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Spatial Correlation Effects upon 
Accuracy of Supervised 
Classification of Land Cover 

The interaction between sampling procedure and natural variability 
within training fields can lead to noticeable errors in applications of 
supervised classification procedures. 

I NCREASING use of Landsat digital data during the 
past eight years has been accompanied by in- 

creasing interest in evaluation of accuracy of 
Landsat-based land-cover maps (e.g., Todd et al., 
1980)-an interest that has focused largely upon 
strategies for defining, then measuring, map accu- 
racy. Less attention has been devoted to identify- 
ing and eliminating causes of error. This paper 
defines a specific source of error that may occur in 

teristics requires independent samples of the 
pixels composing each category, the usual practice 
of deriving estimates from groups of contiguous 
pixels (i.e., from the entire membership of each 
training field) assures that estimates will be biased 
if there is a positive relationship between values at 
neighboring pixels (Basu and Odell, 1974; Tubbs 
and Coberly, 1978). Because the presence of such 
relationships can be detected in at least some data 
collected by the Landsat ~ s s ,  there is reason to 
suspect the presence of inherent error in the usual 

ABSTRACT: The Landsat 1 ~ s s  imaged south central Virginia at six dates during 
the 1974 growing season. Data representingfive rural land-cover categories (at  
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that assured that the spectral values represented the same geographic areas at 
each date. Examination of selected parcels of forest reveal the presence of posi- 
tive continuity between MSS values at adjacent pixels; the degree of continuity 
varies from date to date, and according to MSS bands at a given date. In at least 
some instances i t  can be domonstrated that estimates of category variances 
based upon values at contiguous pixels yield low values relative to those based 
upon random samples of the same area. These biased estimates can lead to over- 
estimation of contrast between categories and to errors in  supervised classifi- 
cation. Emoneously classified pixels may tend to  cluster, thereby increasing the 
opportunity for misinterpretation of errors as genuine land-cover parcels. The 
amount of error varies throughout the growing season. Such error could be 
avoided by  improved sampling strategies or b y  application of more sophisti- 
cated estimation procedures. 

supervised classification-error resulting from the 
interaction between natural variability within 
homogeneous land-cover parcels and the usual 
sampling procedures. 

Application of the supervised classification 
technique for analysis of multispectral remote 
sensing data requires that training areas of known 
identify be used to specify class signatures. Pic- 
ture elements (pixels) of unknown identity are 
then assigned to one of several a priori categories. 
Although accurate estimation of category charac- 
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applications of supervised classification algo- 
rithms to Landsat digital data. 

Here this possibility is investigated by exami- 
nation of the character of spatial variation within 
multitemporal Landsat MSS data of an area in cen- 
tral Virginia. Examination of these data indicates 
the presence of spatial continuity among values at 
neighboring ~ s s  pixels representing oak-hickory 
forest, and clear changes, over time, in the alloca- 
tion of variance over distance within the same 
study area. Trials with an alternative sampling 
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strategy (designed to circumvent effects of posi- 
tive association between adjacent values) indicate 
that consequent errors may attain sufficient 
magnitude to influence classification accuracy. 
There is evidence that the magnitude of these er- 
rors varies throughout the growing season, proba- 
bly in response to variations in the degree of 
place-to-place continuity within categories. 

This study examines an area located in central 
Virginia, about 25 miles (40 km) southwest of 
Richmond. This area is centered on the Suther- 
land, Virginia uscs 7.5-minute quadrangle, a rural 
area characterized by relatively smaI1 parcels of 
land occupied by cropland, pasture, rural resi- 
dences, farm buildings, and mixed forest. Mature 
oak-hickory forest and oak-pine forest occur in 
extensive units, often mixed with small parcels of 
planted loblolly and shortleaf pine (Cost, 1976). 
One large water body and several smaller lakes 
and ponds are present. The area is portrayed on 
topographic maps at 1:24,000 (1963, revised 1974), 
black-and-white aerial photography at 1:23,500 
(March, 1971), and high altitude color infrared 
photography 1: 132,000 (August, 1976). 

