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A Capture-Recapture Approach for
Estimation of Detection Probabilities

in Aerial Surveys

Employed when ground truth data are non-existent, the approach
requires the assumptions that detections are independent and that no

false positives occur.

THe ProsrLEM SETTING

N SOME remote sensing applications, (see Heller

(1968) for example) the detection, classification,
and identification of objects of interest is essen-
tially a deterministic process. Though there may
be some probabilistic elements (e.g., those relat-
ing to weather), in these cases (after development
of the detection and interpretation logic) the
problem is largely that of developing an efficient
search and inventorying strategy. It a complete
census of a geographic area is to be taken, as op-
posed to a statistical sample, the analysis process

sults in an estimate rather than a count. The ad-
justment or ‘scale-up’ factor depends upon the
true, but often unknown, probability of detection
and identification. Thus, it becomes necessary to
measure, determine, or otherwise estimate this
quantity. Estimation of detection and identifica-
tion probabilities is often an objective of ground
truth collection efforts. Here a geographical area
is surveyed to determine the density or number
and location of objects of interest (see Benson et
al. (1971) for a discussion of ground truth consid-
erations). Frequently the ground truth data are di-
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can fairly be characterized as a problem in ac-
counting.

Often, however, circumstances are less fortu-
nate (see Huddleston and Roberts (1968) or Green
et al. (1977) for example) and detection itself is a
probabilistic process. Even if a complete census is
to be taken of a population, the problem is statisti-
cal in character and it is appropriate to speak in
terms of the probability of detection and identifi-
cation. The number of ohjects observed needs to
be adjusted upwards to reflect those objects that
were missed in the interpretation process. This re-
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vided into two sets: a training set used to deter-
mine interpretation keys and a measurement sample
or calibration set used to estimate detection prob-
abilities. Given the experiment, computation of
detection and identification probabilities is often
relatively straightforward in statistical terms. But
what if such ground truth data are difficult, impos-
sible, or very costly to obtain? Counts of icebergs
in the North Atlantic, polar bears in the arctic, or
farmer’s fields in the Amazon serve as examples
where ground truth collection would be difficult.
Even in circumstances where data collection
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poses lesser challenges, the cost of ground truth
collection can be high. For example, the purpose
of a preliminary feasibility study might be to de-
termine which of several survey methods would
be a cost eftective choice (see Maxim and Cullen
(1977) for one illustration). Here a rough or “first-
order” estimate of detection probabilities might
suffice. If an aerial survey were selected, later
ground truth experiments could be conducted for
rigorous estimation and validation purposes.

In this paper we propose a method based upon
capture-recapture statistics to estimate detection
probabilities. The method requires only an inde-
pendent examination of aerial imagery by two (or
more) photo-interpreters. With data from three or
more observers, checks upon the assumptions of
the method are possible as is the development of
more sophisticated and exact models of the detec-
tion process.

BackcrounD: DETECTION PROBABILITIES

The detection probability (as used in this paper,
more properly the detection and identification
probability), p,, is defined as the probability that
an object which is successfully imaged (e.g., not
obscured by cloud cover or masked by terrain
shadow in the case of photographic systems) is
detected and correctly identified. Numerically, it
is equal to the fraction of objects in a sampling
frame or quadrat that are correctly interpreted.
Logic and experience suggest that detection prob-
abilities are a function of the type and scale of
imagery (platform, sensor, and film), season, ter-
rain, size, shape, and location of the object (e.g.,
near tree lines versus exposed), sun angle, obser-
vation geometry, photo-interpreter experience,
extent to which reliable signatures exist, etc.
(Green et al., 1977; Egbert and Ulaby, 1972,
Heath, 1973; McDonnell and Lewis, 1978; Willi-
man and French, 1977). In principle, this func-
tional dependence can be determined given suffi-
cient ground truth data. In practice, this functional
dependence can often be ignored or subsumed in
an overall detection probability. To simplify the
exposition, it is assumed that some average detec-
tion probability can be used to characterize the
objects in sample quadrats—what is termed the
homogeneous detection assumption. This as-
sumption will be relaxed in a later section.

