
L, DANIEL MAXIM 
Everest Consulting Associates 

Princeton Jct., NJ 08550 
HARRISON D. WEED 
LEIGH HARRINGTON 

Mathtech, Inc. 
Arlington, VA 22209 

MARY KENNEDY 
Consultant 

Great Falls, VA 22066 

Intensity Versus Extent of Coverage 

Statistical models for the determination of an optimal balance 
between detection and sampling errors in aerial surveys 
are developed. 

PROBLEM DEFINITION 

C ONSIDERED here is the problem of estimating 
the total number of objects of interest in a 

geographical area subdivided into N quadrats or 
cells, each of a size covered by one image of a 
remote sensing system. If the objects can be de- 
tected with certainty and a total ofN images can be 
acquired and exploited, a complete census is taken 
and (aside from clerical errors) the estimated total 
number of objects is correct. If the available image 
budget, B, is less than N, a statistical sample must 

ple images of that cell or, in other words, by in- 
creasing the frequency of coverage or depth of 
exploitation. Consideration of detection error 
alone, therefore, would lead to a policy of acquir- 
ing multiple images of a given cell. Consideration 
of sampling error alone would lead to a policy of 
maximizing the number of cells examined or 
maximizing the extent of coverage. But, for a fixed 
imagery budget, a choice that increases the 
number of cells examined must also decrease the 
number of replications per cell. The problem, 

ABSTRACT: Statistical models for determination of an optimal balance between 
detection and sampling errors in aerial surveys are developed. Detection errors 
can often be reduced by the acquisition and exploitation of multiple images of 
the same scene. Sampling errors can be reduced by imaging a larger number of 
quadrats in the population. A fixed imagery budget implies a tradeoff between 
these errors. 

Models are presented here for various assumptions as to the independence (or 
lack of same) of detections in successive images and are illustrated with several 
numerical examples. Tables are presented to facilitate implementation. 

be chosen and some sampling error will be at- 
tached to the estimated total number of objects. If, 
as well, inspection of imagery is not without error, 
a detection probability needs to be estimated and 
the observed objects in each cell need to be 
'scaled up' by this detection probability. Even if 
all N cells were to be examined, the total number 
of objects would still be an estimate, reflecting 
some detection error. 

For a fixed technology, the detection error in 
any cell can often be reduced (i.e., the detection 
probability increased) by an examination of multi- 
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then, is to select the combination of the number of 
cells to be examined and the number of looks per 
cell that results in the smallest variance of the es- 
timated total number of objects for a fixed imagery 
budget. 

Solutions to this problem are presented assum- 
ing that detections are either independent or al- 
ternatively exhibit one of two forms of depen- 
dence. Convenient tables and charts are presented 
to determine the optimal number of looks per cell 
and characterize the sensitivity of this optimal so- 
lution. 
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PRELIMINARIES: DEVELOPMENT OF THE MODEL extent of coverage and, therefore, 1 should be set 

A geographical area consists of N cells or quad- 
rats. Objects of interest are distributed among 
these cells. The numbers of objects in each cell are 
identically distributed with mean p and variance 
u2 (or, if this assumption is untenable, the popula- 
tion can be subdivided into strata that have this 
property). Assume first that the probability of de- 
tection of any object in a single image of any cell is 
p, the single look detection probability, and 
further that detections are independent. (Later in 
the discussion this assumption will be relaxed.) If 
X, is the number of objects observed in cell i ,  i = 1 
. . . n, then y, = X,/p is an estimate of the true but 
unknown number of objects in the cell (see 
Johnson and Kotz (1969) for a description of the 
properties of this estimate). If n cells chosen at 
random are examined, then the average number of 
objects per cell, ij, and the estimated total number 
of objects, T, are given by 

and, 

Now if 1 images of each of the n sample cells are 
examined, a total of In images are required. The 
probability that an object is detected in at least one 
of 1 independent looks is 