Landsat 1 MSS data of this area provide a record 
of seasonal land cover changes at six dates during 
the 1974 growing season (Table 1). Close exami- 
nation of chromaticity coordinates for water pixels 
(Alfoldi and Munday, 1977), together with fre- 
quency histograms of ~ s s  counts, hourly weather 
observations (visibility and humidity), and mea- 
surements of suspended particulate matter, indi- 
cate that most of these data are free of substantive 
atmospheric interference. The exception are the 
data for June, which appear to be significantly in- 
fluenced by atmospheric moisture. Despite evi- 
dence indicating degradation of the June data, 
they were retained for analysis without correc- 
tion-+ fact that should be considered in interpret- 
ing results. Because no effort was made to com- 
pare pixel values from date to date, it was not nec- 
essary to standardize the values for atmospheric 
effects or for differences in sun angle. Thus, MSS 

counts were examined in the same form as they 
are used for many applications of supervised clas- 
sification, without efforts to correct for known or 
suspected radiometric errors. No pre-processing 

TABLE 1. LANDSAT-1 MSS DATA USED FOR THIS STUDY 

DATE SCENE ID 

27 February 1974 1584-15152 
22 April 1974 1638-15141 
28 May 1974 1674-15131 
15 June 1974 1692-15124 
13 September 1974 1782-15092 
24 November 1974 1854-15071 

was performed on any of the data used for this 
study. 

The April data provide the best contrast be- 
tween categories, so they were examined to select 
training fields representing each of the four pre- 
dominant land cover categories represented in the 
area:oak-history forest, cropland, pasture, and 
open water. Five separate training fields were 
selected for each category. Although other land- 
cover categories are present, they occur in parcels 
too small to be consistently identified on the 
Landsat data. Each parcel was carefully selected 
with the aid of topographic maps and aerial pho- 
tography to form a homogeneous representation of 
each category and to be easily identifiable with 
reference to distinctive features recognizable both 
on the digital data and on maps and photographs. 
These areas, selected following the guidelines 
suggested by Joyce (1978), were rectangular or 
square in shape, and generally included at least 20 
but no more than 100 pixels each (one large area 
included 121 pixels). Particular care was taken to 
avoid mixed pixels by selecting vertices well 
within a buffer zone several pixels wide defined to 
border the boundary of each category (Figure 1). 
Line-printer brightness maps (produced by the 
ORSER NMAP program) were used to identify coor- 
dinates of the vertices of each parcel; then the 
ORSER UMAP program was used to assess the uni- 
formity of each area (Turner et al., 1978). 

After areas were located within the April data, 
they were again identified (in respect to size, 
shape, and position) by inspecting line-printer 
brightness maps of data for the other five dates. 
Field observations, and examination of maps and 
aerial photographs, verified that there had been no 
changes in land cover within these areas during 
the interval covered by these data. It was, there- 
fore, possible consistently to locate the borders of 

[ n ST"Dv tp=ix~yj* 

FIG. 1. Diagram illustrating 
procedure for positioning study 
areas used for this study. The 
shaded zone bordering outside 
edge of the study area represents 
the minimum width of a "buffer 
zone" of pixels intended as pro- 
tection against the possibility of 
including border pixels in the 
data. 
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TABLE 2. DISTRIBUTION OF VARIANCE WITHIN A FOREST AREA RECORDED BY THE LANDSAT-1 MSS (BAND 5) 

Date 

Feb Apr May Jun Sep Nov 

Mean: 16.2 24.4 17.4 23.5 12.9 12.0 
Variance: 3.42 4.58 3.08 1.40 0.68 1.81 

Proportion of total variance contributed by 
following sources of variation: 
4 by 4 cells within 8 by 8 cell: . l l  .21 .13 .06 .14 .16 
2 by 2 cells within 4 by 4 cells: .47 .38 .48 .33 .31 .34 
individual observations within 2 bv 2 cells: .42 .41 .39 .61 .55 .50 

Source: calculated from data described in the text using the procedure described by Mollering and Tobler (1972). 

the same parcels within data for six separate dates, 
record coordinates for vertices, then list the MSS 
data for each area, each date, in all four MSS bands. 
Inspection of the areas in the field, on maps and 
aerial photographs, and in digital representation 
confirmed that these areas are as homogeneous, in 
respect to land cover and radiometric response, as 
one can reasonably expect parcels this size to be. 

