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Stereoscopic Depth Perception 

The distance to the perceptual model from the observer turns out to be 
close to the observer's usual reading distance. 

W HEN A PHOTOGRAMMETRIST USeS a stereoscop- 
ic pair of airphotos, two kinds of space mod- 

el come into being. One is the geometrical space 
model which may be constructed optically, me- 
chanically, or analytically. It is a precise representa- 
tion at constant scale of the terrain. The other is the 
visual space model which is created in the mind of 
the observer. In spite of the many ingenious efforts 
to describe it, it has remained up to the present 
a mystery with respect to its size, location, and 
geometrical nature. The only connection between 
the two types of model occurs when a floating 
mark is brought into coincidence with a point of 

Stereoscopic exaggeration of depth, the phe- 
nomenon that has created most of the interest in 
this subject among photogrammetrists, has received 
many faulty explanations. In this work it will not 
be 'explained' but will be taken as the natural re- 
sult of normal stereovision. It will then be treated 
as a measurable quantity that provides a metric 
for visual space. The immediate result is a method 
for determining the perceptual distance from the 
observer to the visual space model, which is found 
to vary with the observer and with convergence, 
but is also found to be about equal to a normal 
reading distance. This perceptual distance in turn 
may be used to quantify the three dimensions of 
the perceptual stereomodel. 

ABSTRACT: The properties of real space that are correctly perceived in normal 
binocular uision are inuestigated, and the results are applied to stereovision in 
photogrammetry and photointerpretation. Present geometrical theories of ste- 
reouision are criticized and it is shown that differential depth, not absolute 
depth, can be correctly perceived in the absence of perspective or other context. 
A theorem concerning normal uision is prouen and is then applied to optically- 
assisted stereouision. Depth exaggeration is measured experimentally and is 
used to establish a metric for perceptual space. 

the visual model, thus carrying out an image corre- 
lation and locating a point of the geometric model. 

The methods that have been used to investigate 
the visual model will be discussed in some detail 
below. They usually have involved geometrical 
constructions of the rays entering the eyes, and 
always end up avoiding the question of what is 
actually perceived by the mind. In this paper, the 
fundamental nature of the visual model as a men- 
tal construct will be central to the theory. Some 
simple and indisputable facts of normal stereovi- 
sion will be stated, and other less obvious facts 
will be derived from them. The perceptual dis- 
tance to the visual model will be clearly separated 
from the physical distance that determines the 
angular subtense of images at the eyes. 

The earliest experiments with stereopairs of 
drawings were made by Wheatstone, who in 1838 
gave a simple explanation of stereopsis based on 
the geometry of the rays entering the eyes. This 
has been called a "projection" theory and was 
accepted as a valid explanation for nearly 100 
years. It has since been made clear by many work- 
ers that the perceived position or shape of a body 
is not determined by such simple geometry. Von 
Freitag Drabbe (1951) gave an understanding of 
the clear distinction between physical and per- 
ceptual space models. After such papers, it should 
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not be necessary to show that perceptual space is 
not linked to the geometry of rays entering the 
eyes in any manner that could be expressed by an 
analytical transformation of spatial coordinates. 
Analytical correspondence is also ruled out by 
modem knowledge of information transfer in the 
visual neural system (Hubel and Wiesel, 1979). 
The example of Figure 1 will be given, however, 
to show just one case where the correspondence 
obviously breaks down. 

The two photographic images of a chimney, ab 
and a'b', are viewed under a simple stereoscope, 
and the principal rays to the eyes intersect, when 
produced backward, at A and B .  The simple pro- 
jection theory assumes that the chimney is seen at 
A B  in perceptual space and that the distance, L, is 
an actual distance in that space. The fallacy of the 
construction has been exposed in many ways, Fig- 
ure 2 representing one of the simplest. In this fig- 
ure, the two photographs have been placed at a 
greater separation so that A recedes to infinity 
while B remains at a finite distance. In reality, this 
experiment does not create the impression that 
the chimney is infinitely tall, or even that its base 
is very far away. The case can be made even 
stronger by further increase of the separation until 
the points A and B both are located behind the 

FIG. 2. One way to expose the fallacy of the simple pro- 
jection theory. 
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of the classical experiments by Ogle and others on 
the longitudinal horopter. In these experiments, 

FIG. 1. Illustrating the simple projection theory. objects lying in a horizontal plane through a sub- 
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ject's eyes were moveable along radial lines. When 
the subject attempted to arrange them in a single 
straight line transverse to the line of sight, the line 
was always curved. It seemed natural to apply the 
concept of non-Euclidean perceptual geometry, 
and Luneburg (1947) actually worked out in detail 
the properties of a Lobachevskian (hyperbolic 
Riemannian) perceptual space. 

