be estimated after the 
fit by 

( X  - W, . i.,)T(X - WJ; E z )  
u: = 

N - 8  

SOLUTION OF THE OPTIMIZATION PROBLEM 

The problem to be solved is the following: find the coordinates of N ground control points, which 
minimize 

subject to the constraints 

IhI I F i \  s F ~ *  i = 1,2 ,  . . . , A J  

Referring to the Appendix, the expression for the registration error at a point, given by Equation 13 can 
be written as 



OPTIMAL DISTRIBUTION OF CONTROL POINTS 

where the expressions for the matrices X,, Y,, Z,, Xu, Y, ,  and Z, are written in the Appendix. 
Averaging Equations 18 over the image, taking into account the orthonormality of the Legendre 

polynomials, results in 

a;" Fna2 a; 2 1 Fna2 
€ 1 ~  = - tr  [X ,  + - Y,] + - tr [(l  + - F: + - F;)X, + 3 Yll]  

2 3 2 3 5 
where tr is the trace operator. 

Substituting the expressions for the matrices X,, Y,, Xu, Y ,  given by Equation A.6 of the Appendix, 
Equation 19 may be rewritten as 

+ F: (R;' + R;lQ,XuQ;R;l)] 
3 

(20) 

I The facts that the matrices M,, R,, Mu, and R, are even functions of each one of the variables Fi (i = 1, 
. . . N), and that the traces of the matrix expressions involving Q ,  and Q ,  attain their minimum value for 
Q, = Q, = 0 suggest that a minimum may exist for a distribution of ccp's which is symmetric with re- 
spect to-the I axis. 

From now on, the given number of points will be considered to be even, and the optimal distribution 
of CCP'S will be assumed to be symmetric with respect to the 1 axis. (The restriction to an even number of 
~ o i n t s  is made to avoid the difficulties arising from the fact that no minimum exists with Q ,  = Q ,  = 0 if - 
some Fi = 0, as it will be shown later). 

For ElF to be a minimum, a set of necessary conditions to be satisfied by the GCP'S coordinates is the 
following 

fori = 1, ..., N. 
The derivatives of the error with respect to Fi can be written as (see Appendix) 

Because the matrices R;2, M i 2  and R i 2  are positive definite, Equation 22 can be put in the form 

where H41, . . . &,, F, . . . FN) > 0. 
Consideration of the necessary conditions for a minimum, g i v ~ n  in Equation 22 leads to the only three 

possible values of F,: Fi = F,, zero, and -F,. The value Fi = 0 is ruled out because (aGIFIdF:) Ft = 0 is 
negative, as can be seen by taking the derivative of Equation 23 with respect to Fi and setting Fi = 0. 
(variations in Fi would lead to a decrease in 6,). 

Therefore, the only possib,le optimal values left are Fi = F,, -FM; that is, the right and left edges ofthe 
image, and it should be mentioned that this result is obtained independently of the degree of the poly- 
nomials assumed for the attitude and altitude of the satellite. 

Making F: = F:, the expression for the mean square error simplifies to 
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where 
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The derivative of el, with respect to Zi can then be written as 

u,2 du(1,) - , uT (4 )  si2 - 
dli (25) 

The matrices M, and S, can be partitioned into submatrices in an analogous way to the one followed 
with B,  and B,, and the error expressed in terms of these submatrices in an entirely similar manner to 
the one of Equation 20, suggesting in this way that the optimal solution is also symmetric with respect to 
the F axis (see Appendix, paragraph A.4). 

Assuming the optimal solution to be symmetric with respect to the F axis simplifies Equation 24 to 

where the matrices M ,  and M 2  are given by 

with all the summations taken from 1 to N/2, and because of the assumed symmetry lj = - Z j + l  (if N/2 is 
odd, lN12 = 0). 

Now the problem is reduced to find the values of lj 6 odd) for which aelF/alj = 0 if lj < 1 or ae,,/alj 6 0 
if 1, = 1. 

Equation 25 shows that ac,,lali may be viewed as a polynomial of degree five in Z i ,  and therefore for 
each one of the possible local minima, at most five different values will exist for 1, making asF/al, = 0 (by 
symmetry one of them is 1, = 0). 

Numerical calculations to find the minima of 5, for different values of the number of points, tend to 
indicate that only three of the five possible different values exist; thus, the end points lj = 1 should be 
considered. 

To find the absolute minimum for a given number of points the following procedure has been fol- 
lowed: the points are distributed among the five possible locations 1 = 1, - 1 , 0  and A and - A  keeping 
the assumed symmetry; h is obtained from the equation a ~ ~ , l a h  = 0 ,  and the corresponding value for 
ell. is computed; the process is repeated for each different partition of the points into the five possible lo- 
cations, and the absolute minimum is then taken from all the computed local minima. (For every local 
minimum it was checked that aelFlali 11, = 1 was negative). 