(To see this, note that the probability of a failure to 
detect on a single look is (1 - p). If looks are inde- 
pendent, the probability that an object is not de- 
tected in any of 1 looks is (1 - p)' and, therefore, 
the probability of at least one detection in 1 looks is 
one minus this quantity, as shown in Equation 3.) 
Combining Equations 2 and 3, the estimate of the 
total number of objects, T,  is given by ., 

1V 
T =  

4 1  - (1 - PI') C xi. (4) 

The variance of this estimate, u:, given a bud- 
get of B = In images, is shown in Appendix A to 
be given by 

Note that the boundary conditions on the parame- 
ters in Equation 5 satisfy known results. For 
example, when p is unity, the optimal choice for 1 
is clearly one. Then B = n and Equation 5 reduces 
to a; = N2uzln, a well known formula in sampling 
theory in the absence of the finite population cor- 
rection factor (e.g., see Cochran, 1963). When u2 is 
zero, all cells have the same number of objects, so 
there is nothing to be gained by increasing the 

equal to B, a consequence that follows from 
analysis of the properties of Equation 5. As p ap- 
proaches zero, the variance of the estimated total 
becomes increasingly large, an intuitive result re- 
flecting the increasing uncertainty of the estimator 
when detection probabilities are low. 

Inspection of the terms in brackets in Equation 
5 reveals that the first term is a decreasing function 
of 1 while the second term is linearly increasing in 
I. Under appropriate circumstances, therefore, 
multiple looks will be optimal. These cir- 
cumstances are readily determined. Note that the 
optimal number of looks will be unity whenever 
u,2 based on two looks exceeds u,2 for only one look 
per cell. This follows from the fact that the func- 
tion can be shown to be convex. In terms of Equa- 
tion 5 one look will be preferable to two looks 
whenever 

or, upon rearrangement, whenever 

a critical value dependent upon p. Table 1 shows 
the critical value for uglp as a function of the single 
look detection probability p. Equation 7 agrees 
with intuition for it indicates that when u2/p is 
large, i.e., sampling errors predominate, it is opti- 
mal to maximize cell coverage. However, when 
detection errors predominate, it is optimal to con- 
trol these at the expense of sampling error. This 
point will be explored in greater detail later in the 
paper. 

It is easy to show, using L'Hospital's rule, that 
the limit of ~ ~ u a t i o n  7 a sp  approaches zero is 112. 
Thus, even if the single look detection probability 
is vanishingly small, multiple looks at quadrats 
can never be optimal if the distribution of the 
number of objects per quadrat has a ratio of u2/p 
greater than 112. Such a specification excludes 
many discrete distributions. The Poisson dis- 
tribution, for example, has u2/p = 1.0. As well, the 
discrete uniform distribution, i.e., P(x) = l l ( r  + l) ,  
x = 0, 1, . . . , r has u2/p z 0.5 for all values of r. 
Similar statements can be made for the Negative 
Binomial, Logarithmic series, and Neyman Type 
A distributions. For multiple looks to be optimal, 
the distribution of the number of objects per quad- 
rat must be more 'bunched' than any of these. 
Examples of discrete distributions for which u Z / ~  
s 112 are the Bernoulli (for values of q s 1/2), the 
binomial (for q s 112), and the geometric (for p 
0.5). Note: for a comprehensive list of discrete 
distributions and their properties, see Johnson and 
Kotz (1969). 
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then multiple looks 
are profitable if 
# /p  is less than 

0.4737 
0.4444 
0.4118 
0.3750 
0.3333 
0.2857 
0.2308 
0.1667 
0.0909 
0 

For distributions where the ratio uz/p is less 
than the critical value shown in Equation 7, 
Equation 5 will have an interior minimum. Disre- 
garding the integer nature of 1 and treating Equa- 
tion 5 as a continuous function, the optimal value 
ofl, l*, can be determined by setting the derivative 
of Equation 5 with respect to 1 equal to zero and 
solving. These steps produce the transcendental 
equation, 

which, though it does not have an analytical solu- 
tion, clearly indicates that the optimal value of 1 is 
a function only of p and the ratio uz/p. Equation 8 
can be solved numerically using highly efficient 
root finding methods (e.g., Bolzano's method 
(Wilde, 1964)) to determine l*.  Equivalently, the 
original objective function (Equation 5) can be 
optimized directly for integer values of 1 by uni- 
variate search methods. 