As stated earlier, given adequate ground truth
data, the estimation of p, is straightforward. It is
simply the fraction of objects known to exist that
are correctly detected and identified. If N is the
number of objects in a sample quadrat and if x
objects are detected and identified, the estimate of
Pa, Du» 18 given by (circumflexes are used to denote
estimates)

Pa = x/N. (1)

Thus, for example, if 50 objects out of 100 were
detected, the estimate of p, would be 0.5. This
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estimate has certain desirable statistical prop-
erties: it is a minimum variance unbiased es-
timator and is asymptotically normally distributed.
The standard error of this estimate is well known
(Johnson and Kotz, 1969, p. 51) and is given by

lpu(l ~ Da) ]”2
N

Though there may be circumstances where p, is
of intrinsic interest, in the context of the problem
described, the real utility of knowledge of p, is
that it enables unbiased estimates to be made of
the true but unknown number of objects in a sam-
ple quadrat, i.e., “reversing” the logic of Equation
1 to compute an estimate N of N assuming that p, is
known.

Specifically, it can be shown that, if p, is known,
and if detections are independent and satisfy some
other assumptions of a more technical nature
(Johnson and Kotz, 1969, p. 56), the best estimator
for N, N, given that x objects are ohserved in the
cell is, simply,

(2)

(T,:d =

N = x/p,, (3)
and the standard error of this estimator, oy, is
N(L - Pd)J 12

Pa

o5 = (4)
which can be calculated by substituting N as an
estimate of N. Thus, for example, if x = 50 objects
were detected in a cell for which an appropriate
value of p, was 0.5, the estimate of the true
number of objects (from Equation 3) is 100, with
standard error (from Equation 4) of 10, so that an
approximate 95 percent confidence interval on N
is from 80 to 120.

But what if, as is the case for this problem, there
are no ground truth data from which to estimate
pa? Surely the estimated number of objects in a
cell should not be set equal to the observed
number, x, since this amounts to assuming a value
of unity for p,. Yet, some estimate of p, must be
made, either from facts or by fiat. One set of ap-
proaches for avoiding fiat estimates is presented
here. It is based upon a method for estimation of
animal populations from capture-recapture data.
The basic approach is next described.

CapTURrRe-RECAPTURE STATISTICS

Capture-recapture methods were developed
originally and are now widely employed for esti-
mation of mobile animal populations. The basic
idea is simple and is perhaps most easily ex-
plained by example (Feller, 1957). Suppose that
1000 fish caught in a lake are tagged and released.
After some time a new catch of 800 is made, and it
is found that 80 of these are tagged. What conclu-
sions can be reached regarding the size of the fish
population? It is assumed that the time interval
between catches is sufficiently large so that the
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catches are independent and that the fish popula-
tion is constant (i.e., no births, deaths, or migra-
tion). A simple answer is to note from the second
catch that approximately 10 percent of the fish are
tagged (i.e., 80/800). But from the first catch it is
known that 1,000 were tagged, so if 1,000 is ap-
proximately 10 percent of the population, the
population size is approximately 10,000.

More generally, if N, fish are tagged from the
first catch and if N, tagged fish are found in the
second catch of size Ny, the estimate of the popu-

lation size, N, is given by
N = N N,/N . (5)

This intuitive result can be shown to be correct by
rigorous methods (McDonnell and Lewis, 1978)
provided the assumption of independence is jus-
titied (Bailey, 1951; Chapman, 1951; Wittes et al.,
0000; Fienberg, 1972) for some extensions). Note
that it is not required that N, and N, be the same.
The fraction of fish caught in each of the trials (or
probability of catch in each trial) can be estimated
as shown below and illustrated with the above
numerical example:

P = N[/Z\:J =0.1 (6)
Ps = NN = 0.08.