In this way the minimum was found for N = 8,24,32,40,  and 48 taking FM = tan 5.78" and ux/u, = 79/57 
(identical standard deviations if they were expressed in pixels). The results are shown in Table 1, where 
it can be seen the small variation of the location given by A;  for the different values ofN, the last column 
gives an idea of the importance of unequally distributing the points among the optimal locations. 

Under a practical point of view, the solutions found suggest the areas in which GCP'S should be lo- 
cated to lower the mean square registration error: the four corners of the image, and some areas at the 
right and left edges whose exact position depends slightly on the number of ccp's. The experiments de- 
scribed in the following paragraph show the value of this statement. 
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TABLE 1. OPTIMIZATION RESULTS FOR DIFFERENT VALUES OF N. THE GCP's DISTRIBUTION IS SYMMETRIC WITH 

RESPECT TO BOTH AXES 1 AND F, AND THE F-COORDINATE TAKES ONLY THE VALUES + FM. THE LAST COLUMN 
GIVES THE VALUE OF E ( ~ / u ~  OBTAINED BY EQUALLY DISTRIBUTING THE GCP'S AMONG THE EIGHT LOCATIONS 

CORRESPONDING TO THE CASE N = 8. 

No. of points in each location 
N I = 1  l = A  1 = 0  A  ( ~ t ~ ~ ~ ~ ) r n ~ n  ~ / N ( E ~ ~ / U ~ ) N  = 8 

1 To assess the practical value of the results obtained in the preceding paragraph the following experi- 
ment was carried out: 

(a) GCP'S were located in a Landsat image and on the corresponding maps. The aim was to have them 
I roughly uniformly distributed throughout the image, and after the rejection of misplaced points, 53 

GCP'S were kept. The mapping functions to transform the Landsat image to the UTM projection were 
found and approximated by two fifth-degree polynomials. 

(b) Using the mapping polynomials, a set of points described by their UTM coordinates was trans- 
formed to line and pixel of the raw image with the result rounded to its nearest integer, thus producing a 
pseudo-location error with zero mean and standard deviation of 0.29 pixels in both directions (approxi- 
mately a, = 23.10 m, an = 16.62 m). 

This simulated location of GCP'S was carried out to make sure that all GCP'S had the same variance be- 
cause our procedure to find GCP'S in an image involves the location of only one pixel in a feature (dam, 
airport, etc.), and this way of proceedings should make the error distribution of the GCP'S dependent 
upon the kind of feature under consideration. 

It should also be mentioned that this simulation is thought to be similar to the situation which will 
arise in trying to register one image to another image if cross-correlation methods are used to locate 
GCP'S, . . because then the location error should be of the same order as the one coming from the simulation 

1 e;iral sets of points, obtained as described in (b), were used as GCP'S to obtain the corresponding 
coefficients for the aisumed attitude-altitude model. In each case, the square registration error was com- 
puted at 25 uniformly distributed points of the image, using the estimated values for a, and a, given by 
Equation 15, and the average of these 25 values was obtained as an estimation ofthe mean-square error. 

The simulated GCP'S used for each run and the results obtained for the root mean square registration 
1 error are shown in Table 2 and Figure 2. Optimal points are those GCP'S within one of the eight small 

rectangles depicted in the figure. 

TABLE 2. RESULTS FROM THE REGISTRATION EXPERIMENTS. RUNS 1 THROUGH 4 CORRESPOND TO DISTRIBUTING THE 

POINTS AMONG THE EIGHT SMALL RECTANGLES SHOWN IN FIGURE 2, IN TWO DIFFERENT WAYS: (a) CORRESPONDING TO THE 

OBTAINED OPTIMAL SOLUTIONS GIVEN IN TABLE 1; (b) EQUALLY DISTRIBUTED. THE LAST COLUMN HAS BEEN OBTAINED 
USING THE VALUES GIVEN FOR (elF/u~),, IN TABLE 1 AND uz = 23.1 m (THEORETICAL VALUE). 

- - 

No. of GCP's 

Run Opt Nonopt Total &An) &(m) (e1,%i0(m) 
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PIXEL 

FIG. 2. Distribution of GCP'S for the different runs per- 
formed. The numbers refer to the runs, and the dots to 
the GCP'S in each rectangle. 

The results of the runs compare well with the theoretical minima, considering the estimation uncer- 
tainty of the GCP'S location error variance and considering also the rough calculation of the average 
square error. 

Consideration of runs 5,6, and 7 should give an idea of the importance of finding GCP'S near the opti- 
mal locations. 

The optimal distribution of GCP'S to correct an MSS Landsat image has been found, using as an opti- 
mality criterion the mean square registration error for the whole image, and the practical value of the 
solution has been assessed through some experiments. The analysis, and thus the results, are not re- 
stricted to Landsat images, but are relevant to ~ s s  images taken from a platform for which the assump- 
tions stated in the course of the analysis remain valid. Two of these assumptions merit some further 
comments. 