To illustrate some characteristics of the dis- 
tribution of variance over distance in digital re- 
mote sensing data, this study examines MSS values 
representing a relatively uniform area of oak- 
hickory forest at the six dates specified above. Al- 
though examination of aerial photographs of this 
area reveals the presence of variations in density 
within areas equivalent to one or two pixels, this 
area is typical of forest areas in this region, and the 
variations present are comparable to those en- 
countered in normal applications of the super- 
vised approach. The following analysis is based 
upon data from bands 5 and 6, which together form 
a concise example of the issues discussed here. 

The MSS data are collected at regular spatial 
intervals; as a result, areas measuring two, four, 
eight, sixteen, thirty-two . . . pixels on a side form 
nested arrays of the kind discussed by Moellering 
and Tobler (1972). Because of the need to restrict 
this analysis to a single homogeneous category, 
the array examined here is limited to 64 pixel val- 

ues within an array measuring eight units on a 
side, a size comparable to that suggested by Joyce 
(1978) for training areas for supervised classifica- 
tion. (Larger arrays might be desirable, but would 
incur the risk of including mixed pixels.) 

The nested character of these arrays permits 
convenient description of the allocation of vari- 
ance at different scales in the arrays (that is, the 
total sum of squares can be partitioned into 
amounts assigned to each level in the hierarchy, as 
described by Moellering and Tobler (1972)). In 
the present context this procedure is of interest as 
a means of comparing the variation of data ac- 
quired at different dates in different spectral re- 
gions. Within the 8 by 8 cells observed at each 
date, there are three levels available for examina- 
tion: 4 by 4 cells within the 8 by 8 cell, 2 by 2 cells 
within each 4 by 4 cell, and the individual obser- 
vations within the 2 by 2 cells (Tables 2 and 3). 

As a broad generalization, the lowest level of 
variation (the 2 by 2 cells) accounts for about 50 
percent of the total for each date. The remaining 
50 percent of the total variance is split between 
the two remaining scales. There is no immediately 
recognizable pattern to the temporal changes in 
the distribution of variance, although there is the 
possibility that the distinctive character of the 
June data might be the result of the atmospheric 
conditions mentioned previously. 

These results reveal clear differences between 
representations of this forest area by two MSS 

TABLE 3. DISTRIBUTION OF VARIANCE WITHIN A FOREST AREA RECORDED BY THE LANDSAT-1 MSS (BAND 6) 

Date 

Feb Apr May Jun Sep Nov 

Mean: 23.2 40.1 56.3 57.1 34.9 18.0 
Variance: 2.53 9.00 18.70 8.02 4.97 2.74 

Proportion of total variance contributed by 
following sources of variation: 
4 by 4 cells within 8 by 8 cell: .33 .12 .48 .28 .06 .09 
2 by 2 cells within 4 by 4 cells: .15 .40 .05 .63 .40 .31 
individual observations within 2 by 2 cells: .52 .48 .47 .09 .54 .60 

Source: calculated from data described in the text using the procedure described by Moellering and Tobler (1972). 
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bands at several dates. Total variation differs from 
band to band and from date to date; more impor- 
tantly, the allocation of variance over distance 
varies markedly by date and by spectral band. As a 
result, it seems clear that a training area of 
specified size has varying effectiveness in repre- 
senting variation present within a category. For 
example, a training area measuring two units on a 
side applied to the band 6 data would record only 
a small proportion of the variation present in the 
May data, but would probably represent more ac- 
curately the variation present in June or Sep- 
tember (Table 2). Note also that the effectiveness, 
at a given date, of such training area would vary 
according to the MSS band examined (Tables 2 and 
3). The fact that, in practice, training fields would 
be much larger than the 2 by 2 cell used here as an 
example is no protection against this effect be- 
cause it can occur at any scale. In fact we can never 
know beforehand if a training area of a given size 
will be large enough to represent accurately the 
variation present in a given category. 

