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Identification of Conifer Species 
Groupings from Landsat 
Digital Classifications 

By using spectral curve characteristics and detailed 
photointerpretation, it was possible to place unlabeled spectral 
classes into accurately defined resource categories. 

INTRODUCTION 

L ANDSAT has recently been used successfully as 
an intensive forest inventory tool (Strahler, 

1979; Walsh, 1980). Innovative classification tech- 
niques, such as the incorporation of a a priori clas- 
sification probabilities, terrain data, and recent 
improvements in computer soft-ware sophistica- 
tion, have facilitated this application. 

In the Fall of 1978, a cooperative research proj- 

crown diameter categories, as well as other gen- 
eral forest land-cover classes. 

In the past, the identification of timber species 
groupings using Landsat digital data alone has 
been difficult (Strahler et al., 1978). We have en- 
countered at least three major problems in iden- 
tifying tree species groupings. First, it is difficult 
to locate training fields that represent a spectrally 
pure resource type. Guided clustering has been 
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Guided clustering in  combination with unsupervised classification techniques 
are reviewed as effective methods for dealing wi th  the problems of (1) spectrally 
heterogeneous training fields, and (2) unique spectral patterns often missed by a 
limited number of training fields. The third major problem discussed is that of 
assigning reliable resources labels to spectral classes developed from the clas- 
sification process. Spectral curves were developed from the mean digital num- 
bers (bands 4,5,6,7) of each spectrcil class. Comparisons of curve shapes were 
made between "known" (classes with reliable resource labels), and unknown 
(classes without labels) spectral classes. This comparison in conjunction with 
photointerpretation was an effective way of assigning reliable resource labels. 
The overall classification accuracy for identifying conifer species groupings, 
canopy density classes, and crown diameter ccltegories was 0.83 considering 
omission errors. 

ect was undertaken between Humboldt State 
University, NASA Ames Research Center, and the 
McCloud Ranger District of the Shasta-Trinity 
National Forest (U.S. Forest Service). The intent 
of the project was to complete a site-specific in- 
ventory of the timber resource of the McCloud 
Ranger District using Landsat digital data. This 
entailed the identification of conifer species 
groupings, forest canopy density classes, and 
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used as a classification tool to overcome this 
problem (Gaydos and Newland, 1978; Fox and 
Mayer, 1979). Secondly, it is difficult to identify a 
sufficient number of training fields to account for 
slope, aspect, and other environmental variations 
present in each resource type. Unsupervised 
clustering allows the analyst to account for these 
spectral variations throughout large areas. The 
combination of the guided clustering spectral 
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classes and unsupervised spectral classes has been 
suggested to be very helpful in reducing this 
problem (Mayer et al., 1980). Third, we have expe- 
rienced difficulty in assigning meaningful timber 
resource labels to the spectral classes generated 
from clustering. 

In this article we will discuss the development 
of timber species groupings through guided clus- 
tering and unsupervised classification techniques. 
Furthermore, the problem of spectral class label- 
ing will be addressed. 

Dominated by Mt. Shasta on its northwestern 
boundary, the McCloud Ranger District of the 
Shasta-Trinity National Forest (N.F.) lies 70 miles 
(113 km) northeast of Redding, California (Figure 
1). The District encompasses approximately 
521,000 acres (251,315 ha) of Federal as well as 
private land. Of this, 332,000 acres (134,359 ha) is 
N.F. land. Three-fourths of the District is con- 
tained within Siskiyou County and one-fourth 
within Shasta County. 

Vegetative types in the District include mixed 
conifer (ponderosa pine, Pinus ponderosa; white 
fir, Abies concolor; Douglas-fir, Pseudotsuga men- 
ziesii; incense cedar, Libocedrus decurrens; 
lodgepole pine, Pinus contorta; and knobcone 
pine, Pinus attenuata), pure pine (ponderosa pine; 
sugar pine, Pinus lambertiana, western white 
pine, Pinus monticola), and true fir (white fir, and 
Shasta red fir, Abies magnifica var. shastensis). 
The true fir category can be found anywhere in the 
District. Typically, red fir occurs above 4,500 feet 
(1,368 m) and white fir can be found mixed 
throughout the District in elevations as low as 
3,000 feet (937.5 m). Pure pine occurs primarily on 
the McCloud flats associating with mixed conifer, 
which covers the majority of the District. 