THE ANALOGY

The above situation is analogous to the problem
of aerial detection. Suppose that one photo in-
terpreter (PI) discovers (catches) N, objects (fish)
in a given quadrat (lake). These objects are marked
on an overlay (tagged). Suppose a second PI were
to examine (fish in) the same quadrat and discover
(catch) N, objects (tish), without, however, know-
ing those objects identified by the first PI. On
comparison, it is found that N,, objects were dis-

covered by both PIs. What, then, is an estimate of

the total number of objects in the cell? The anal-
ogy between fish and objects is clear. Provided
that the detections can be regarded as statistically
independent or approximately so, Equations 5 and
6 can be used to estimate the total number of ob-
jects in the quadrat and derivatively the detection
probability for each PI. Additionally, it must be
assumed that there are no false-positives in the
detection process (i.e., detecting an object that is
not there). If the cells were believed to be repre-
sentative of the area at large and the detection
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probability of each observer were to remain con-
stant (i.e., no further learning takes place), then
the detection probabilities so determined could be
applied to future cells to be examined by each PIL
In a nutshell, this is the central idea of the paper.
Subsequent sections will illustrate the applica-
tion of this approach and provide some extensions
suggested by the data.

AN JLLUSTRATION

Table 1 shows illustrative imagery readout from
three observers. Note from the entries in this table
that PI #1 found 60 objects (N, = 60), PI #2 found
89 objects (N, = 89), etc. Similarly, PIs #1 and #2
found 48 objects in common (N,, = 48), etc. Fi-
nally, 47 detections (N,,, = 47) were common
to all Pls.

PreLiMiNARY DATA ANALYSIS

This section contains a preliminary analysis of
the data in Table 1 in terms of the capture-
recapture concept. Using data from observers 1
and 2, an estimate of the number of objects in the
quadrat (from Equation 5) is

N = N\N,/N,, = (60)(89)/48 = 111,

while a similar estimate derived from N, and N, is
126 and from N, and N, is 120. It is possible to
derive a statistical estimate of N based upon data
from all three Pls, i.e., it is a quadratic in terms of
Ny, Ny Ny, Ny, Ny, Ny, and Ny (Johnson and
Kotz, 1977)

NZ(le + Nl:s + Nz:x - N[z:;)
7N(N|N2 + Nan + NzN:x)
+N,N,N; = 0, (7

which can be solved as N for N. Some properties of
this estimate are developed in Appendix A. For
the data in Table 1, solution of Equation 7 yields
the estimate N = 126. Given N = 126, the esti-
mated detection probabilities for each of the ob-
servers and the average detection probability are

P, =NJN = 60/126 = 0.48 and the average

Py = NJN = 89/126 = 0.71 p, p = 0.69.

Py =NyN = 109/126 = 0.87

!

CHALLENGES TO THE SIMPLE MODEL

The fundamental assumption in the use of the
capture-recapture model for estimation of the

DATA FROM AN IMAGERY EXPERIMENT

THAT WERE ALSO DETECTED BY OBSERVER

1 2 3
NUMBER OF 1 60
OBJECTS SEEN 2 48 89 _
BY OBSERVER 3 52 81 109

NUMBER SEEN BY ALL OBSERVERS WAS 47
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number of objects and detection probabilities is
that detections are independent. Put another way,
it assumes that the probability that a given object
is detected by one observer is not a function of
whether or not it was detected by another ob-
server. While it is possible to argue against this
assumption of independence on a priori grounds,
it is ultimately an empirical question, one partially
answerable from the data. To test the hypothesis of
independence in the absence of ground truth re-
quires data from three (or more) observers as pro-
vided in Table 1.

If p; is used to denote the detection probability
of the i'" observer, then under the assumption of
independence, the expected number of objects
common to all observers should be given by (this
is the simple multiplication rule for independent
events)

Nxz:; = Np,\p.ps (8)

Using the data from Table 1, for example, and the
computed estimates of detection probabilities, 7,
this estimate is

N = (126)(0.48)(0.71)(0.87) = 37.

