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A Capture-Recapture Approach for 
Estimation of Detection Probabilities 
in Aerial Surveys 

Employed when ground truth data are non-existent, the approach 
requires the assumptions that detections are independent and that no 
false positives occur. 

THE PROBI..EM SETTING 

I N SOME remote sensing itpplications, (see Heller 
(1968) fbr example) the detection, cl;lssification, 

and identilication of ot)jects of interest is essen- 
tially a deterministic process. Though there miiy 
b e  some probabilistic e lements  (e.g., those reliit- 
ing to weather),  in these cases (after development  
of t h e  de tec t ion  a n d  interpretat ion logic) t h e  
p r o b l e n ~  is largely that of 'developing an efficient 
search and inventorying strategy. I f  a complete  
census of a geographic area is to h e  taken, as op- 
posed to it statistical sample,  the analysis process 

sults in an estimate rather than a cottnt. T h e  ad- 
justment o r  'scale-up' factor d e p e n d s  upon t h e  
true, I n ~ t  often unknown,  probability of detection 
and identification. Thus ,  it becomes necessary to 
measure,  determine,  o r  otherwise est imate this 
cluantity. Estimation of detection and identifica- 
tion probi~bilities is often an objective of ground 
truth collection efforts. H e r e  ;I geogr~l>hical  area 
is surveyed to determine the density or n r ~ m b e r  
ancl location of o l jec t s  of' interest (see Benson et 
(11. (1971) for i h  discussion of g r o ~ ~ n d  truth consid- 
erations). Frequent ly the g r o l ~ n d  trltth d i ~ t a  are  di- 
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can fairly he  c11;iracterizecl ;IS a problem in i ~ c -  
corlntinn. ., 

Often,  however, ciscumst;~nces are  less tortu- 
nate (see Hudclleston and  Rol~er t s  (1968) o r  Green 
et al. (1977) tbr example)  and detection itself is a 
probabilistic process. Even  if n complete  census is 
to b e  taken ot'a pop~t l i~ t ion ,  the problem is statisti- 
cal in c h a r ~ c t e r  and it is appropriate to spe;tk in 
terms of the probuhility of'cletection and identifi- 
cation. T h e  ntlmber 01' objects ol)servecl needs  to 
b e  adjrlstecl r~pwards  to reflect those ol)jects th;lt 
were  missed in the interpretation process. This  re- 

videtl into two sets: a t r ~ i n i n g  se t  used to deter- 
mine interpretation keys iind a measurement sample 
or c;llil)l;rtion se t  i~secl to estimate detection prob- 
i~l,ilities. Given the experiment, cornpittation of 
detection and identification proha1,ilities is often 
relatively straightforw;lrd in statistical terms. But 
what  i f '  such ground truth tlat;~ iu.e tlif'ficul t, impos- 
s i l ~ l e ,  or very costly to obtain? Counts  of icebergs 
in the  North Atlantic, polilr bears in the  arctic, or 
farmer's fielcls in the Amazon serve as examples 
where  ground truth collection woultl b e  difficult. 
E v e n  in c i rcumst ;~nces  w h e r e  da ta  col lect ion 
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poses lesser challenges, the cost of ground truth 
collection can be high. For example, the purpose 
o f a  preliminilry feasibility study might be to de- 
termine which of several survey methods would 
be a cost effective choice (see Maxim and Cullen 
(1977) fbr one illust~.ation). Here a rough or "first- 
order" estimate of detection probabilities might 
suffice. If an aerial survey were selected, later 
ground truth experiments could be conducted for 
rigorous estimation and validation purposes. 

I n  this paper we propose a method based upon 
capture-recapture statistics to estimate detection 
probal~ilities. The method requires only an inde- 
pendent examination of' aerial imagery by two (or 
more) photo-interpreters. With data from three or 
more observers, checks upon the assumptions of 
the method ;ire possible as is the development of' 
more sophisticated iind exact models ol'the detec- 
tion process. 

The detection probability (as used in this paper, 
more properly the detection and identification 
prol~ability), p,,, is defined as the probability that 
;in object which is sr~ccessfi~lly imaged (e.g., not 
obscured 11y cloud cover or masked by terrain 
shadow in the case of photographic systems) is 
detected ant1 correctly identified. Numerically, it 
is eqr~;il to the tiaction of objects in a sampling 
frame or quadrat that are correctly interpreted. 
Logic kind experience suggest that detection pro),- 
abilities are a function of the type and scale of 
imagery (platform, sensor, and film), season, ter- 
rain, size, shape, and location of the object (e.g., 
near tree lines versus exposed), sun angle, ohser- 
virtion geometry, photo-interpreter experience, 
extent to which reliable signatures exist, etc. 
(Green et ol. ,  1977; Egbert  and Ulaby, 1972; 
Heath, 1973; McDonnell and Lewis, 1978; Willi- 
man and French, 1977). In principle, this tilnc- 
tional dependence can be determined given srlffi- 
cient ground truth data. In practice, this fitnctionirl 
dependence can often be ignored or subsumed in 
an overall detection probability. To simplify the 
exposition, it is assumed that some average detec- 
tion prol)ability can be used to characterize the 
ol3jects in sample quadrats-what is termed the 
homogerieotia detection assumption.  This  as- 
sumption will be relaxed in a later section. 