Implicit in the preceding discussion is the con- 
cept that the set of all observations separated from 
each other by a specific distance x will exhibit a 
different degree of similarity than will the set of all 
observations separated from each other by a dif- 
ferent distance x + 1. The degree of change in 
such similarity is a measure of place-to-place con- 
tinuity, explicitly represented by the correlogram, 
which depicts changes in autocorrelation as dis- 
tance ("lag") changes (Cliff and Ord, 1973). For 
observations spaced at uniform distances, changes 
in autocorrelation in relation to distance reveals 
changes in the mutual dependence of neighboring 
values at varying intervals. High positive autocor- 
relation values indicate that there is a close associ- 
ation between values of the parent distribution 
separated by the distance given by the product of 
lag value and the distance interval between obser- 
vations. 

Except in instances of periodic variation, natural 
phenomena frequently exhibit high autocorrela- 
tion values at low lags (assuming a relatively 
short sampling interval), declining to values at or 
near zero at high lags, as samples are separated by 
greater distances. (See Sayn-Wittgenstein (1970) 
for examples calculated from ground data.) If there 
is positive autocorrelation in the parent distribu- 
tion, samples must be separated spatially if they 
are to provide independent information (Agter- 
berg, 1965). 

The design and operation of the MSS seem likely 
to produce positive autocorrelation in the digital 
data, in part due to the scan pattern and analog- 
to-digital sampling, as described by General 
Electric and by Slater (1979). As a result, correlo- 
grams calculated from MSS data may include 

instrumentally-induced positve autocorrelation in 
addition to whatever continuity may be naturally 
present in the scene. Because most supervised 
classification is based upon real MSS data (rather 
than idealized error-free data), this analysis does 
not include attempts to remove or adjust for such 
effects. 

Two dimensional correlograms were calculated 
for the same eight by eight arrays described above 
(Katz and Doyle, 1963). The results are displayed 
as perspective block diagrams; the vertical axis 
represents autocorrelation values (between + 1.0 
and -1.0) and the two horizontal axes represent 
north-south and east-west directions (Figure 2). In 
the interests of clarity and conciseness, it is sufi- 
cient here to show only a portion of the complete 
autocorrelation arrav to remesent differences be- 
tween separate MSS bands and separate dates. Be- 
cause the parent distributions measure only eight 
pixels on a side, interpretation should focus only 
upon the first few values; higher lags are based 
upon so few values that they may not accurately 
represent true variation of the data. A rapid de- 
cline in autocorrelation near the origin reveals an 
absence of place-to-place continuity (e.g., Figure 
2c), whereas positive values over several lags (e.g., 
Figure 2b) indicate close association between val- 
ues separated by relatively large distances. 

The most important feature shared by these cor- 
relograms is the presence of persistent positive 
autocorrelation over the first few lags. (Figures 2a 
and 2b are representative of most of the data ex- 
amined here.) This indicates the presence of 
place-to-place continuity over distances of several 
pixels, evidence that values at adjacent pixels are 
not independent. Interdependence of this form is 
probabl$a common, but not necessarily universal, 
characteristic of digital remote sensing data. (The 
degree of interdependence depends k part upon 
landscape variability and sensor resolution.) This 
interdependence has been exploited in the use of 
textural measures as classification criteria to sup- 
plement the use of spectral signatures (Jensen, 
1979). Thus, in the context of textural measures, 
the interdependence of nearby values can be re- 
garded as an aid to accurate classification. But in 

1.1 Ibl ICI 

FIG. 2. Portions of a two-dimensional correlograms 
representing place-to-place variation of MSS values 
within a single forest area. The shaded portion rep- 
resents negative autocorrelation; each cell repre- 
sents a distance of approximately one pixel. (a) and 
(b) depict MSS band 6 at September and May, re- 
spectively. Compare (b) and (c) (band 4, May) to see 
a contrast between different bands acquired at the 
same data. 
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the usual circumstances, it may lead to rather sub- 
tle but pervasive errors in the products of super- 
vised classification. 