The average annual precipitation is 46 inches 
(117 cm), falling mostly as snow. Rainfall seldom 
occurs after June or before mid-September. Tem- 
peratures range from an average of 90" F (32" C) in 
the summer, to 15' F (-9.4" C) in the winter. To- 
pography and elevations vary from the steep sided 
(80 percent slope) McCloud and Pit River Can- 
yons in the southern part of the District, with a 
minimum elevation of 1,600 feet (448 m); to the 
McCloud Flats in the central part of the District, 
approximately 4,000 feet (1,219 m). Steep buttes 
and rolling terrain dominate the 5,000 (1,524 m) to 
6,000 (1,829 m) foot Medicine Lake Highlands in 
the north and east part of the District. The slopes 
and glaciers of the 14,161 foot (4,316 m) Mt. Shasta 
characterize the northwest corner of the District. 

CLASSIFICATION APPROACH 

The Landsat classification was completed using 
guided and unsupervised clustering. The guided 
clustering method employed the selection of ap- 
proximately 100 homogeneous timber resource 
training fields. Four conifer species groupings, 
two size classes, and two density categories were 
represented by these training fields. Clustering 
was performed on each training field, creating 
spectral statistics unique to the resource. This is 
referred to as guided clustering, or multi-clustered 
fields (Fleming et al., 1975). Upon completion of 
guided clustering, spectral classes were compared 
to one another in a separability matrix. Similar 
classes were pooled together or deleted, on the 
basis of spectral similarity. The Swain-Fu distance 
statistic was used to determine spectral separabil- 
ity (Swain and Fu, 1972). The decision to pool or 
delete is based on the number of similar classes 
involved, the degree of spectral similarity be- 

SHASTA-TRINITY NATIONAL FOREST 

MCCLOUD RANGER DISTRICT 

FIG. 1. A map of the McCloud Ranger District, Shasta-Trinity National 
Forest, California 
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tween classes, and the variance of the individual 
class. Individual spectral classses that exhibited 
spectral confusion (<0.45 Swain-Fu distance) with 
two or more classes were usually deleted. When 
only two spectral classes were similar they were 
pooled together. Furthermore, if a class was 
unique, it was retained unchanged in the statistics 
file (Fox and Mayer, 1979). 

To identify spectral classes not developed from 
guided clustering, an unsupervised classification 
for the entire District was produced. The spectral 
classes developed from the unsupervised cluster- 
ing (64 spectral classes) were merged with the 
guided clustering statistics (38 spectral classes) 
and edited to create the final statistics file (59 final 
statistics). The merging of the two statistics files 
was completed with the same procedure previ- 
ously stated. These statistics were used to classify 
the Landsat data. 

SPECTRAL CURVES 

To complete the classification process, the 
spectral classes were assigned to resource 
categories. The introduction of u n s u ~ e r v i s e d  

L. 

statistics compounded the spectral class labeling 
problem. Photointerpretation (PI) of the training 
fields was very helpful in determining the re- 
source labels for each spectral class. Even though 
the PI was helpful, by no means was it the most 
ideal method. Spectral classes existed throughout 
the study area that were numerous, but scapered, 
never appearing in any recognizable forms or geo- 
graphical locations. The difficultly in finding 
homogeneous areas (5 to 10 pixels) of alike spec- 
tral classes made it almost impossible to reliably 
assign resource labels. To help solve this problem, 
spectral curves for each class were constructed 
from the mean digital values in each of the four 
spectral bands; band 4, 0.5 to 6 pm; band 5, 0.6 to 
0.7 pm; band 6, 0.7 to 0.8 pm; and band 7, 0.8 to 
1.1 pm. The curves were used to assign resource 
labels to known and unknown spectral classes. 
Classes that were known to represent a particular 
resource category were plotted first. The unknown 
classes (classes without labels) were plotted and 
grouped according to curve shape when they 
closely resembled a known spectral class. PI was 
used to make final decisions as to the true resource 
identity when no similar curve shape could be 
found (Figure 2). 

EVALUATION 

The Landsat classified scene (1 August 1978) 
was evaluated using u s ~ s  color, 1:15,840 scale 
photography (July 1975). The photo coverage of 
the District was complete, which allowed for an 
unbiased random sample. 