Suppose the population, N, consists of 1600 
quadrats; the budget, B, is 600 images; the single 
look detection probability is 0.5; u is estimated to 
be 0.1; and the mean number of objects per quad- 
rat, p, is unity. Figure 1 shows how uT varies with 
1. For this case, the optimal number of looks, l*, is 
nine and the corresponding value of UT, cr?, is 

ST ' 0  
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ESTIMTE 
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INTERVAL ON I WEERE oT 
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M I N I M U M  VALUE 
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FIG. 1. Standard error of estimate, c r ~ ,  as a function of 
the number of looks, 1. 

21.4. Though the sensitivity analysis shown in 
Table 2 suggests that the optimal choice of 1 is 
sensitive to the inputs cr, p, and p, inspection of 
Figure 1 indicates that the penalty in UT of a sub- 
optimal choice for 1 is modest. In this example, 
values of 1 varying by nearly a factor of three, i.e., 
from 6 to about 16, produce a cr, within about 20 
percent of the minimum value. Note also from 
Figure 1 that in this instance the function is not 
symmetrical. Overestimates of l* have less effect 
on UT than underestimates of l*, a point to be con- 
sidered when inputs u, p, and p are estimates of 
perhaps considerable uncertainty. 

Figure 2 shows how the optimal number of 
looks depends upon p for this example. The 'stair- 
step' appearance reflects the fact that l* must be an 
integer. 

RANGE OF VALUES OPTIMAL VALUE OF 1 
BASE OVER WHICH 
CASE SOLUTION AT LEFT AT RIGHT 

PARAMETER VALUE OPTIMAL ENDPOINT ENDPOINT 

c1 1 0.7 1.25 8 10 
u 0.1 0.085 0.12 10 8 
P 0.5 0.483 0.525 10 8 
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FIG. 2. The effect of detection probability on the opti- 
mal number of looks. 

As was shown by Equation 8, l* depends only 
upon p and the ratio of u2/p. Thus, it is possible to 
create a simple and useful table to determine I * .  
These results are displayed in Table 3. The entries 
show the optimal value of 1, determined by nu- 
merical search techniques, corresponding to vari- 
ous values of p and u21p. Shown also in Table 3 are 
the endpoints of the range on 1 over which UT is 
within 20 percent of the minimum value (1, of 
course, must be greater than or equal to one). The 
entries under p = 0.5 and u2Ip = 0.01 correspond 
to the numerical example just presented. 

As can be seen from Table 3, ceteris paribus, the 
optimal number of looks 

decreases as the single look detection probability 
approaches unity and 
decreases as the 'noise to signal' ratio (oZ/p, of the 
distribution of number of objects) increases, or, in 
other words, as the sampling error increases. 

Additionally, at least for small values of u2/p, the 
number of looks varies with the single look detec- 
tion probability in such a manner that the overall 
detection probability is roughly constant. Thus, for 
example, a total of 28 looks given a single look 
detection probability of 0.2 (optimal if u2/p is 0.01) 
yields a detection probability of 0.998, almost 
exactly equivalent to 9 looks given a detection 
probability of 0.5. This rule breaks down as u2/p 

approaches 0.5, and the optimal number of looks is 
equal to one regardless of detection probability. 