The information presented above reveals the 
presence of interdependence between neighbor- 
ing pixels-an interdependence that may vary in 

I strength and nature through the growing season. 
1 Because most (if not d l )  applications of supervised 

classification draw upon the entire set of contigu- 
ous pixels enclosed in a training field, subsequent 
estimates of the means, variances, and covariances 
can be expected to include artifacts of these inter- 
relationships. Depending upon specific charac- 
teristics of the landscape under consideration, er- 
rors produced by these artifacts might be trivial; 
or, they could be large enough to cause noticeable 
differences in the results of the classification pro- 
cess. 

One way to investigate the character and mag- 
nitude of such errors is to compare values of the 
means, variances, covariances based upon a 
number of contiguous pixels (the usual procedure 
for finding statistics for training fields) with values 
based upon an equal number of pixels distributed 
randomly within the same training field. The ran- 
domly selected pixels should reduce the effect (if 
any) of positive interrelationships between adja- 
cent pixels upon the subsequent estimates (al- 
though chance clustering of randomly selected 
pixels may still produce some error). Any differ- 
ences in values of the means, variances, and 
covariances can then be ascribed to differences in 
the sampling procedures. 

Each of the data sets discussed above (64 pixels 
each, represented in four bands) was sampled first 
be selecting a block of 16 contiguous pixels ar- 
ranged in a 4 by 4 pattern, positioned randomly 
within the training field. Then the same 64 pixels 
were sampled again by randomly selecting 16 co- 
ordinate pairs to select another set of 16 values. 
Both sets of observations were used to derive sep- 
arate estimates of means and variances in all four 
MSS bands, as well as covariances between bands. 
The results discussed below are based upon aver- 
ages of three independent trials of each of these 
two alternative sampling strategies. 

To avoid a completely subjective assessment of 
differences between the two procedures, the mul- 
tivariate tests given by Morrison (1976) are used to 
compare results. The use of contiguous samples 
does not meet the requirements of independence 
and randomness required by parametric tests, so 
there is no basis for a rigorous interpretation of the 
outcome. Thus, these tests are offered here, in the 
absence of a more satisfactory procedure, as rather 
rudimentary evidence of the similarities and dif- 
ferences between the two sets of values. 

The random sampling strategy produces values 

MSS BAND 
SAMPLING 
STRATEGY 4 5 6 7 

Contiguous 24.3 17.6 55.6 32.2 
Random 27.6 17.6 56.4 33.7 

Source: calculated from data specified in the text. 
Values reported here are averages based upon three in- 
dependent trials (each 16 pixels) applied to a single 
array of 64 pixels. 

for the mean that are only slightly different from 
those based upon contiguous values; these differ- 
ences are so small that they are unlikely to be a 
source of error in the classification process (Table 
4). (A test for equality of vector means shows no 
significant difference at a = 0.05.) However, even 
casual inspection of the sets of variances re- 
veals consistent differences that seem likely to 
have a significant influence upon the classification 
process (Table 5). Variances based upon contiguous 
samples are consistently lower than those based 
upon random samples. One effect of these differ- 
ences is evident in measures of statistical separa- 
bility. For _example, values for the normalized 
difference, D, = ( f ,  - f,)I(s, + s,), differ greatly 
depending upon the method used to select pixels 
(Table 6). The random selection process yields 
low values (relative to those for contiaous ~ ixe l s )  
because differences between means, f , - f2, are 
similar to those given by contiguous pixels, while 
the sums of the standard deviations, s ,  + s,, are 
consistently higher. This effect can be seen in val- 
ues of D, for categories present in the study area 
(Table 6). Thus, the use of contiguous pixels to 
represent a land-cover category tends to under- 
estimate variation, leading one to believe that 
an area is more homogeneous, and more distinct 
from other categories than it really is. 