As stated earlier, given adequate ground truth 
clata, the estimation of pd is straightforward. It is 
simply the f'raction of objects known to exist that 
are correctly detected ;lntl identified. If N is the 
number of' objects in a sample quadrat and if x 
ot)jects ;ire detected irnd identified, the estimate of 
pd,  fir,, is given by (circun~flexes are used to denote 
estimates) 

Thus, for example, if 50 objects out of 100 were 
detected, the estimate of p ,  would be 0.5. This 

estimate has certain desirable statistical prop- 
erties: it is a minimum variance unbiased es- 
timator and is asymptotically normally distributed. 
The standard error of this estimate is well known 
(Johnson and Kotz, 1969, p. 51) and is given by 

Though there may be circumstances where pd is 
of intrinsic interest, in the context o f the  problem 
described, the real utility of knowledge of p, is 
that it enables unbiased estimates to be made of 
the true but unknown number of objects in a sam- 
ple quadrat, i.e., "reversing" the logic of Equation 
1 to compute an estimate fi ofN assuming that pd is 
known. 

Specifically, it can be shown that, ifp, is known, 
and if detections are independent and satisfy some 
other assumptions of a more technical nature 
(Johnson and Kotz, 1969, p. 56), the best estimator 
for N, 8, given that x objects are ohserved in the 
cell is, simply, 

and the standard error of this estimator, q;., is 

which can be calculated by substituting as an 
estimate of'N. Thus, for example, ifx = 50  objects 
were detected in a cell for which an appropriate 
value of pll was 0.5, the estimate of the true 
number of objects (from Equation 3) is 100, with 
standard error (from Equation 4) of 10, so that an 
approximate 95 percent confidence interval on N 
is from 80 to 120. 

But what if, as is the case for this problem, there 
are no groilnd truth data from which to estimate 
prl? Surely the estimated number of objects in a 
cell should not be  set  equirl to the  observed 
number, x, since this amounts to assuming a value 
of' unity for p,. Yet, some estimate of p ,  must he  
made, either from facts or by fiat. One set of ap- 
proaches for avoiding fiat estimates is presented 
here. It is based upon a method for estimation of 
animal populations from capture-recapture data. 
The basic approach is next described. 

Capture-recapture methods were developed 
originally and are now widely employed for esti- 
mation of mobile animal populations. The basic 
idea is simple and is perhaps most easily ex- 
plained by example (Feller, 1957). Suppose that 
1000 fish caught in a lake are tagged and released. 
After some time a new catch of 800 is made, and it 
is found that 80 of these are tagged. What conclu- 
sions can be reached regarding the size of the fish 
population? It is assumed that the time interval 
between catches is sufficiently large so that the 
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catches a re  indepent lent  and thitt the fish popilla- 
tion is cons t tn t  (i.e., n o  hirths, deaths, or migra- 
tion). A s imple answer is to note from the second 
catch that approximately 10 percent  of the fish iire 
tagged (i.e., 801800). But from the first catch it is 
known that 1,000 were  tkiggetl, so if 1,000 is ap- 
proximately 1 0  percen t  of the  populat ion,  t h e  
popr~lat ion size is ;tpproxim;itely 10,000. 

Mol-e generally, if N ,  f'ish itre tagged fiom the 
first catch ancl if N, ,  tagged fish itre found in the 
second catch of size N,, the estimiite of the popu- 
lation size, N ,  is given l>y 

N = NIN,INl,. (5) 

This  jntuitive result can be  shown to l ~ e  correct 1)y 
rigorous methods (McDonnell and Lewis, 1978) 
provided the assumption of independence is jus- 
tified (Bailey, 1951; Chnpniiun, 1951; Wittes et r r l . ,  
0000; Fienberg, 1972) for some extensions). Note 
that it is not requiretl that N ,  and N, he  the  same. 
T h e  fraction of fish c a r ~ g h t  in each o f t h e  triiils (or 
probability of catch in each trial) can b e  estimated 
as shown below ant1 illi~stratecl with the i t l~ove 
numerical examl,le: 