Some further remarks are in order vis-a-vis the 
sensitivity of the solution, measured here as the 
width of the interval on 1 over which UT is within 
20 percent of the optimal value: 

the function becomes highly sensitive when the 
detection error is small (i.e. p approaches unity) 
andlor the sampling error is small; 
overall, the detection error exerts more leverage 
on the sensitivity of the solution than does the 
sampling error; for example, l* is 7 when 02/p is 
0.01 and p is 0.6 or when uZ/p is 0.25 and p is 0.2; 
however, the latter solution is much less sensi- 
tive to the choice on I;  and, finally, 
as noted earlier for the specific numerical exam- 
ple, the '20 percent interval' is in general not 
symmetric about l*; overestimates of l* are less 
penalizing. 

An important assumption of the foregoing model 
is that of the statistical independence of detections 
on successive looks at a quadrat. This assumption 
is reflected, for example, in Equation 3 specifying 
how the probability of detection increases with 
the number of looks. It is also reflected at several 
places in the derivation of Equation 5. 

Experience and intuition suggest, however, that 
the assumption of independence is, at best, only 
approximately correct. The reason that an object is 
not detected in one look, for example, may relate 
to phenomena that confer independence (e.g., 
weather, interpreter oversight, or terrain 'shadow' 
given a "random" access path, etc.). Alternatively, 
other reasons for failure to detect may have been 
operative, such as 

if each cell is imaged with the same geometry on 
each access, then any fixed objects missed be- 
cause of terrain masking will continue to escape 
detection (in this case, the detection probability 
of those objects will not depend upon the num- 
ber of looks); or 
if the objects of interest are crops and the first 
looks failed to provide detection and identifica- 
tion because the crop had not yet reached a 
growth stage where detection was possible, then 
subsequent looks at a later date may have in- 

' 

creasing probabilities of detection (alternatively, 
if the crop has been harvested, then detection 
probabilities may decrease, as reported, for 
example, by Heller and Johnson (1979) in noting 
the decrease in IR reflectance of wheat fields after 
harvest); or 
if the object to be detected might have some rea- 
son to be hidden-as, for example, an illicit whis- 
key still in Virginia (Franklin, 1980), a surface 
mining violation in eastern Kentucky (Maxim and 
Cullen, 1977), or the appearance of a new air- 
defense missile-then a reconnaissance attempt 
may stimulate (further) attempts at camouflage 
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(in this situation the detection probability on 
subsequent looks might be expected to be lower). 

The above examples not only serve to indicate 
how dependence can arise but also point to a fun- 
damental difficulty in any "generic" view of de- 
pendence, its lack of uniqueness. The situation is 
analogous to a challenge to the assumption of 
linearity of a mathematical function. The phrase 
"non-linear" admits a large class of functions. 
'Lack of independence' admits the same large 
class of possible detection functions. The ap- 
proach taken here is to consider some specific 
models for dependent looks. These models are 
'reasonable' but are by no means exhaustive of the 
logical possibilities, given a failure of the inde- 
pendence assumption. 

An obvious challenge point in a critical view of 
the independence assumption is the detection 
probability function specified in Equation 3. 
Logic suggests that attention be limited to the 
class of monotonic non-decreasing functions as, in 
the absence of the possibility of false positives, 
increased looks cannot lower the cumulative de- 
tection probability. This limiting condition is 
reached when the detection probability remains 
constant as the number of looks is increased. For 
this case the optimal number of looks must equal 
unity, because any increase in 1 must increase the 
sampling error while leaving the detection error 
unchanged, a counterproductive change. 