The concept of curved space seemed essential 
to organize the results of the geometrical experi- 
ments, and still has some meaning in such cases as 
a newly-produced aniseikonia, where the subject 
sees space as obviously curved. However, some 
simple visual experiments will show that a metri- 
cal space, however elaborately defined, can not 
serve as a complete model for perceptual space. 
As one example, velocity and displacement are 
linked analytically and inseparably in any metrical 
space. But in human vision, a velocity may be per- 
ceived in the absence of any displacement, as one 
may find when stopping at a station after a train- 
ride. Velocity and position are only two of many 
aspects of the visual field which are sensed through 
many different pathways in the brain, and which 
are linked to other stimuli and to memory in ways 
that are completely unknown. 

I PERCEPTUAL SPACE AS A TOPOLOGY 

The failure of non-Euclidean metrical geometry 
was followed by attempts to represent perceptual 
space as a topological homeomorph of real space. 
These attempts failed for two reasons. Topology 
does nothing to explain or manage the characteris- 
tics of perceptual space that are in fact metrical. 
Secondly, the idea of a topological homeomorph 
implies a one-to-one correspondence between 
elements of the two spaces; and it is now known 
that such a correspondence does not exist, in gen- 
eral, even for the retinal events and the neural im- 
pulses in the brain. 

The trouble with all these theories that attempt 
to map real space into a perceptual field is that the 
brain is too good for them. It can provide an ac- 
curate model of real space from badly distorted 
optical input. It does not operate by solving mathe- 
matical equations. However, the hopelessness of 
providing a single geometry for perceptual space 
does not need to hinder the study of perception. 
Visual perception in normal observers has some 
simple rules, and these rules are important in 
spite of exceptions that occur in special cases. 

Having learned that perceived geometry is not a 
one-to-one mapping of real space, we will be care- 
ful never to write L' = L, where L' is a distance in 
the perceptual field and L is a distance in real 
space, unless the sign of equality is defined in 
some special and limited way for certain condi- 

tions of observation. As one example, if L is the 
measured distance from an observer to a directly- 
viewed object, one might write L' = L, but only in 
the sense that "when presented with this object at 
distance L, that distance can be estimated with 
some accuracy". As the object becomes more ab- 
stract and as context is removed, the equation be- 
comes meaningless for monocular vision. Even 
with stereoscopic vision, the equation will be 
rendered untrue under sufficiently abstract condi- 
tions of viewing. It is simply not true that binocu- 
lar vision provides an unequivocal perception of 
real distance from the observer. 

There is one quality of real space that is ob- 
served very well, however. It is the angle sub- 
tended at the eye by the rays from two object 
points. If the angle is a ,  we may write 

a' = a (a' is equivalent to a) (1) 

where a' is the perceived angle, but only with the 
following special meanings: 

Any normal observer can compare quite accurate- 
ly two visual angles subtended by two pairs of ab- 
stract objects (an example is the comparison of 
the angles between pairs of stars in the sky) and 
Any normal observer can learn to judge the ab- 
solute value of visual angles from a few minutes 
up to 90 degrees or more. 

These propositions are stated without any sub- 
stantiation from the literature of visual psychology, 
but the reader can test them for himself. Even the 
well-known optical illusions do not seem to con- 
tradict them to any important degree. 

Thus the perceived visual angles have a close 
correspondence with actual visual angles. These 
are only angles, however, and the correspondence 
does not provide a metric for perceptual space. If, 
for example, a visual angle is created by an object 
of width, w, at a distance, L, we can only write 

with the specific meaning above; but observations 
of abstract objects will not allow us to write w' = 
w or L' 3 L separately. 

The specific, powerful, and precise perception 
of depth differences must now be treated indepen- 
dently of any judgement of absolute distance from 
the observer's eyes. Accurate judgement of dis- 
tance is often possible, but this invariably depends 
upon context such as perspective (or vergence). It 
should be clear that the mind can easily deal with 
such quantities as depth difference and depth it- 
self simultaneously, even if the bases ofjudgement 
are quite different, perhaps using different parts 
of the brain in the process. 