T h e  ktbove situation is an;tlogous to the  problem 
of aerial detection. Suppose that o n e  photo in- 
terpreter (PI)  discovers (catches) A', objects (fish) 
in it given quadrat (lake). T h e s e  objects are  marked 
on an overlay (tagged). Suppose a second PI  were  
to examine (fish in) the  same quadrat  and discover 
(catch) N, objects (fish), without, however, know- 
ing those ot)jects identified by the  first PI.  On 
comparison, it is found that N,, ol)jects were  dis- 
covered by 110th PIS. What, then,  is an estimate of 
the  total r ~ i ~ m b e r  of objects in the  cell? T h e  anal- 
ogy between fish ancl olIjects is clear. Provided 
that the detections ciin h e  regarded as  statisticiilly 
independent  o r  approximately so, Equations 5 itnd 
6 can b e  used to estimate the total number  of ob- 
jects in the  quadritt and derivatively t h e  detection 
prol)ability for each PI. Additionillly, it m ~ l s t  be  
i ~ s s r ~ m e d  that there ;ire no Iiilse-positives in the 
detection process (i.e., cletecting an o l~ jec t  that is 
not there). I f  the cells were  1)elieved to h e  repre- 
sentative of the  area ;it large and the detection 

p~.oI)ability of each observer were to remain con- 
stant (i.e., no further learning takes place), then 
the detection probabilities so  determined could b e  
applied to future cells to h e  examined by each PI .  
In  a nutshell, this is the central idea of the paper. 
Sulweqilent sections will illustrate the  applica- 
tion of this approach and  provide some extensions 
suggested by the data. 

Tithle 1 shows illrlstr;itive imagery readout from 
three ol~servers .  Note fi-om the  entries in this table 
that PI  #1 found 6 0  oIIjects ( N ,  = 60), PI # 2  found 
8 9  olIjects (N, = 89), etc. Sirniliirly, PIS #1 and  #2 
b u n d  4 8  ohjects in common (N, ,  = 48), etc. Fi- 
nally, 4 7  detect ions (N,,:, = 47) were  common 
to all PIS. 

This  section contains it preliminary analysis of 
t h e  da ta  in T a k l e  1 in te rms  of  t h e  cap ture -  
recitpture concept. Using data from observers 1 
aticl 2, ;in estimate of the number  of objects in the 
quitdrat (tiom Eqrlntion 5) is 

1v = NIN,INl, = (60)(89)/48 = 111, 

while  a similar estimate derived fiom N ,  and N, is 
126 iind from N, and N:, is 120. I t  is possible to 
derive it skktistici\~ estimate of N ljased- upon data 
t'rom ;ill three PIS, i.e., it is ;I clu;idratic in terms of 
N , ,  N,, N,, NIP, NI:1, N,:,, and N,?, (Johnson and 
Kotz, 1977) 

N2(Nl ,  + N,:, + N,:, - N,,:,) 
- N ( N l N 2  + N , N R  + N2N3) 
+ N,N,N:, = 0, (7) 

which can b e  solved as  N for N. Some properties of 
this estimate are  developed in Appendix A. For 
the  data in Table  1, sol~l t ion of Equation 7 yields 
the estimitte N = 126. Given I$ = 126, the  esti- 
mated detection probnbilities for each of the  oh- 
servers and  the average detection probability are  

0 ,  = N,lN = 601126 = 0.48 ant1 the  average 
0, = Nd&' = 891126 = 0.71 f i ,  j j  = 0.69. 
f i : ,  = N,JN = 1091126 = 0.87 

T h e  filndamental assrlmption in the use of t h e  
captlme-recapture model  for est imation of t h e  

THAT WERE ALSO DETECTED BY OBSERVER 

1 2 3 

NUMBER O F  1 60 
OBJECTS SEEN 2 48 89 
BY OBSERVER 3 52 Ill 109 

NUMBER SEEN BY ALL OBSERVERS WAS 47 
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number  of objects and detection probabilities is 
thwt detections a re  independent .  P u t  another  way, 
it assumes that t h e  probability that a given object 
is detected by  one  observer is not a function of 
whether  o r  ;ot it was detected by another  ob- 
server. While it is possible to argue against this 
assumption of independence on a priori grounds, 
it is ultimately an empirical question, one  partially 
answerable from the data. T o  test the hypothesis of 
independence in the ;~l>sence of ground truth re- 
quires data from three (or more) observers AS pro- 
vided in Table  1. 

If pi  is used to denote the detection probability 
of the ith observer, then under  the assumption of 
independence ,  the  expected number  of objects 
common to all ohservers should b e  given by (this 
is the  simple multiplication rule for independent  
events)  

Using the  data from T i ~ h l e  1, for example, and the 
computed estimates of detection probabilities, f i , ,  
this estimate is 

T h e  observed value ( see  Table  1) for N,,, is 47, 
some 27 percent  higher. 

T h e  fact that the ohservecl number  of detections 
common to all observers, N is greater than that 
computed under  t h e  independence  assumption 
suggests that there is a t  least a modest degree  of 
dependence and  specifically that the conditional 
probability of detection by one observes given a 
detection by another  is g rea te r  than the overall 
probability of detection. 