Variancelcovariance matrices were calculated 
for the data derived from the two sampling proce- 
dures (Table 7). A test for equality of variance1 
covariance matrices (Morrison, 1976) indicates 

TABLE 5. VARIANCES PRODUCED BY TWO SAMPLING 
STRATEGIES APPLIED TO THE SAME DATA 

MSS BAND 
SAMPLING 
STRATEGY 4 5 6 7 

Contiguous 0.40 1.01 14.00 8.92 
Random 1.09 3.50 23.15 11.58 

Source: calculated from data specified in the text. 
Values reported here are averages based upon three in- 
dependent trials (each 16 pixels) applied to a single 
array of 64 pixels. 
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TABLE 6. NORMALIZED DIFFERENCES BETWEEN SELECTED LAND COVER CATEGORIES FOR SIX DATES, BASED UPON 

Two SAMPLING STRATEGIES APPLIED TO THE SAME DATA 

DATE & SAMPLING 
STRATEGY NORMALIZED DIFFERENCES BETWEEN CATEGORIES 

February 
contiguous 
random 

April 
contiguous 
random 

May 
contiguous 
random 

June 
contiguous 
random 

September 
contiguous 
random 

November 
contiguous 
random 

Forest-Cropland Forest-Pasture Forest-Water 

Source: calculated from Landsat 1 MSS Data specified in the text (MSS Band 6). 

that the two sampling methods yield different ma- 
trices (at a = 0.20) for all three trials of the two 
sampling strategies. Because the variances and 
covariances, together with the vector means, form 
the basis in supervised classification algorithms 
for discrimination of categories, evidence of dif- 
ferences between the two matrices indicates the 
two sampling procedures will yield different clas- 
sifications, possibly presenting the opportunity for 
method-produced error in the final product. 

Thus, any classifier that requires information 
concerning class variances and covariances (e.g., 
maximum likelihood classifiers) will be especially 
susceptible to the kinds of errors discussed here. 
Because many of the major image-processing sys- 
tems include classification algorithms of this kind 
(Computer Sciences Corporation, 1975; Carter et 
al., 1977), there is ample incentive to investigate 
this possibility further. Here, a simple but real 
example illustrates the practical effects of the 
choice of sampling procedure. The objective is to 
assess the effect of sampling strategy upon the ac- 

curacy of the supervised approach applied to the 
discrimination of forest and pasture. Pasture is 
represented by 18 pixels, selected as described 
previously. Forest is represented first by 16 con- 
tiguous pixels, and again by 16 randomly chosen 
pixels, selected as described above. Then two dis- 
criminant functions were calculated--one to sepa- 
rate forest and pasture, with forest represented by 
a training field of contiguous pixels, and a second, 
with forest represented by training data randomly 
selected from the same parcel of forest. 

Next, both discriminant functions were used to 
classify other MSS data, known to represent the 
same forest category at nearby sites, and similar 
data representing pasture. Because the identities 
of these pixels are known beforehand, the results 
form evidence of the influence of the role of sam- 
ple location upon accuracy of the classification 
process. Results for application of the two discrim- 
inant functions to a single parcel of 121 forest 
pixels and 30 pasture pixels are represented in 
Figures 3 and 4. The discriminant hnction based 

TABLE 7. VARIANCEICOVARIANCE MATRICES PRODUCED BY TWO SAMPLING STRATEGIES APPLIED TO THE SAME DATA 

RANDOM CONTIGUOUS 

(MSS BAND) (MSS BAND) 
4 5 6 7 4 5 6 7 

4 1.09 1.21 -1.00 -0.51 4 0.40 0.21 -0.78 -0.43 
5 1.21 3.50 -1.65 - 1.85 5 0.21 1.01 -0.19 -1.10 
6 - 1.00 -1.65 23.15 12.73 6 -0.78 -0.19 14.00 9.80 
7 -0.51 -1.85 12.73 11.58 7 -0.43 -1.10 9.80 8.92 