The observed value (see Table 1) for N, is 47,
some 27 percent higher.

The fact that the observed number of detections
common to all observers, N, is greater than that
computed under the independence assumption
suggests that there is at least a modest degree of
dependence and specifically that the conditional
probability of detection by one observer given a
detection by another is greater than the overall
probability of detection.

It can be shown that, tor the two PI case (see
Appendix B), the consequences of assuming inde-
pendence when such positive dependence is
present are that

® estimates of the number of objects will be biased
downward, that is, the estimate will understate
the actual number of objects; and

e detection probabilities will be overstated.

The three PI case is more complicated but gener-
ally similar. As noted earlier, the data from Table 1
suggest some modest dependence, so estimates
based upon this assumption will likely have the
above faults. Given this finding, one choice is
simply to disregard the dependence and accept a
somewhat biased estimate. Another choice is to
develop models which explicitly incorporate some
form of dependence and use these to produce es-
timates. One such approach is outlined and
explored below.

AN ALTERNATIVE DETECTION MODEL

Earlier it was assumed that all objects could be
characterized by a single (average) detection
probability. Such an assumption materially
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simplified the analysis, but may be unwarranted in
practice. In view of the data, a logical next step is
to assume that there are two (or more) types of
objects,

® objects that are virtually certain to be detected,
termed s-objects or “sures” in what follows, and

® objects whose detection is “‘probabilistic,”
termed p-objects in what follows.

Now s-objects could arise for a number of rea-
sons, e.g.,

® these objects were used for development of keys
and were recognized by the observer, or

® these objects were of a size or so located as to
facilitate detection.

For convenience, it is assumed that the detection
probability is close to unity for s-objects for each
observer, i.e.,, p, = p, = p; = 1.0. How would
such a phenomenon affect the analysis? First, all
other things being equal, it would act to increase
(i.e., overstate) apparent detection probabilities
and, hence, the expected number of objects detect-
ed. Second, depending upon the extent of “sures,”
the relative number of objects discovered by var-
ious sets of observers would be altered. In turn, this
would affect the outcome of various tests of inde-
pendence because one component of the detec-
tion process would be dependent, the “sures.”
That is, given that an object were discovered by
one PI, the probability that another observer
would likewise detect it is higher than the uncon-
ditional likelihood of detection by the second ob-
server. This statement can be proven in rigorous
terms using Bayes’ Theorem. The outline of the
argument is as follows: The effective detection
probability of any object by a PI is a function of the
detection probability, p;, for p-objects and the
fraction of objects for which detection is certain.
Now, suppose that an object were detected by one
PI. This could be because the object was detected
“probabilistically” or because it was an s-object
and detection was certain. It is the case, however,
that the fraction of s-objects among those detected
by any observer is greater than the proportion of
s-objects in the population. To see that this is true,
suppose that there were 100 objects in a quadrat of
which 40 were s-objects. Suppose also that the
probability of detection of the p-objects were 0.5.
Now all s-objects would be detected, but only 50
percent of the 60 p-objects or 30 p-objects would
be in the sample. The proportion of s-objects
among those detected would be 40 out of 70 or 57
percent rather than the 40 percent in the popula-
tion. Thus, if an object is detected by one PI, it
increases the odds that it is an s-object. Because
this is so, it increases the likelihood that it will be
detected by another Pl above what it would have
been in the absence of this knowledge, i.e.,
p (2[1) > p..



ESTIMATION OF DETECTION PROBABILITIES

783

TasLe 2. DeBimiNnG Out Sures: aN ExaMpLE AssUMING THERE ARE 35 SURES IN THE SAMPLE

THIS — BECOMES — THIS
Observer Observer
1 2 3 1 2 3
1 60 All 1 25 All
Observer 2 48 89 Observer 2 13 54
3 52 81 109 3 17 46 74

So much for the concept. How can this concept
be reduced to practice and how well does this
model fit the data® These questions are next
explored.