It  can b e  shown that, tbr the two PI case (see 
Appendix B), the conseqrlences of assuming inde- 
p e n d e n c e  w h e n  such  posi t ive d e p e n d e n c e  is 
present are that 

estimates ol'the number ot'objects will be biased 
downward, that is, the estimate will understute 
the actual number of ohjects; and 
detection probabilities will be overslrrted. 

T h e  three PI case is more complicilted b u t  gener- 
ally similar. As noted e;~rlier,  the  data from Table  1 
suggest sorne modest dependence ,  so estimates 
based upon this assumption will likely have the 
ahove f'aults. Given this finding, one choice is 
simply to disregard the dependence  and accept a 
somewhat  biased estimate. Another choice is to 

A e some develop models which explicitly incorpor t 
fbrm of dependence  ant1 use these to produce es- 
t imates .  O n e  s u c h  a p p r o a c h  is o r~ t l inec l  a n d  
explored below. 

Earlier it was assumed that all objects could b e  
charac te r ized  b y  a s i n g l e  (average)  de tec t ion  
p r o h a b i l i t y .  S u c h  a n  a s s u m p t i o n  mate r ia l ly  

simplified the  analysis, bu t  may b e  unwarranted in 
practice. In view of t h e  data, a logical next s tep  is 
to assume that there are  two (or more) types of 
objects, 

objects that are virtr~allp certain to be detected, 
termed s-ol~jects or "sures" in what follows, and 
objects whose detection is "probabilistic." 
termed p-objects in what follows. 

Now s-objects could arise for a number  of rea- 
sons, e.g., 

these objects were used for development of keys 
and were recognized b y  the observer, or 
these objects were of a size or so located as to 
facilitate detection. 

For  convenience, it is assumed that the detection 
probability is close to unity for s-objects for each 
observer, i.e., 11, = I), = ps = 1.0. H o w  would 
such a phenomenon affect t h e  analysis? First, all 
other things being equal,  it woi~lcl act to incre;~se 
(i.e., overstate) a p p a r e n t  detection probabilities 
and,  hence, the  expected number of objects detect- 
ed.  Second, depending upon the extent of "sures," 
the relative number of objects discovered by var- 
ious sets ofobservers would b e  altered. In turn, this 
would affect the outcome of various tests of jnde- 
pendence  because one  component  of the  detec- 
tion process would b e  dependent ,  t h e  "si~res." 
Tha t  is, given that a n  object were discovered by 
o n e  PI, t h e  prohahi l i ty  tha t  a n o t h e r  observer  
would likewise detect  it is higher  than the  uncon- 
ditional likelihood of detection by the  second ob-  
server. This  s tatement  can be proven in rigorous 
terms using Bayes' Theorem. T h e  outline of' the  
argnment  is as follows: T h e  effective detection 
probability of;lnyohject I>y a PI is a function of ' the 
detect ion probability, I ) ~ ,  for p-objects a n d  t h e  
fraction of ohjects for which detection is certain. 
Now, suppose that an object were  detected by o n e  
PI .  This  could he  hecause the  object was detected 
"prol~abilistically" o r  1)ecailse it was an s-object 
and  detection was certain. I t  is the  case, however, 
that the fraction of s-ohjects among those detected 
by  any observer is greater t l u n  t h e  proportion of 
s-objects in the popul;ltion. T o  s e e  that this is true, 
suppose that there were 100 objects in a quadrat of 
which 40 were s-objects. Suppose also that the 
prohability of detection of the  p-ol>jects were  0.5. 
Now all s-objects woi~lcl b e  detected, bu t  only 5 0  
percent  of the  60 ],-objects or 3 0  />-objects would 
b e  in t h e  sample.  T h e  proportion of s-objects 
among those detected would Ile 40 out  of 70 or  57 
percent rather than the 40 percent in the popula- 
tion. Thus ,  if an object is detected by  o n e  PI, it 
increases the odds thwt it is ;In s-object. Because 
this is so, it increases the likelihood that it will be  
detected I>y another  PI above what  it would have 
b e e n  i n  t h e  a h s e n c e  of  th i s  k n o w l e d g e ,  i.e., 
1)  ( 2  1 1) > P ? .  
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TABLE 2. DEBITING OUT SURES: A N  EXAMPLE ASSUMING THERE A R E  35 SURES I N  'THE SAMPLE 

THIS + BECOMES -t THIS 

Observer Observer 

1 2 3 
1 All 

Observer 89 
3 8 1 109 Observer 

So much for the concept. H o w  can this concept  
be  reduced to practice and  how well does this 
model  fit t h e  da ta?  T h e s e  ques t ions  a r e  nex t  
explored. 