The Landsat image rows and columns were di- 
vided into 8 by 8 pixel primary sampling units 
(PSU). Thirty-nine psu's were selected at random 

CREATE LINE PRINTER 
YAP P l i P 4 . 0 0 0  

SELECT HOMOOENCOUS AREAS 
OF SPECTRAL CLASSES 

LOCATE ON PHOTOS -- 
CLASSES 

CREATE SPECTRAL 
CURVES 

ASSIGN UNNNOWN 
SPECTRAL CLASSES TO 
SIMILAR KNOWN SPECTRAL 

FIG. 2. Spectral class labeling pro- 
cedure for McCloud Ranger District 
Landsat classification. 

for evaluation. Once the PSU'S had been outlined 
on the Landsat printout, they were located and 
mapped on the photographs through the use of a 
Kail Autofocus Projector. A black line grid was 
produced on clear mylar acetate to represent a 
pixel at the scale of the photograph. The grid was 
placed on the photo and locally fit (Mayer et ul., 
1980). To further insure accurate grid location, the 
rows just above and below the actual evaluation 
site were interpreted and aligned on the photos 
with respect to the Landsat categories. This 
alignment was completed by an independent in- 
terpreter, which provided an effective photo to 
Landsat match, allowing for a systematic and un- 
biased approach to the local fit process. Once the 
grid had been satisfactorily placed onto the photo, 
photointerpretation was initiated. Each pixel was 
evaluated as to its photointerpretated land-cover 
identity and whether the Landsat classification 
was correct. The number of pixels sampled per 
class varied between 28 and 479. Estimations of 
the mean probability of correct classification were 
determined for each timber resource category and 
land-cover category defined. 

SPECTRAL RESULTS 

The final Landsat mapping of the McCloud 
District contained 59 spectral classes. Each pair of 
classes was spectrally separable by at least a dis- 
tance of 0.45 Swain-Fu separability (Swain and 
Fu, 1972). These spectral classes were aggregated 
into 16 timber and land resource categories of 
interest to the U.S. Forest Service (Table 1). 

The spectral classes representing the mixed co- 
nifer category are shown in Figure 3. When ex- 
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TABLE 1. A LISTING OF THE 16 TIMBER A N D  LAND 
RESOURCE CATEGORIES DEVELOPED FROM LANDSAT 

DATA ON THE MCCLOUD RANGER DISTRIC'T. 

The resource labels for forested areas consisted of three 
alpha characters. For example: 

MLG 
C~ensity-% Crown Closure 

K S i z e  Class 
Species 

SPECIES DEFINED AS: 
M = Mixed Conifer 
P = Ponderosa, Sugar, Western White Pine (>80 %) 
F = White, Red, and Douglas-Fir (>80%) 
L = Lodgepole Pine 

SIZE CLASS: 
L = Commercial Trees (Crown Diameters 12' +) 
S = Pre-Commercial Trees (Crown Diameters Gen- 

erally <12') 

DENSITY CLASS: 
G = Good Stocking (40% + Crown Closure) 
P = Poor Stocking (<40% Crown Closure) 

Combinations of the above constitute Landsat stratum 
labels. Below are equivalent CIA labels. 

COMPARTMENT INVENTORY 
LANDSAT STRATUM ANALYSIS STRATUM 

MLG 
MSG 
MLP 
PLG 
PSG 
PSP 
FLG 

FLP 

LPG 
(No size class 

M3N, M3G, M4N, M4G, M6G 
MlN, MlG, M2N, M2G 
M3S, M3P, M4S, M4P 
P3N, P3G, P4N, P4G, P6G 
PIN, PIG, P2N, P2G 
PlS, PlP, P2S, P2P 
R3N, R3G, R4N, R4G, R6G 
D3N, D3G, D6G, D4G, D4N 
R3S, R3P, R4S, R4P, D3S 
D3P, D4S, D4P 
L2N, L2G, L6G 

for LP PINE) 

In addition, the following non-forest categories were 
defined:* 

BRUSH-This resource category may include several 
species of brush. Any pixel containing more than 75 
percent brush would be placed into this category. 

GRASS-Perennial grasslands were identified. Species, 
density and degree of maturity dictated the spectral 
response. 

TRANSITION-This category describes areas of brush, 
grass and trees. Pixels classified as transition con- 
tained no more than 5 trees, which were scattered 
among the existing vegetation. Border pixels were 
placed into this category. 

OAKIHARDWOOD-Any hardwood species found on 
the District were placed into this category. 

LAVA-Lava flows were prevalent on the District. All 
forms of lava were included. 

SNOW-Snow was found only at high elevations in the 
form of glaciers on Mt. Shasta. 

WATER-General category representing the lakes on 
the District. 