It seems reasonable to look for an expression 
analagous to visual angle that will apply in three- 
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dimensional perception. Like visual angle in the 
two-dimensional field, it must be a differential 
expression involving only the angles between rays 
of light entering the eyes. It may then be possible 
to write an equation linking quantities in stereo- 
scopic perception with quantities in real space, 
with the same sort of limitations that were placed 
on the equation of angular perception above. 

Such an expression can be obtained by invoking 
some simple facts connected with the perception 
of simple objects under conditions that do not in- 
clude any clues to depth except stereopsis itself. 
These facts are as follows: 

The depth dimension of a solid of any shape is 
seen correctly relative to its transverse dimen- 
sions, independently of its size or distance; 
The three-dimensional shape of an object is per- 
ceived as the same by all normal observers what- 
ever their eye bases; and 
Angular subtense is perceived correctly in the 
sense described, so that Equations 1 and 2 may 
be used. 

In the following discussion, abstract objects of 
small size situated at moderate distances from the 
observer will be considered. The results are not 
limited to such conditions, however, because the 
brain can easily handle the changes in geometry of 
the rays that occur when the object becomes larger 
or comes closer to the eyes. Some photogramme- 
trists have attempted to describe the visual space 
model for close objects, using elaborate geometri- 
cal constructions. Such exercises are useless be- 
cause the brain does not operate by solving mathe- 
matical equations. Again, extremely small objects 
or objects at great distance do not need to be con- 
sidered because they are beyond the range where 
stereopsis operates. 

Consider an object of any specified shape, of 
depth d, and a lateral dimension w, presented to 
an observer with eyebase b at a distance L (Figure 
3). The angular subtense presented by the lateral 
dimension is 

The angular parallax 4 subtended by the eyebase 
at the object (the vergence angle) is approximately 
blL radians and the differential angular parallax 
between the front and rear of the object is 

This differential angular parallax is the property of 
the rays that produces relative retinal displace- 
ment and provides the stereoscopic clue to per- 
ceived relative depth. By itself, p does not provide 
a clue for a judgement of absolute depth, any more 
than a provides a clue for the actual width of an 
obiect. 
- a - -  

If vergence and accommodation are fixed and if 
the object is isolated from perspective context, the 

FIG. 3. Stereo vision without optical aids. 

only clues that can provide perception of the 
depth-to-width relationship are the differential 
angular quantities a and p, the quantities that af- 
fect the sizes and the disparities of the retinal 
images. Since the shape of an object is perceived 
as the same by all observers at all distances, there 
must be an expression combining a, p, L, and b that 
is independent of L and b and that evaluates an 
accurately perceived property of the shape. Such 
an expression is 

Any one of an infinite number of algebraic func- 
tions of P would be equally valid (its inverse, for 
example) because the brain does not use algebra. 

Substituting the expressions of Equations 3 and 
4 into Equation 5, it is seen that the correctly per- 
ceived property of the object is 

P = dlw2 (6) 

If this simple logic is correct, stereoscopic depth 
exaggeration must involve the first power of the 
depth in comparison with the second power of the 
lateral dimension. This should not be surprising, 
because most of the objects that we see in nature 
are three-dimensional, with a frontal area rather 
than a single transverse dimension. We are accus- 
tomed to think of a depth-to-width ratio, but per- 
haps 'depth-to-area' is a more realistic version of 
what we really perceive. 

The following relationships between perceived 
and real quantities can now be written: 



and 

STEREOSCOPIC DEPTH PERCEPTION 

Since these are relationships between unlike quan- 
tities, the sign joining the two sides must be care- 
fully defined as follows: "the geometrical factor 
on the right-hand side of the equation is correctly 
perceived by the normal observer under ordinary 
conditions of viewing." 

Since a is itself correctly perceived separate 
from other context, it should be possible to modify 
Equation 7, using Equation 1, to produce another 
theorem in stereoscopy: 

then using Equation (4), 

That is, the normal observer can make a correct 
assessment of the ratio of the depth of an object to 
the square of its distance. Presumably one could 
learn to give numerical values for this ratio for dif- 
ferent objects at different distances, just as one can 
give estimates of visual angle without making an 
accurate estimate of either the distance or depth 
separately. 