Deriving estimates a n d  testing hypotheses for 
the  case of heterogeneous detection is hasically 21 

straightforward if tedious extension of the previ- 
ous  method. I t  is perhaps best illustrated with a 
numerical example. T o  maintain the  continuity of 
presentation, the same dkltii from Table  1 will h e  
analyzed. Note first that, since the number  of ob- 
jects observed by any combination of PIS can b e  
written as the sum of two numberb-those objects 
certain to be  detected,  S, and  those detections 
which are  probabilistic, denoted by U-the sures  
must b e  subtracted out  of ' the raw data matrix to 
derive estimates o f t h e  number  of p-objects in t h e  
sample.  These  data can b e  analyzed as before to 
estimate the  total number  ofp-olxiects in t h e  qund- 
rat. T h e n  the  "sures" can b e  added  to estimate t h e  
total of all objects in t h e  cell. 

Le t  S b e  t h e  n u m b e r  ofs-objects in the  quadrat.  
How S is estimated will b e  made  clear later in the 
discussion, bu t  assume that it is known.  T h e  esti- 
mated number  of p-objects in any category, de-  

noted by U,, U,, U,,, etc., is given by subtracting S 
fiom each of the  appropriate object counts. T o  be  
concrete, consider the  data contained in Table  1. If 
S were  known to h e  35, then the  number  of detec- 
tions that would have resulted without the  pres- 
e n c e  of sures  would b e  as shown in Table  2 fbl- 
lowing. T h e  data in Table  2 (right) can b e  analyzed 
;IS before, resulting in a n  est imate of t h e  total 
n u m b e r  of  p-objects 0 as 96. Detect ion proh- 
abilities for p-objects a re  

f i ,  = u,16 = 25/96 = 0.26 and  the average 
f i ,  = U d 6  = 54/96 = 0.56 f i ,  f i  = 0.53. 
f i ,  = U J 6  = 74/96 = 0.77 

and are, of course, smaller than those estimated 
earlier. What then ofest imates  of other  quantities? 
How well d o  the  data fit the model? Table  3 sum- 
marizes the  necessary computat ions.  T h e  esti- 
mated number  of objects identified by all three 
observers, for example, is the  sum of the  estimated 
number  of p-objects, given Ily 0fiI@,@, = 11, plus 
the  number  of s-objects (35, by assumption) for a 
total of 47, sr~bstantially closer to the  true value 
than that obtained assuming independence.  Sim- 
ilar r e ~ n i t r k s ~ c a n ~ b e  m a d e  for the  other  estimated 
quantities, N , , ,  N , , ,  and  N,, .  As can b e  seen,  t h e  
choice of S = 35 prodrlces a close match between 
observed and expected corlnts. 

TABLE 3. A COMPARISON BETWEEN OBSERVED A N D  ESTIMATED VALUES, ASSUMING S = 35 

ESTIMATED VALUE 
QUANTITY FORMULAE FOR (ROUNDED TO OBSERVED 

ESTIMATED ESTIMATION NEAREST INTEGER) VALUE 

Total Objects 
in Quadrat r3 O + S  131 NIA 

Objects Detected N, u, + S 

By Each Observer N' u, + S 
N, u, + s 

Objects Detected &',, O b l P 2  + S 
by Various Pairs N I X  0 0 1 0 3  + s 
of Observers r32n OPpri~ + 

Objects Detected h',,, ~ P I P , P x  + s 
by All Three 
Observers 

Correct by 
definition 

of U, 

Residual Sum 
of Sauares 
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A measure of t h e  agreement  between the actual 
counts and those "postdicted" by  the heteroge- 
neous detection model is the  sum of squared de-  
viations or residual sum of squares ( ~ s s ) .  I t  is ob- 
tained by  adding the square of the  differences 
between the  ol,served and estimated counts. For S 
= 35, the computed value of RSS is 27.53. 

T h e  co~nputecl value of ~ s s  is a function of ' the  
assumed number  of's-objects in the sample.  Fig- 
ure 1 shows how the computed RSS varies with the 
assumed value of ' s  over thc range from zero, the  
smallest possible value, to NI2), the  largest possi- 
ble  value. Note that, by assumption, s-objects are  
certain to b e  detected by all observers and ,  thus, 
cannot  exceed the  number  N,,, common to all PIS. 
T h e  estimate of S is that value which minimizes 
t h e  RSS. I n  this example, S = 35 as can b e  seen by 
inspection of F igure  1. Alternate definitions of' 
goodness of fit (e.g., a chi-squared criterion) have 
also been  explored. Si~ffice it to say that the  esti- 
mates are  generally insensitive to the  criterion 
function. 

T h e  h e t e r o g e n e o u s  d e t e c t i o n  mode!  h a s  w 
somewhat different "scale-up" rule than for the 
simple model shown in Equation 3. Its develop- 
ment  is sketched below. 

5 .  ASSUHED NUMDER OF CERTAIN DETECTIONS 

Frc. 1. Results of' numerical search to estimate S, using 
an sss criterion function. 