A COMPUTATIONAL APPROACH AND EXAMPLE

Deriving estimates and testing hypotheses for
the case of heterogeneous detection is basically a
straightforward if tedious extension of the previ-
ous method. It is perhaps best illustrated with a
numerical example. To maintain the continuity of
presentation, the same data from Table 1 will be
analyzed. Note first that, since the number of ob-
jects observed by any combination of Pls can be
written as the sum of two numbers—those objects
certain to be detected, S, and those detections
which are probabilistic, denoted by U—the sures
must be subtracted out of the raw data matrix to
derive estimates of the number of p-objects in the
sample. These data can be analyzed as before to
estimate the total number of p-objects in the quad-
rat. Then the “sures” can be added to estimate the
total of all objects in the cell.

Let S be the number of s-objects in the quadrat.
How S is estimated will be made clear later in the
discussion, but assume that it is known. The esti-
mated number of p-objects in any category, de-

noted by U,, U,, U,,, etc., is given by subtracting S
from each of the appropriate object counts. To be
concrete, consider the data contained in Table 1. If
S were known to be 35, then the number of detec-
tions that would have resulted without the pres-
ence of sures would be as shown in Table 2 fol-
lowing. The data in Table 2 (right) can be analyzed
as before, resulting in an estimate of the total
number of p-objects U as 96. Detection prob-
abilities for p-objects are

p, = UJU = 25/96 = 0.26 and the average
P, = UyU = 54/96 = 0.56 p, p = 0.53.
Py = UyU = 74/96 = 0.77

and are, of course, smaller than those estimated
earlier. What then of estimates of other quantities?
How well do the data fit the model? Table 3 sum-
marizes the necessary computations. The esti-
mated number of objects identified by all three
observers, for example, is the sum of the estimated
number of p-objects, given by Up,p.p, = 11, plus
the number of s-objects (35, by assumption) for a
total of 47, substantially closer to the true value
than that obtained assuming independence. Sim-
ilar remarks can be made for the other estimated
quantities, N,,, N5, and N,;. As can be seen, the
choice of S = 35 produces a close match between
observed and expected counts.

TasLe 3. A Comprarison BETWEEN OBSERVED AND ESTIMATED VALUES, ASSUMING S = 35

ESTIMATED VALUE

QUANTITY FORMULAE FOR (ROUNDED TO OBSERVED
ESTIMATED ESTIMATION NEAREST INTEGER) VALUE
Total Objects
in Quadrat N U+S 131 N/A
. N, U, +S Correct by 60
Objects Devected U+ S definition 89
Y N, U, +S of U, 109
Objects Detected N. Up,p, + S 49 48
by Various Pairs Ny, Up,p; + S 54 52
of Observers Ny Up,py + S 77 81
Objects Detected N 22 Up,pepy + S 46 47
by All Three
Observers

Residual Sum
of Squares

27.53
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A measure of the agreement between the actual
counts and those “postdicted” by the heteroge-
neous detection model is the sum of squared de-
viations or residual sum of squares (rss). It is ob-
tained by adding the square of the differences
between the observed and estimated counts. For S
= 35, the computed value of rss is 27.53.

The computed value of rss is a function of the
assumed number of s-objects in the sample. Fig-
ure 1 shows how the computed rss varies with the
assumed value of S over the range from zero, the
smallest possible value, to N ., the largest possi-
ble value. Note that, by assumption, s-objects are
certain to be detected by all observers and, thus,
cannot exceed the number N, common to all Pls.
The estimate § of S is that value which minimizes
the rss. In this example, § = 35 as can be seen by

inspection of Figure 1. Alternate definitions of

goodness of fit (e.g., a chi-squared criterion) have
also been explored. Suffice it to say that the esti-
mates are generally insensitive to the criterion
function.

ADJUSTMENT FACTORS wITH SURES

The heterogeneous detection model has a
somewhat different “scale-up” rule than for the
simple model shown in Equation 3. Its develop-
ment is sketched below.