Under these circumstances, for an observer with 
eyebase b, the quantity P from Equation ( 5 )  
becomes 

Then, using Equations (7 )  and (8) ,  we get 

It might be possible to verify or disprove this 
equation experimentally, but even if we perceive 
dIw2 or its modified value in Equation 15 cor- 
rectly, we want to measure (dlw)' to find the exag- 
geration of depth as it is usually defined. Com- 
bining Equation 10 with Equation 15, 

The next step is basically different from the ones 
above. In every case so far, perceived quantities 
and real quantities have been separated and the 
sign of equivalence has the meaning given below 
Equation 8.  We now transfer a perceived quantity 
from the left to the right and write an equation in 
perceptual space 

STEREOPSIS IN PHOTOGRAMMETRY Extracting the square root of perceptual quantities 
AND PHOTOINTERPRETATION is justified, because the brain perceives without 

Consider a normal stereoscopic pair of photos of regard to the function of an expression presented 

an object of width W and depth D, taken at a dis- to and 

tance H with camera base B, and at a scale S such 
that W . S = o and D - S = d .  The image width on ($) ' = ($) (8) "' . L1 (18, 
each photo will be w ,  and the differential linear 
parallax will be 

- Defining stereoscopic depth exaggeration as 

The stereopair is now viewed at an effective dis- 
tance L. This may be the actual distance of the 
photos from the eyes (as it is in unaided vision or, 
very nearly, with a pocket stereoscope) or a reduced 
distance calculable from the magnification of 
the stereoscope. In any case the distance L is de- 
fined by 

a = wIL (12) 

where w is the image width and a is the actual 
angle subtended at the eye by the image. What- 
ever the optical system, the width and the differ- 
ential linear parallax are magnified in the same 
ratio, and the differential angular parallax will be 

Then 

This important equation relates the perceived 
stereoscopic exaggeration of depth to the perceived 
image distance L'. It asserts that the exaggeration 
is proportional to the square root of the base-to- 
height ratio, and it provides a means of actually 
measuring image distance in perceptual space by 
making measurements of depth exaggeration. The 
experiments described below will test this theory 
and will show that the normal observer mentally 
places the visual stereomodel at a normal reading 
distance whenever a stereoscope or stereoplotter 
is used. 
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scope with magnifying binoculars, and the observ- 
er was asked to determine which object appears - - 

To test the theory presented in Equation 20 to have a depth equal to its width. This is essential- 

above, two methods were created to measure ly a null method which should avoid some of the 

stereoscopic depth exaggeration. The first one re- of estimations of exaggeration. 

quires only a stereoscope, a bar, and an effects were avoidedb~ using small 

airphoto stereopair. objects (8 to 20 mm in width) photographed at a 
distance of one metre. Shadow effects were avoided 

THE PARALLAX BAR METHOD 

In this simple method, a stereopair of airphotos 
of known scale is selected which contains the 
images of a small flat-roofed building. The absolute 
parallax, p,, and the differential parallax, Ap,, for 
the height of the building are measured in the 
usual way, and the height, h, of the building is cal- 
culated. The width of the image of the building is 
measured with a measuring magnifier or micro- 
scope and the corresponding building dimension, 
w, is calculated. Now the floating mark is set so 
that it appears to be at a distance above ground 
equal to the width of the building and the differ- 
ential parallax, Ap,', from the ground is measured. 
The stereoscopic depth exaggeration is then cal- 
culated as 

This test may be made quickly, but may be af- 
fected by the observer's conscious or unconscious 
estimate of the real ratio of the height to the width 
of the building. Special photography would have 
to be flown to provide a wide range of base-to- 
height ratios. 

THE ABSTRACT OBJECT METHOD 

In this method, a serious attempt was made to 
measure stereoscopic depth exaggeration rather 
than to estimate it. Sets of regular objects with dif- 
ferent depth-to-width ratios, in different shapes 
and sizes, were made up and photographed with a 
wide range of base-to-height ratios. The photos 
were examined under a common mirror stereo- 

by placing the objects on a luminous background 
and by giving them a balanced front illumination. 
The photos were reproduced as slides at small 
scale so that the images would be representative 
of the images of objects that are commonly seen in 
airphotos. The camera used was a 35-mm Leica 
with a 21-mm lens, which provided a maximum 
base-to-height ratio of 1.4 : 1. The scale of the 
photos was 1:47.6, so the image sizes ranged from 
about 0.17 to 0.42 mm. 