Le t  x b e  the  observed number  of objects in a 
quadrat. T h e n  x - S is the number  in the  sample 
that are  p-objects and,  ifp,, is the assunied detec- 
tion probability for p-objects, ( x  - S ) l p ,  equals  the  
estimated number,  U ,  ofp-objects in the  c e l l . T h e  
estimated total numl,er ofobjects  in the  cell ,  N , ,  is 
the  sum of p-objects and s-objects, o r  

But, b y  assr~mption,  t h e  n u m b e r  of s-objects is 
proportional to the total n r ~ t n b e r  of objects, i.e., 

so  that neglecting the distinction between N ,  and 
N, and c o m l ~ i n i n g  the  above leads to 

which, after rearrangement, heconles 

Equation 9 parallels the s imple scale-up formula 
presented earlier in Eqr~a t ion  3. This  result, in ad-  
dition to being useful in its own right, also helps to 
explain the  sensitivity analysis results as  shown in 
Figure 2. T h e s e  curves show how the  estimates 0, 
N, and P I ,  vary with the assumed value of S. While 
it is t rue that p,, is relatively sensitive to S, so  too is 
O = SIN, in a compensating manner. Thus ,  the  es- 
timate of of the total number  of objects in a 
qrlaclrat is not strongly dependent  upon the  as- 
sr~mecl value of S (a pleasing ~.esult).  Other  sen-  
sitivity i~nalyses a re  detailed in the  Appendix. 

A d i f f e r e n t  m e t h o d  o f  a n a l y z i n g  c a p t u r e -  
recapture data, with dependent  detection proba- 
IIility, is possible using what are  termed log-linear 
models .  Such models  a re  discussed very thor- 
oughly in F ienberg  (1972), a n d  a re  extremely 
general .  However ,  it is somet imes  difficult to 
i n t e r p r e t  t h e s e  m o d e l s  in meaningfu l  way .  
Moreover ,  o u r  e x p e r i e n c e  sugges t s  that  mod- 
els of the form presented here  provide both an 
itdeclt~ate a n d  21 pi~rsimonioits representation of 
detection logic. 

I t  is probably still too early to assess the  overall 
utility of t h e  methodology outlined in this paper. 
O u r  experience suggests it to b e  a fruitful ap-  
proach for t h e  app l ica t ion  c i rc r~rns tances  e n -  
visioned. In  the  absence of g ror~nd  truth it offers a 
logical, if less than perfect, basis for extrapolation 
and brings to mind the prover l~ ,  "In the  land of the  
I)lincl, the one-eyed man is king." Even in cases 
where  ground truth can I,e obtained, it offers a 
i ~ s e h ~ l  first-order method to develop approximate 
detection probabilities. 
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A(:KNOM,I.F.DC~I~N 1.s 200, and 300. T h e  geometry of the  situation is ac- 
~h~ aLlthors t() tlli,lnk reterees anti the tui~l ly somewhitt more colnplex than is depicted on  

editors for their usefill colnments sllggestions Figure A l ,  however, because all combinations of 

on an earlier drtif't of ' this paper. v;ilues of' a,  h, a n d  c are  not logically possible 
when  dealing with capture-recapture data. 

T h e  solution to t h e  second  d e g r e e  ecl~lat ion,  
Eclu;\tio~i 7 in t h e  main text, is given hy the  well 
known qrladmtic formula, 

N = [ - I )  + vi?' - 4uc]12u (A-1) 

where  

(I = hll2 + N1:, + N2:, - NIt9  
b = - (N,N,  + N,N,, + N,N,,), i~n t l  
c = N,N,N:,. 

In  the  above to rm~~l ; l ,  the root corresponding to 
[ -  h - v b '  - 4ac]/%1 has heen discarcled. 

1,EVEI. C U R V E S  

Some geometric insights into the nature of'so111- 
tions to Equation A-1 can 1,: o1)t;iined 1 . 1 ~  exami- 
nkition of' level curves lbr N in the  coefficient 
space. I t  can I,e see!) From the c l~~adra t ic  ecli~ation 
itself (e.g., holding N fixed at w ~ x ~ r t i c r ~ l a r  v a l r ~ e  4) 
that level curves are. in Fact planes in u h c space 
which obey the reliltion, 

F i g i ~ r e  A 1  shows iln isonletric rendering of three 'J 
iso-i3 p l i~nes  corres1)ontling to va111es f o r  N of127 ,  FIG. A l .  Level curves for N in coefficient space 
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ENTER C O N S T R A I N T S  Similar bounds or  constraints can b e  derived 
betweenlamong the  other  combinations of coeffi- T o  illustrate, consider  first the  relationship be- 
cients. Tab le  A1 shows the  resulting optimization tween  the coefficients b a n d  c. Given actual data, problems a n d  derived bounds of the relationships of course, the  relationship is fixed and  known. But 

a priori i t  can be shown to l i e  within certain between u and b ,  b and  c, and u and  c. Shown also 

bounds. For  a fixed value ofc ,  t h e  largest feasible in Table  A1 is a numerical illustration of each of 
these honnds taken from t h e  same example. value f o r b  can b e  obtained by solving the  optimi- Figure A2 attempts to capture the  geometry of zation problem: 
t h e  level curves with the  constraints derived in 