In the introduction it was stated that all items needed to compute the geometric transformation 
functions were perfectly known, except for the attitude and altitude of the satellite. For Landsat images, 
there are important uncertainties in the given position of the nadir point, in the satellite velocity, in its 
orbital path, etc., that if not accounted for will cause fictitious changes in attitude and altitude in the as- 
sumed model. Furthermore, terrain relief is seldom considered in the correction of Landsat images, and 
its effect on the registration error could be rather important at the right and left edges of the image. All 
these errors are taken into account through the GCP'S, and even if the estimation of the altitude and atti- 
tude of the satellite were to be degraded, the correction of the image would not be equally worsened, 
although obtaining the mapping functions through an attitude-altitude model would tend to lose its 
meaning. 

In this context, it seems worthwhile to mention that errors in the position of the nadir point of the 
order of those encountered in practice (about 2 km) have the effect of changing the pitch and roll through 
the independent terms cP0 and o0 of these functions, (cf. Equations 1 and 2) because note that a bias in x 
can be absorbed by cPo and a bias in y can be approximately absorbed by oo, the maximum error involved 
being on the order of (tan2G,,,) x (nadir error), x 2 x 109 m = 20 m) acceptable for a practical 
situation. 

The second point to be commented upon is the approximation of the three attitude angles and the 
altitude by three cubic polynomials of time and a linear one, respectively. It seems to be a fact supported 
by experience (see Bernstein (1973)) that for one Landsat frame the stated approximations are adequate, 
meaning by that the following: the mean square error obtained by fitting a polynomial to a function as- 
sumed to be perfectly known is much smaller than the mean square error caused by the uncertainty of 
the values of the function. In the analysis presented here only the second type of error has been con- 
sidered. 

This comment is quite relevant if two or more consecutive frames of the same Landsat pass are in- 
tended to be corrected as a single image, because then the approximation of the attitude angles by cubic 
polynomials and of the altitude by a linear one will probably cease to be an adequate one. 

In conclusion, this paper suggests that the use of models for some unknowns (necessary to compute 
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the geometric correction functions) used in conjunction with the optimal location of GCP'S can reduce 
the number required to obtain a given average registration error, with corresponding savings in time 
(human or machine). 
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APPENDIX 

A.1. Partitions of the matrices (W,T W,) and (Wz . W,). 
These matrices may be  written as 

(w: . W,) = (:: 3 
where the submatrices have the following expressions: 

(W: - W,) = (:: 3 

all the summation being taken from i = 1 to N. 
If the GCP distribution is symmetric with respect to the I axis, that is, Fj  = -Fj+,, 1, = lj+l 6 odd), then 

Q, = Q, = 0. 
If all GCP'S are at the right or left edges of the image, that is, Fq = FG ( i  = 1 . . . N), then 

R, = F a  . Mr 
Mu = (1 + F,2y . ME 
R, = F,Z C u(li)uT(lI) = F,Z S, 

A.2. Inverse of a partitioned matrix. Definition of the matrices X,, Y,, Z,, X,, Y,, and Z,. 
The inverse of a matrix 

1 is given by 

where 

x = (M - QTR-lQ)-' = M-1 + M-1QTYQM-1 

Y = (R - QM-1QT)-1 = R-1 + R-1QXQTR-1 (A.6) 
Z = -R-lQX = -M-1QTY 

The matricesx,, Y,, Zx,X,, Y,, and Z, introduced in Equation 18 are given by Equation A.6 with the 
corresponding subindeces x or y. 

A.3. Derivatives of the traces of the matrices M;', RE', Mi1, R;'. 

Using the derivation rules concerning the inverse of a matrix 
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Taking the derivative of R, in Equation A.2 

a - tr(R;') = -h.(R;'.2.Fjv(l+)oT(li)R;') 
aFi 

Changing the order of the matrix product within the parenthesis 

a 
- tr(Ril) = -2Fi ~ ~ ( 1 i ) R ; ~  ~ ( 1 ~ )  
aFi 

Similarly, it can be written 

a - tr (Mi1) = -@(I + F:)vT(li)Mi2 ~ ( 1 ~ )  
aFi 

a - tr (R;') = -2Fi uT(li)R;%(li) 
aFi 

(A. 10) 

In a completely analogous way, the derivatives of the traces of M;' and S,' with respect to li can be 
obtained 

(A. 11) 

a du(li) 
- tr (S;') = -2 uT(li) S i2  - azi dli 

A.4. Partition of the matrices M, and S,. 
Let 

vETV(li) = [PO, (li), P2(1i)1, 
o:~(li) = [P~(li), PA1i)I9 

thus 

then 

and 

which shows the similarity with Equation 20, as the matrices m andr are even functions with respect to 
each one of the I,, because oEV(li) is an even function and uoD(li) is odd. The matrix S, is treated analo- 
gously. 
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