An alternative detection probability model fol- 
lows from the assumption that, if an object is not 
detected in the first image of a cell (an event with 
probability p ) ,  the probability of detection on each 
subsequent image is a p ,  where by hypothesis, 0 < 
a < 1.0. The detection function corresponding to 
Equation 3 is, under this assumption, 

and results in an obvious modification to Equation 
5. Figure 3 shows the same numerical example as 
illustrated in Figure 1 for various values of a. The 
case a = 1 corresponds exactly to the independent 
case. Where a < 1, the standard error is identical 
to the base case for 1 equal to one, but for large 1 
becomes approximately equivalent to the inde- 
pendent case if p  is reduced by the factor a. Thus, 
for example, when a = 0.6, the variance function 
approaches the independent case with p = 0.6(0.5) 
or 0.3. Ultimately, as a continues to decrease, 
however, a point will be reached where the inter- 
ior minimum of the variance function exceeds the 
variance corresponding to the case 2 = 1.0, and one 
look becomes optimal. For the numerical example 
shown in Figure 3, the critical value of a is ap- 
proximately 0.129. That is, for values of a greater 
than 0.129, the optimal number of looks increases 
as a decreases (indeed, l* is roughly equal to that 
corresponding to the solutions in Table 3 for pl = 
cup). For values of a less than the critical value. 

OT 
STANDARD 
ERROR OR 
ESTflUlRlR 

I ,  m m a R  OF roms/carr 

FIG. 3. Dependent detections, one view. 

0.129 in this example, the optimal number of looks 
is unity. Table 4 shows results for this example. 
The critical value of a is a function of the ratio, 
uZ/p, and the single look detection probability, p. 
To illustrate, if p is increased in this example from 
0.5 to 0.8, the computed critical value of a in- 
creases to approximately 0.25. 

Optimization of the variance function for this 
model is most conveniently done by a numerical 
search of the objective function. In contrast to the 
case where detections were independent, this 
function is not unimodal as can be seen in Figure 
3, however, so that efficient search techniques re- 

VALUE OF a l* UT * 
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quiring this property (e.g., Fibonacci methods 
(Wilde, 1964)) cannot be used. 

Yet another dependent detection model may be 
appropriate in some circumstances. Suppose, for 
example, that multiple looks are always acquired 
with the same access geometry. Objects that are 
concealed from this look angle (e.g., masked by 
terrain shadow, located along tree lines, etc.) will 
not be detected regardless of number of looks. 
Even if the access geometry were to change, cer- 

50 

tain objects (e.g., wildlife in forests) might not be 0. 

detectable. Such examples suggest an alternative E$E?zR model of the form: 

a certain fraction, 8, of the objects is "detectable" 
(i.e., not permanently obscured); 
detectable objects satisfy the assumptions of the 
independent detection model; but 
a fraction, 1 - 8, of the objects cannot be detected 
at all. 

Mathematically, the probability that an object, 
selected at random, is detected in 1 looks is given 
by the equation, 

which should be compared with Equations 3 and 
9. As before, this detection model can be inserted 
into the formula for the variance of the estimate of 
the total number of obiects in N quadrats. Finure 4 
shows the original example dispiayed in Figure 1 
for the 'theta detection model' for various values of 
8. As can be seen, 

the model is quite sensitive to the value of 0 (if 
only 10 percent of the objects are hidden (i.e., 0 = 
0.9), the best attainable value of UT increases 
nearly threefold from 21.4 to 57.7), and 
unlike the effect of a in the earlier model, the 
effect of decreasing 8 (increasing the fraction of 
undetectable objects) is to decrease l* (in this in- 
stance over 55 percent from 9 looks (the base 
case) to 4 looks), and, finally, 
the sensitivity of u, to a suboptimal choice for 1 
increases as the fraction of undetectable objects 
increases. 

These two models of dependent detections illus- 
trate the difficulty of making categorical state- 
ments about 'lack of independence' other than it 
acts to increase the uncertainty of estimates or (if 
not properly accounted for) introduce bias in the 
estimates. In the first instance (the 'alpha' model) 
the effect was to increase I * ,  whereas the presence 
of hidden objects acts to decrease l* .  A hybrid 
model would have a, 9 pairs that leave l* un- 
changed, though of course increasing the error of 
the estimate. 

In remote sensing applications where only a 
sample of quadrats can be examined and where 
detection probabilities are less than unity, a 
tradeoff between detection and sampling errors 

FIG. 4. Dependent detections, another view. 

results. The model(s) presented here enable an 
optimal balance to be struck between these errors 
by selecting the frequency and extent of coverage 
to minimize the variance of the desired estimate. 