Man ( b )  (A-3) Table  A2 s ~ ~ p e r i m p o s e d .  In this exhibit the  iso-N 
where  plane corresponding to N = 127 ( the  numerical 
h = - ( N , N ,  + N I N ,  + N , N , )  example) is shown.  For  clarity other  iso-N planes 
Subiect to N , N , N - ,  = c. a re  omitted. T h e  numerical data fa11 close to t h e  b 

vs c constraint and  well away from others. All l ines By fbrrning the  Lagrangian and taking partial de-  
rivatives, it can be  s l ~ o w n  that t h e  maximizing so- are  shown in bold, i.e., hidden lines a re  not dotted. 

lution to Equation A-3 occurs when  N ,  = N ,  = N: ,  Yet other  limits upon the choice of values for u, 

= cl/" and hence  from Equation A-3, b < -3cU3. b, and  c and the vwrio[~s N values arise if the  solu- 
tion for fi is to b e  well behaved.  For  example, in Minimizing Equation A-3 leads to an unbounded 

solution where  o n e  of the  N, goes to zero, assum- order  that the  solution to Equation A-1 has real 
roots, the  condition b y  - 4ac  0 must obtain. T h e  ing that the product N , N , N ,  is a constant. In this value of n must b e  greater than zero if N is to b e  case the  N ,  values must b e  non-negative integers non-infinite, etc. Tah le  A2 provides a convenient  and,  if the  p r o d ~ ~ c t  is non-zero, each   nu st b e  at  
summary of applicable constraints upon the  vari- least unity. With this constraint a minimizing so- 
ous data entries and  derived coefficients. lution is to se t  N ,  and N ,  to o n e  and  N ,  toc,  whence  

the  smallest value f o r b  is ( 2 c  + 1) .  It  follows 
then that S E N S I I ' I V I ~ I ' Y  A N A L Y S I S  

It  is O K  interest to- note the sensitivity of the  
-(2c + 1) s b -3cY3. (A-4) computed estimate, N ,  to the values of t h e  indi- 

For  the  example given in the  main text, (1 = 134, h vidual data elements  or assumed quantities (in the  
= -21,581, and  c = 582,060. Note that ineqtrality case of the  heterogeneous detection model).  For  
E q i ~ i ~ t i o n  A-4 is satisfied, i.e., - 1,164,181 s -21,581 the  homoge?eous detection model, the  partial de-  
s -20,913. rivatives o f N  with respect to each of the  data ele- 

TABLE A l .  OP'I 'IMIZA~TION PROBLEMS USE)) 1.0 DEVEI.OP CONSTRAINTS A M O N G  T H E  PARAMETERS 

h,fATHEMATICAL MINIMIZING MAXIMIZING 
CONSTRAINT STATEMENT SOLUTION SOLUTION 

I. a v s h  Min or Max 
[NIX + NIz + N,,, - N,,,l 

Subject to: 
N , N ,  + N , N ,  + N , N ,  = -h 
N , ,  s Mi11 [ N , , N , ]  
N,, < Min [N,,h',,] 
N, ,  s Min [N, ,N: , ]  
N, , : ,  Min [N,, ,N,, ,Nz,I 

Min or Max 
[ N I N ,  + NINx + N,N,I 

Subject to: 
N , N , N ,  = c  

Min or Max 
IN12 + Nt:l + N23 - Nlml 

Subject to: 
N , N , N , ,  = c  
N , ,  < Min [ N , , N , ]  
N , : ,  s Min [ N , , N , ]  
N,:, s Min [N,,hl,]  
N , , ,  Min ~N,2 ,Nl : l ,N2: l I  

unbounded 
non-integer 
b = -3ei13 

integer 
(-20,913) 

NOTE: VALUES I N  I'AItENI'IIESES COIIIIESPONI) TO BOUNI)S (;OMPU'rED F R O M  TEXT EXAMPLE 

;I = 134, h = -21.581 and c = 582.060 
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FIG. A2. Applicable constraints upon the coelficients 
superimposed 

ments ev:ilr~ated in the feasible region described 
in Table A 2  indicate that (other inputs fixed) 

N is ;in increasing h~nction of N , ,  
N is ;\ clecreitsing function of N , ,  and 
N is an increasing function of N j j e ,  

a l l  intuitively plausible results. T h e s e  results a re  
borne out  by a numerical exitmple of' sensitivity 
analysis shown in Table  A3. T h e  base case for 
comparison is the  example given in t h e  main body 
of t h e  text. Tab le  A3 shows the effect of 21 10 per- 
c e n t  one-at-a-time change  to each yf the  input  
quantities in  terms of the  change to N. 