The test objects were made in the form of cones, 
cylinders, and rectangular parallelipipeds. An ex- 
ample of a set in the cylindrical form is shown in 
the stereopair of Figure 4, which was photographed 
at a base-to-height ratio of 0.6. Under the stereo- 
scope (a Wild ST4 with 3x binoculars) the stereo- 
pairs made at different base-to-height ratios were 
placed so that only the images of the objects them- 
selves were visible through holes in an opaque 
mask over a light-table. These holes were at such a 
separation that, when each observer adjusted the 
distance between the binoculars of the stereoscope 
to match his eyebase, his eye axes were parallel. 
The experiments were randomized to hide the 
base-to-height ratio of each pair from the observer. 

Figure 5 shows a plot of the means of the results 
for three skilled observers. The ordinate is ln(wlh), 
where wlh is the width-to-height ratio of the ob- 
ject that seems to be equal in height and width, 
and is thus a measure of the exaggeration. The ab- 
scissa is ln(BIH), where BIH is the base-to-height 
ratio of the stereo-pair. In these tests, the geometric 
distance to the photos, including the effect of the 

FIG. 4. A stereopair of a test object photographed at a base-to-height ratio of 0.6. 
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FIG. 5. Depth exaggeration versus base-to-height 
ratio. 

magnification of the binoculars, was L = 80 mm. 
The mean eyebase of the observers was 65 mm. 
The equation of the straight line, fitted by least - 
squares, is 

The exponent is so close to 0.5 that the form of 

Visual angle subtended at the eye is correctly 
perceived; and 
Three-dimensional shape is correctly perceived, 
independently of distance to the object and of the 
observer's eyebase. 

From these facts the following theorems are de- 
rived: 

From the geometry of an object or a stereopair, in 
combination with the eyebase and the physical 
viewing distance, the observer perceives the 
shape according to the value of the expression 

which reduces to the value of the ratio dlwZ 
for direct viewing; 
The observer also can perceive correctly 
the value of dlL2 in real space or in the vis- 
ual stereomodel; 
With the assistance of measurements of 
stereoscopic depth exaggeration, it is pos- 
sible to find the perceived distance to a vis- 
ual stereomodel; this distance is a normal 
reading distance, in the customary use of a 
stereoscope; and 
The exaggeration of depth in stereopairs 
varies approximately with the one-half 
power of the base-to-height ratio of the 
photographs (this finding cannot be con- 
sidered proven and is being investigated 

~ ~ u a t i o n  20 is given strong support. further). 
Converting Equation 20 into CONCLUSIONS 

-112 

L1 = E . (L.b)lI2 (+) (23) The theory and experiments described show 
that it is possible to give actual dimensions to the 
perceptual model that is seen under the common- 

and comparing it with Equation 22, the value of L est conditions of photogrammetry and photointer- 
is found to be, approximately, pretation. The distance to the model from the ob- 

server can be determined by measuring stereo- 
L' = 3.36 (L.b)'12 = 242 mm s c o ~ i c  devth exaggeration, and turns out to be 

This remarkable result shows that the observer 
tends to place the mental stereoscopic model at a 
comfortable reading distance, even though the 
stereoscope is focussed for infinity and the eye 
axes are accurately parallel. 

The graph of Figure 5 was chosen from a large 
number of results that contained considerable var- 
iability. It is presented without any claim that it 
proves the theory, because more experimental 
work is needed to take account of factors that were 
neglected. However, among all of the results to 
date, the perceptual distance L' remained within a 
range of +150 mm to +270 mm when calculated 
by the method given above. This work is contin- 
uing, with inclusion of a study of the effects of 
vergence and accommodation Gpon the perceived 
image distance. 

close to thk observer's usual reading distance. The 
effects of convergence and accommodation can 
now be investigated in terms of their influence on 
this perceptual distance. It now becomes possible, 
for the first time, to talk of actual dimensions in 
the visual stereomodel; because once the visual 
distance is determined, the observer's natural 
ability to judge visual angles allows the judgement 
of lateral dimensions. Furthermore, it has been 
shown that the observer can make a good estimate 
of the depth of a stereoscopic image compared to 
the square of its lateral dimensions or the square 
of its distance; so that the third dimension can also 
be sensibly referred to as an actual distance in mil- 
limetres within the visual field. 

The assistance given by Mr. Ron Shillum, who 
designed the test objects and photographed them, 

SUMMARY is gratefully acknowledged. This work was car- 
The following assumptions are made about nor- ried out with support from the National Research 

ma1 stereovision without optical aids: Council of Canada. 
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DEDICATION 

This paper is dedicated to the memory of the 
late Dr. Kenneth B. Jackson ("K.B.", to all his 
students at the University of Toronto), who intro- 
duced the author and thousands of others to the 
wonders of stereovision. 
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