If detection can be assumed to be independent, 
then the optimal number of looks is inversely pro- 
portional to both the detection probability and the 
noiselsignal ratio (N/SR) of the distribution of ob- 
jects per quadrat. There exists a critical noise1 
signal ratio which is a function of the detection 
probability such that, if the actual noiselsignal 
ratio exceeds this threshold, multiple looks per 
cell cannot be optimal. For distributions with NISR 
less than the critical value, tables are presented 
which enable determination of the optimal 
number of looks. 

Two models that include dependent looks aie 
developed and optimal solutions to the multiple 
look problem are presented. In one model, in 
which a failure to detect on the first look is as- 
sociated with lower subsequent single look prob- 
abilities, the optimal number of looks increases 
over the case of the independent model. In an- 
other model, in which a certain fraction of objects 
are 'non-detectable,' the optimal number of looks 
decreases. 

Aside from the specific constructs presented 
here, the general concept of trade-off between 
detection and sampling errors is central to many 
remote sensing applications and merits further in- 
quiry. The choice of platform and resolution ver- 
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sus coverage issues are identical in principle and Returning now to the estimator, T, with P = 1 - 
can be explored by related models. Green et al. (1 - p)', the variance of T is 
(1977) for example, have measured the effect of 
imagery scale and film type on detection prob- NZ 

u; = - V( 1 Xi) 
abilities. Their results indicate generally that de- n2P2 
tection probabilities decrease as photographic N2 
scale decreases for scales smaller than 1:1000 (a = - V(Xi). 

nZP2 
(A-8) 

consequence of increased image distortion). Yet, 
for a fixed imagery budget, the smaller the scale The last equation uses the fact that the Xi are 
the smaller the sampling error: exactly the trade- assumed to be independent. Now, applying the 
off discussed here (Appendix B shows how this is previously derived result, 
done). When updated to account for the effects of 
inflation, the cost model and data presented by NZ n pP(1 - P) + a2P2 
Ulliman (1975) can be imbedded in the model a; = - 

n2P2 [ I (A-9) 
framework so that a minimum cost survey of 
specified accuracy can be designed. Replacing P by 1 - (1 - p)' and n = BIZ, 

ACKNOWLEDGMENTS N Z  ~ 1 ( 1  - P)' a; = - I + lUZ] . (A-10) 
The authors wish to thank the referees and the B 1 - (1 - p)' 

editors for their useful comments and suggestions  hi^ is the desired result given in  ti^^ A-2. 
on an earlier draft of this paper. 

The estimated total number of objects is given 
by Equation 4 as 

This appendix derives the variance of the estima- 
tor, u;, given in Equation 5 under the assump- 
tions of constant detection probability, p, and in- 
dependent detections. The desired result is 

Let Zi b e  the true number of objects in cell i. 
The Zi are assumed to be independent realiza- 
tions of a random variable, say Z, with mean p and 
variance u2. That is, E(Z) = p and V(Z) = a2. For a 
given cell and fixed Zi, the observed number of 
objects in cell i, Xi, is a binomial random variable, 
where Zi is the number of trials and P = 1 - (1 - 
p)' is the probability of success on any trial. 

Thus, using conditional probability notation, 

E(Xi 1 Zi) = Zip, V(Xi 1 Zi) = ZiP(l - P). (A-3) 
That is, assuming Zi as given, the mean and vari- 
ance ofX, are Zip and ZiP(l - P), respectively. The 
unconditional variance of Xi is obtained from the 
following relationship: 

V(Xi) = E, [V(X I Z)] + V, [E(X I Z)], ('4-4) 

where E, and V, denote expectation and variance 
with respect to the probability distribution of Z. 
Using this relationship, 