1000 —
FEASIBLE REGION

100 J

VALUE OF CRITERION FUNCTION (LOG SCALE)

10
OPTIMUM
VALUE FOR
8
>
1.0
0.1 T T T
Q 10 20 30 40 50

S, ASSUMED NUMBER OF CERTAIN DETECTIONS
Fic. 1. Results of numerical search to estimate S, using
an rss criterion function.
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Let x be the observed number of objects in a
quadrat. Then x — S is the number in the sample
that are p-objects and, if p, is the assumed detec-
tion probability for p-objects, (x — S)/p, equals the
estimated number, U, of p-objects in the cell. The
estimated total number of objects in the cell, N,, is
the sum of p-objects and s-objects, or

N, =U+8S.
But, by assumption, the number of s-objects is
proportional to the total number of objects, i.e.,
S = 6N,
so that neglecting the distinction between N, and
N, and combining the above leads to
. x — 6N
N, =2
Pa + 9Nl>
which, after rearrangement, becomes
= orN, =—————— .
o[+ 6p, - D] 6+ pa(l - 6)

(9)

Equation 9 parallels the simple scale-up formula
presented earlier in Equation 3. This result, in ad-
dition to being useful in its own right, also helps to
explain the sensitivity analysis results as shown in
Figure 2. These curves show how the estimates U,
N, and p, vary with the assumed value of S. While
it is true that p, is relatively sensitive to S, so too is
6 = SIN, in a compensating manner. Thus, the es-
timate of N of the total number of objects in a
quadrat is not strongly dependent upon the as-
sumed value of S (a pleasing result). Other sen-
sitivity analyses are detailed in the Appendix.

FurTHER EXTENSIONS

A different method of analyzing capture-
recapture data, with dependent detection proba-
bility, is possible using what are termed log-linear
models. Such models are discussed very thor-
oughly in Fienberg (1972), and are extremely
general. However, it is sometimes difficult to
interpret these models in a meaningful way.
Moreover, our experience suggests that mod-
els of the form presented here provide both an
adequate and a parsimonious representation of
detection logic.

A Summing Up

It is probably still too early to assess the overall
utility of the methodology outlined in this paper.
Our experience suggests it to be a fruitful ap-
proach for the application circumstances en-
visioned. In the absence of ground truth it offers a
logical, if less than perfect, basis for extrapolation
and brings to mind the proverb, “In the land of the
blind, the one-eyed man is king.” Even in cases
where ground truth can be obtained, it offers a
useful first-order method to develop approximate
detection probabilities.
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APPENDIX A

The solution to the second degree equation,
Equation 7 in the main text, is given by the well
known quadratic formula,

N =[-b + Vb2 — dac]2a (A-1)

where

@ =Np+Njy+ Ny~ Ny
b = —(N,N, + NN, + N,N,), and
¢ = N\N,N,.

In the above formula, the root corresponding to

[— b — Vb? - 4ac]/2a has been discarded.

LEVEL CURVES

Some geometric insights into the nature of solu-
tions to Equation A-1 can be obtained by exami-
nation of level curves for N in the coefficient
space. It can be seen from the quadratic equation
itself (e.g., holding N fixed at a particular value )
that level curves are in fact planes in a b ¢ space
which obey the relation,

Yla + Yb + ¢ = 0. (A-2)

Figure Al shows an isometric rendering of three
iso-N planes corresponding to values for N of 127,

200, and 300. The geometry of the situation is ac-
tually somewhat more complex than is depicted on
Figure Al, however, because all combinations of
values of a, b, and ¢ are not logically possible
when dealing with capture-recapture data.

35,
>
o~

bx 103 25_ /

FiG. Al. Level curves for N in coellicient space
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ENTER CONSTRAINTS
To illustrate, consider first the relationship be-

tween the coefficients b and ¢. Given actual data,
of course, the relationship is fixed and known. But
a priori it can be shown to lie within certain
bounds. For a fixed value of ¢, the largest feasible
value for b can be obtained by solving the optimi-
zation problem:

Max (b)

where

b = _(Nth + NN, + NzN:x)

Subject to N\N,N,; = c.