-- 

Source: Calculated from Landsat 1 MSS data specified in the text. 
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FIG. 3. Discriminant scores for 121 forest 
(upper side of the diagram) and 30 pasture 
pixels (lower side) classified using a dis- 
criminant function calculated from a 
training field of 16 randomly selected 
forest pixels and 18 pasture pixels. All 
pixels in both categories are correctly 
classified. (The abscissa represents the 
discriminant function line; the ordinate 
shows number of pixels. The discriminant 
index is the point on the discriminant 
function line that separates the two 
categories.) 
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upon randomly selected training data assigned all 
151 pixels to their correct groups (Figure 3). The 
discriminant function based upon contiguous 
pixels misassigned 18 of the 121 pixels known a 
priori to belong to the forest category (Figure 4). 
These results form empirical evidence in support 
of the more abstract and theoretical suggestion 
presented above that the locations of samples used 
as training data may influence the effectiveness of 
the classification process. 

Examination of the locations of these errors 
(Figure 5) offers additional reasons to investigate 
this topic further. Inspection of this pattern 
suggests that there is a tendency towards 

FIG. 4. Discriminant scores for 121 forest 
(represented oh the upper side of the dia- 
gram) and 30 pasture (lower side) pixels 
classified using a discriminant function 
calculated from a training field of 16 con- 
tiguous forest pixels and 18 pasture pixels. 
Pixels in both categories have been mis- 
classified. (Misclassified pixels are de- 
picted by the dark pattern.) Compare with 
Figure 3. 

30- 

20. 
FOREST 
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FIG. 5. Distribution of 15 
misclassified pixels within 
an area of 121 forest pixels. 
Misclassified pixels are rep- 
resented by the shaded 
areas. 

10. 
FOREST 

clustering-a conclusion that is supported by ap- 
plication of a test for spatial autocorrelation of 
dichotomous areal data (Cliff and Ord, 1973). The 
results indicate that we would seldom expect to 

AS PASTURE 

encounter such a pattern in a strictly random as- 
signment of errors to locations within this area. 
Although these data are insufficient basis for broad 
generalizations, the implication is that classifica- 
tion errors may cluster in space. If this suggestion 
is in fact true, it would be an especially insidious 
manifestation of error because clusters of errone- 
ously classified pixels lend themsglves to misin- 
terpretation, whereas randomly distributed errors 
are more likely to be recognized as errors. For 
example, if one were to interpret the results repre- 
sented in Figure 5 in ignorance of the true iden- 
tities of the pixels, the group of seven contiguous 
pixels identified as pasture could reasonably be 
interpreted as a parcel of pasture, while isolated 
errors would probably be recognized as such be- 
cause of their scattered locations and small sizes. 
This tentative suggestion is reinforced by exami- 
nation of other digital classification products. For 
example, Mead and Meyer (1977) show digital 
classification maps of land cover in a northern 
Minnesota forest, together with manual interpre- 
tations of color infrared imagery of the same area. 
A qualitative, retrospective, inspection of differ- 
ences between machine and manual interpreta- 
tions reveals a tendency for clustering of what ap- 
pear to be erroneously classified pixels. The im- 
plication is that similar errors may routinely occur 
in at least some supervised classification products, 
yet remain undetected because of their small size 
and scattered locations. 

Given the seasonal variations in the amount and 
allocation of variation documented in Tables 2 and 
3, it seems likely that errors attributable to the use 
of contiguous samples could vary in magnitude 
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TABLE 8. ACCURACIES OF TWO SAMPLING PROCEDURES IN CLASSIFYING 250 FOREST PIXELS AT SIX DATES 

ACCURACY DIFFERENCE 
RANDOM SAMPLES CONTIGUOUS SAMPLES ASCRIBED TO SAMPLING 

DATE (% correct) (% correct) PROCEDURE* 

FEB 100 93 -7 
APR 100 100 0 
MAY 100 85 - 15 
JUN 62 64 +2 
SEP 94 89 -5 
NOV 99 99 0 

* Negative values signify the decrease in accuracy (relative to randomly located pixels) attributable to the use of 
blocks of contiguous pixels for training fields; the positive value indicates the single instance in which the contiguous 
pixels yielded a more accurate classification than did the random pixels. 