This appendix modifies the formulae presented 
in the main paper to encompass the detection ver- 
sus scale tradeoff. The logical starting point is 
Equation A-9, which specifies how the variance of 
the estimate of the total number of objects is re- 
lated to the number of areas sampled, n, detection 
probability, P, etc. Denote by the subscript s the 
scale of the photo; e.g., P, is the detection proba- 
bility associated with images of scale, s. Let R, be 
the relative number of quadrats that are contained 
in an image of scale, s. To compute R, requires 
specification of a reference scale as a numeraire. 
For example, assume this reference is a scale of 
1:1000, i.e., when s is 1:1000, R, = 1.0. To con- 
tinue, when s = 1:2000, R, = 4, when s = 1:3000, 
R, = 9, etc. Given these definitions, it follows from 
Equation A-9 that (to within a normalizing con- 
stant, +) 

Provided empirical detection probability versus 
scale curves can be developed, the above equa- 
tion can be used to select the scale so as to 
minimize the variance of the estimator. As a con- 
crete illustration, consider a portion of the data 
from Green et al. (1977) on detection of Imported 
Fire Ant (IFA) mounds summarized and reproduced 
in Table B1 following. 

In August 1972, Green reported the average 
number of IFA mounds/acre as 79.7. No figure was 
given for the variance, u2, about this mean. Equa- 
tion B-l can be used to evaluate a; at each photo- 
graphic scale. The three choices are summarized 
below: 
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TABLE B1. DETECTION PROBABILITY VS. PHOTOGRAPHIC SCALE: EMPIRICAL DATA (B&W IR FILM AUGUST 1972) 

PHOTOGRAPHIC SCALE F& DETECTION PROBABILITY P, 

1: loo0 1 0.324 
1:2OOO 4 0.183 
1:3000 9 0.099 
1:4000 16 - 

SOURCE: Green et al. (1977). 

In  this instance, it is unnecessary to know u2 as it 
is easily shown that, for any u2 > 0, the scale 
1:3000 produces the smallest value of a!. This is 
an interesting result, since it implies a selection of 
scale where detection probabilities are relatively 
small, lending further insight to the recommenda- 
tions of Green et al. (1977), who state: 

". . . Photographic missions should be flown at the 
highest altitude that still provides effective detec- 
tion of ant mounds. Increases in altitude cause a 
decrease in photographic scale but increase the area 
included in each photographic frame. Hence, the 
number of photographs and associated cost required 
for area coverage should be reduced by selecting a 
film type that would provide accurate mound detec- 
tion information at the highest altitudes possible to 
record accurately the presence of mounds." (Em- 
phasis added) 

In this case, accurate detection, measured in terms 
of the variance of the estimated total number of 
mounds does not necessarily correspond to the al- 
titude where detection probabilities are the high- 
est. Rather, it corresponds to the altitude where 
the variance of the estimate is smallest. 
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Thermosense IV 
An International Conference on Thermal Infrared Sensing 

Applied to Energy Conservation in Building Envelopes 
Canadian Government Conference Centre, Ottawa, Ontario 

1 -4 September 1981 
This conference is cosponsored by the Society of Photo-Optical Instrumentation Engineers, the Oak 

Ridge National Laboratory, the Canadian Infrared Thermographic Association, and the American 
Society of Photogrammetry. 

Beginning in 1978 and continuing yearly, there have been national meetings on IR sensing tech- 
nology as applied to the analysis of building envelopes to detect, locate, and identify heat loss/gain 
mechanisms. This conference, fourth in the series, will again provide the opportunity to present and 
exchange technical information on all aspects of thermography and thermal sensing. This program will 
be  expanded from those in the past to put more emphasis on commercial buildings, including in- 
dustrial processing or production plants. In addition to concerns about the building envelope, attention 
will be  focused on the mechanisms within the building which distribute the energy. 

For further information please contact 
SPIE National Offices 
P.O. Box 10 
Bellingham, WA 98227 
Tele. (206) 676-3290 