(A-3)

By forming the Lagrangian and taking partial de-
rivatives, it can be shown that the maximizing so-
lution to Equation A-3 occurs when N, = N, = N,
= ¢, and hence from Equation A-3, b = —3¢¥3.
Minimizing Equation A-3 leads to an unbounded
solution where one of the N; goes to zero, assum-
ing that the product N,N,N, is a constant. In this
case the N; values must be non-negative integers
and, if the product is non-zero, each must be at
least unity. With this constraint a minimizing so-
lution is to set N, and N, to one and N to ¢, whence
the smallest value for b is —(2¢ + 1). It follows
then that

—(% + 1) = b = —3¢c¥ (A-4)

For the example given in the main text,a = 134, b
= —21,581, and ¢ = 582,060. Note that inequality
Equation A-4 is satisfied, i.e., — 1,164,181 < —21,581
= —20,913.
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Similar bounds or constraints can be derived
between/among the other combinations of coeffi-
cients. Table Al shows the resulting optimization
problems and derived bounds of the relationships
between ¢ and b, b and ¢, and ¢ and c. Shown also
in Table Al is a numerical illustration of each of
these bounds taken from the same example.

Figure A2 attempts to capture the geometry of
the level curves with the constraints derived in
Table A2 superimposed. In this exhibit the iso-N
plane corresponding to N = 127 (the numerical
example) is shown. For clarity other iso-N planes
are omitted. The numerical data fall close to the b
vs ¢ constraint and well away from others. All lines
are shown in bold, i.e., hidden lines are not dotted.

Yet other limits upon the choice of values for ¢,
b, and ¢ and the various N values arise if the solu-
tion for N is to be well behaved. For example, in
order that the solution to Equation A-1 has real
roots, the condition b? — 4ac = 0 must obtain. The
value of @ must be greater than zero if N is to be
non-infinite, etc. Table A2 provides a convenient
summary of applicable constraints upon the vari-
ous data entries and derived coefficients.

SENSITIVITY ANALYSIS

It is of interest to note the sensitivity of the
computed estimate, N, to the values of the indi-
vidual data elements or assumed quantities (in the
case of the heterogeneous detection model). For
the homogeneous detection model, the partial de-
rivatives of N with respect to each of the data ele-

Tasre Al.  OpriMization ProBLEMS Usen 10 DeveLor CONSTRAINTS AMONG THE PARAMETERS
MATHEMATICAL MINIMIZING MAXIMIZING
CONSTRAINT STATEMENT SOLUTION SOLUTION
1. avsh Min or Max
[le + N]:x + Nz:x - le:z]
Subject to:
N,N, + NN, + N,N, = -b
N, = Min [N,,N,] a=0 a = (-3b)"?
N,; = Min [N,,N,]
N,; = Min [N,,N,) (0) (254.45)
Ny < Min [N ,N 3,Ny)
II. bvsc Min or Max unbounded
[N\N, + N\N, + N,N;] non-integer
Subject to: b=-2¢c-1 b = -3¢
N/ N,N, =¢ integer
(-1,164,121) (—20,913)
. avsc Min or Max
[le + Nm + st - era]
Subject to:
N/N,N, =¢
N,, < Min [N,,N,] a=0 a = 3(c)\*
N,y = Min [N,,N,]
N,y = Min [N,,N,] (0) (250.48)

N|Z:X = Mln [NIZ)NIH)NZJ]

NOTE: VALUES IN PARENTHESES CORRESPOND TO BOUNDS COMPUTED FROM TEXT EXAMPLE
i = 134, b = —21,581 and ¢ = 582,060
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Fic. A2. Applicable constraints upon the coellicients
superimposed

ments evaluated in the feasible region described
in Table A2 indicate that (other inputs fixed)

e N is an increasing function of N,
® N is a decreasing function of Nj;, and
® N is an increasing function of Ny,
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all intuitively plausible results. These results are
borme out by a numerical example of sensitivity
analysis shown in Table A3. The base case for
comparison is the example given in the main body
of the text. Table A3 shows the effect of a 10 per-
cent one-at-a-time change to each of the input
quantities in terms of the change to N.