Source: calculated following the procedure described in the text, based upon 250 Landsat ~ s s  pixels. 

during the growing season. To study this possibil- 
ity, the procedure described above was used to 
classify MSS data collected at all six dates consid- 
ered for this study. For each date, 250 forest pixels 
were classified using both contiguous and random 
training data; a tabulation of differences in ac- 
curacies indicates the varying effect of the choice 
of sampling strategy (Table 8). (As before, test data 
consisted of pixels of known identity not used to 
derive discriminant functions.) 

The results follow the pattern observed for the 
May data (Table 8); erroneously classified pixels 
tend to cluster (not illustrated). Other results were 
not observed in the May example. The randomly 
selected training data produced some error in 
June, September, and November. These errors 
exhibit the same tendancy for clustering noted 
previously. The June data produced a much lower 
degree of accuracy than did any other date, and it 
is the only date for which random samples were 
less accurate than contiguous samples. These dis- 
tinctive features of the June data could possibly be 
related to the previously mentioned atmospheric 
degradation of the June data, but there is no spe- 
cific evidence to support this hypothesis. In gen- 
eral, there does not appear to be any clear seasonal 
pattern to the errors attributable to sampling 
strategy. 

Even in this very simple example it seems im- 
possible to identify the sources of classification 
error and to assign responsibility in a given situa- 
tion. It is clear that classification errors under the 
circumstances described here are related to the 
interaction between numerous scene-related ele- 
ments that operate simultaneously and with vary- 
ing influence throughout the growing season. 
Contrast between categories (Table 6), internal 
variability within categories (Tables 2 and 3), and 
seasonal variations in discriminating power of in- 
dividual MSS bands can be identified as important 
scene-related variables contributing to variations 

in accuracy. In addition, the examples presented 
here demonstrate that the interaction between 
sampling procedure and natural variability within 
training fields can lead to noticeable errors in ap- 1 
plications of supervised classification procedures. 
The evidence discussed here is far too limited to 
form the basis for firm conclusions, yet it does 
seem sufficient to warrant further examination. 

To form a framework for continued research, a 
set of related hypotheses are offered: 

Homogeneous land-cover categories recorded by 
multi-spectral remote sensing data (specifically, 
those gathered by the Landsat MSS) exhibit posi- 
tive spatial autocorrelation. Positive continuity is 
probably caused by some combination of (a) in- 
herent continuity of the spatial variation of the 
landscape at the resolution of the sensor, (b) in- 
strument design and operation, and (c) data pro- 
cessing algorithms. 
Because these data are often sampled using 
blocks of contiguous pixels to derive estimates of 
category means, variances, and covariances, the 
usual training fields may inaccurately or inefi- 
ciently represent characteristics of land-cover 
categories. 
Under these circumstances, use of the entire 
membership of each training field may lead to 
errors in applications of supervised classification. 
There is reason to suspect that such errors may 
tend to cluster spatially. Clustered errors may be 
especially potent in degrading the usefulness of a 
classification product because spatially isolated 
errors can sometimes be recognized as errors, but 
spatially aggregated errors might be interpreted 
as genuine land-cover parcels. 
Seasonal variations in the amount and allocation 
of variance within training fields may lead to sea- 
sonal variations in the accuracy of resulting clas- 
sifications. Thus, the problems listed above may 
vary in significance throughout the growing 
season. 

Confirmation, modification, or rejection of these 
possibilities would require analysis of many more 
data from differing environments observed at sev- 
eral dates. Examination of such data eventually 



SPATIAL CORRELATION EFFECTS 363 

may develop statistical evidence that could form 
the basis for guidelines specifying the sizes, num- 
bers, and locations of training fields, and the most 
efficient procedures for selecting numbers and 
placement of pixels within training fields. Basu 
and Odell (1974) and Tubbs and Coberly (1978) 
suggest modification of classification algorithms 
(based upon assumed characteristics of the au- 
tocorrelation structure) to adjust for non-inde- 
pendence of training samples. Because it seems 
likely that autocorrelation structures vary by land- 

, cover category and by season, it may be more 
1 practical to revise sampling procedures than to 

attempt to devise generally applicable classifi- 
cation algorithms. 
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