F o r  the  case of t h e  heterogeneous detect ion 
model, the situation is somewhat  more complex. A 
change to any  of the  data inputs will not only alter 
the  estimate of N, b u t  also t h e  estimate of S. T h e  
same sensitivity analyses described above for t h e  
h o ~ n o g e n e o r ~ s  detect ion model have been  con- 
ducted assuming that sures  a re  relevant. Each of 
the  inputs 1,ehaves as  before with respect to t h e  
estimate N, bu t  t h e  pattern of change for S is less 
clear c t ~ t .  T h e  magnitudes of percentage changes 
to N for a fixed change  in t h e  inputs  a re  also 
solnewhat  higher  (approximately 30 percent  in 
this case) than for the  case of homogeneous detec- 
tion. 

T o  show that a positive dependence  between 
two PIS will cause a downward bias in the esti- 
m a t e ( ~ ) ,  

note t h i ~ t  such a dependence  implies that if o n e  PI 
detects the o l ~ j e c t  then the  second PI will have a 
greater prol~abi l i ty  of detect ing the object too. In-  
tuitively, then,  positive dependence  will increase 

7'aBl.~. A2. SUMMARY OF AVAILABLI'  C ~ N U I . I . I O N S  FOR WELL BEHAVED E S ~ I M A . I ~ E S  
(Homogeneous or Heterogeneous Detection) 

CONSTRAINT SOURCE 

O C N , ,  C Min [ N , , N , ]  
O s N , ,  Min [ N , , N , ]  Logicnl constraints 
O s N , ,  S Min [ N , , N , ]  From Physical Prol,lem 
O =Z N, , : ,  s Min [ N , , , N , , , N , : , ]  

N l , + N , , + N . 2 , - N , , , > 0  Non-infinite estimate, fl 

Detection probabilities 
Not all zero ancl 

i? determinate 

(Nl2  + N , : ,  + N m  - NIX,) Estimating equation 

( N , N ,  + N , N , ,  + N,N,)" procluces non-imaginary 
S estimate 

4 N , N , N ,  

O(N,N.LN,)"3 s ( N , N ,  + N , N J  + N,N: , )  Derivecl constraints 
~ [ 2 ( N , N , N , )  + I ]  See Tahle A 1 

0 c ( N 1 2  + N 1 : ,  + N , ,  - N I , , )  S 3(N,N2N,) ' '"  
0 s ( N l ,  + N , ,  + N , ,  - N , , , )  

G ( 3 ( N 1 N 2  i- N , N ,  + N,N,))"' 

0 S S  s N , , ,  Sures cannot exceed 
those in colnmon 
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Rase Case Data: Shown Below 

Base Case Rest~lts: Homogeneous Detection &' = 127 
Heterogeneous Detection = 35 I o =  96 

N = 131 

AND ALTER FINAL ESTIMATES AS FOLLOWS: 

Homogeneous 
WOULD RAISE IT Detection Heterogeneous Detectionr 

A 10% INCREASE 
I N  THIS FACTOR From To N % Chiinge S 0 N % Change in 6l 

N I 60 66 134 5.5 32 108 140 6.9 
N, 89 98 138 8.7 37 109 146 11.5 
Ns 109 120 139 9.5 38 108 146 11.5 
N12 48 53 121 -4.7 35 88 123 -6.1 
NI:I 52 57 121 -4.7 30 92 122 -6.9 
N2:1 8 1 89 117 -7.9 21 96 117 - 10.7 
N122 47 48* 128 37 97 134 

* IOVo incrt.;~\c W O I I I ~  \ i ~ l , t l c  ~o! t \ l r i t in t  Ntgl S iV,.( v o  hr l l ,  hc'l (.llll.ll 111 ~o111Ir.billt. 

N,,, t h e  n i ~ m h e r  s e e n  l)y bo th .  T l i r ~ s ,  N will I)e 
sni:~ller,  on  the  average,  t han  w h e n  detect ions  a r e  
i n d e p e n d e n t .  More  formally,  cond i t ioned  o n  g iven  
sam1)le s izes  N ,  ancl N,, a n d  n s s u ~ n i n g  N , ,  +O, 

I t  can I)e s h o w n  th ;~ t  E(11N12) is a dec reas ing  f i~nc-  
t ion of1)12, w h e r e  I), ,  is t h e  probabi l i ty  that 110th PI 
#1 a n d  PI #2 de tec t  t h e  o l ~ j e c t .  T h u s  E(NI/ t , ,  > 
1)~/)2)  < E(NIU l2 = 1 ) , / 1 ~ ) ,  t h e  latter b e i n g  t h e  case 
w h e r e  I)ot\, Pls cletect t h e  object  i ~ s s u ~ n i l l g  incle- 
p e n d e n c e .  S ince  f i i  = NJN, t h e  above  resul t  illso 
impl ies  that  t h e  e s t ima ted  de tec t ion  ~,rolx~l, i l i ty 
fo r  e a c h  PI w i l l  h e  o v e r s t a t e d ,  o n  a v e r a g e ,  
w h e n e v e r  the re  is a posit ive depen t l ence .  
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