For the case of the heterogeneous detection
model, the situation is somewhat more complex. A
change to any of the data inputs will not only alter
the estimate of N, but also the estimate of S. The
same sensitivity analyses described above for the
homogeneous detection model have been con-
ducted assuming that sures are relevant. Each of
the inputs behaves as before with respect to the
estimate N, but the pattern of change for § is less
clear cut. The magnitudes of percentage changes
to N for a fixed change in the inputs are also
somewhat higher (approximately 30 percent in
this case) than for the case of homogeneous detec-
tion.

ArPENDIX B
To show that a positive dependence between
two Pls will cause a downward bias in the esti-
mate(s),
N,N,
Ny '

N =

note that such a dependence implies that if one PI
detects the object then the second PI will have a
greater probability of detecting the object too. In-
tuitively, then, positive dependence will increase

TapLe A2, Summary oF AvarLasLr CoNDITIONS FOR WELL BEHAVED ESTIMATES
(Homogeneous or Heterogeneous Detection)

CONSTRAINT SOURCE
0=N,, = Min [N,N,]
0 =N, = Min [N, N,] Logical constraints
0 = N,, = Min [N,,N,] From Physical Problem
0 =< Ny = Min [N,N;;,Ny)
Nu+Ny+Ny—Nu>0 Non-inftinite estimate, N
N =1 Vi Detection probabilities

(Niy + Niy+ Nyg = Nyyy)
- N\N, + N\Ny + N,N,)*
N 4N,N,N,

3(N,N,N, B = (NN, + N]N:} + N,N,)
=[2(N\N,N,) + 1]

O=(Np + Ny + Ny = Nyyy) =
0= (er + Nl:x + Nz:x - N|23>
<(3(N\N, + NNy + NoNy))v2

0=S <Ny

Not all zero and
N determinate

Estimating equation
produces non-imaginary
estimate

Derived constraints
See Table Al

3(NN,N )P

Sures cannot exceed
those in common
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TaBLE A3.
Base Case Data:

Base Case Results: Homogeneous Detection

Heterogeneous Detection

[LLUSTRATIVE SENSITIVITY ANALYSIS

Shown Below

N =127
§$= 35
U= 96
N =131

AND ALTER FINAL ESTIMATES AS FOLLOWS:

Homogeneous
WOULD RAISE IT Detection Heterogeneous Detection*

A 10% INCREASE

IN THIS FACTOR From To N % Change S U N % Change in N
N, 60 66 134 5.5 32 108 140 6.9
N, 89 98 138 8.7 37 109 146 11.5
N, 109 120 139 9.5 38 108 146 11.5
Ny, 48 53 121 -4.7 35 88 123 -6.1
Ny, 52 57 121 -4.7 30 92 122 -6.9
N 81 89 117 -79 21 96 117 ~10.7
Ny 47 48* 128 37 97 134

*10% increise wonld violate constraint Ny = N, so Ny set equal to constraint.

N,,, the number seen by both. Thus, N will be
smaller, on the average, than when detections are
independent. More formally, conditioned on given
sample sizes N, and N, and assuming N,, =0,

1
E(N) =N NE( — )

(N) NBN
It can be shown that E(1/N,,) is a decreasing func-
tion of p,,, where p ., is the probability that both PI
#1 and Pl #2 detect the object. Thus ENIp,, >
Py < E(NIp,, = ppy), the latter being the case
where both Pls detect the object assuming inde-
pendence. Since p; = N,/N, the above result also
implies that the estimated detection probability
for each PI will be overstated, on average,

whenever there is a positive dependence.
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