* For the purpose of  this article, all categories that were not timber 
related were combined into one category called "Other". 

t Mixed Conlfer, Large Trees, Good Stocking - 
Mixed Conifer. Small Trees, Good Stocking - - - --  
Mixed Conifer, Large Trees, Poor Stocking ---- -- 

m 
O Band 4 Band 5 Band 6 Band 7 

(0.5-0.6pm) (0.6-0.7pm) (0.7-0.8pm) (0.8.l.lpm) 

FIG. 3. The four band digital number patterns for the 
eight spectral classes assigned to the mixed conifer 
species grouping. Note: band 7 dn values are scaled from 
0 to 63, band 4, 5, and 6 dn values are scaled from 0 
to 127. 

amining this graph it is important to notice the 
shape of the curve, especially the slope between 
the green (band 4) and the red (band 5) parts of the 
spectrum. It is our opinion that this slope is a sig- 
nificant factor in determining the resource iden- 
tity. This was found to b e  true for the mixed coni- 
fer resource category. The digital number (dn) 
value for any band is not as significant as curve 
shape  w h e n  t ry ing t o  d i f ferent ia te  b e t w e e n  
species. We found that the digital number value is 
related to tree size and stocking level. Spectral 
class 8 is a typical example of mixed conifer, large 
trees, poor stocking (MLP). The  moderately high dn 
value for band 5, compared with the other mixed 
conifer classes, is indicative of large, older trees 
having a poor stocking level. The  high peak in 
band 6 is probably a result of low tree density and 
a highly I R  reflective understory. By contrast, 
spectral class 3 is a good example of well stocked, 
small trees. The  lower digital count in band 5 is a 
result of higher density. The  high digital value in 
band 6 and 7 is due  mainly to their young age. 
Small, younger trees tend to display more foliage 
in their upper canopies than large older trees. This 
might explain the high IR dn's and low red dn's 
found associated with the small trees. 

I n  summary, it was found that  t h e  average 
downward slope between bands 4 and 5 (-2.53 
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dn1O.l pm*) is the diagnostic feature which makes 
this resource category unique spectrally. Fur- 
thermore, the band 5, 6, and 7 digital numl>ers 
have strong correlation to the size and density of 
the trees. 

Figure 4 displays the family of spectral curves 
for ponderosa pine. Spectral classes 4 ,9 ,  17 ,6 ,  18, 
and 45 exhibit a diagnostic average slope clla~xc- 
teristic. The slight upward trend (+0.73 dnl0.l 
pnl*) fi-om band 4 to I ~ a n d  5 differentiates this re- 
source category from the others. 

A cursory examination of this f:amily of curves 
would indicate nonconforming slopes for spectral 
classes 55, 39, and 40, as well as the high digital 
values for classes 42 and 55. These anomalies can 
be explained. Spectral classes 55 and 40 appeared 
from the classified line printer maps to represent 
nixels occurinn on the border between resource u 

categories. These classes caused misclassification 
in the ponderosa resource category. During the 
spectral class labeling process, these classes were 
assigned to the ponderosa pine category. This was 
a direct result of their geographical location and a 
significant n~unber  of ponderosa pine trees per 
pixel. Spectral class 42 was frequently found in 
very young plantations. The trees were small (<I2  
St crown diameter), but  numerous. One would 
expect a lower overall band 4 and 5 digital value 
due to higher density. This was not the case. The 
small crown size, and the high percentage of ex- 
posed bare soil, prolxibly caused the high digital 
counts. The very high value (50.27 dn) in I ~ a n d  6 is 
normal for young, vigorous trees. 

Spectral classes 39 and 40 were identified as 
ponderosa pine with a brush understory. Brush 
exhibits a definite downward slope from band 4 to 
5 (Figure 7). Class 39 had a higher percentage of 
brush than did class 40. This fictor often caused 
misclassification with the mixed conifer category. 

Spectral class 55 was found to I)e associated with 
plantations. Exposed bare soil and dead grass, re- 
sulting from low tree density, prol~ably caused the 
high dn  values. Since our density categories con- 
sidered 40 percent crown closure (cc) and greater 
as good stocking, the lower cc (40 to 45 percent) 
and the fact that the trees were small, gave this 
spectral class a band 4 to 5 slope similar to the 
transition resource category (Figure 7). 

Figure 5 contains the spectral curves for fir. This 
hmily of curves resembles ponderosa pine. The 
differentiating fictors are the steep upward aver- 
age slope (+3.18 dnI0.lpm) between I)ands 4 and 
5 and the low dn in band 7. At first glance, it may 
seem abnormal for the red dn value to be higher 
than the green. Many studies show that red re- 

* Slope values calculated as Aylhu assuming that h u  is 
represented b y  the difference in p ~ n  of the band center 
point (0.1 pm), A y  is the measured change in dn.  

Ponderosa Plne. Large Trees. Good Stocking- 
Ponderosa Plne, Small Trees. Good Stocklng ------ 
Ponderosa P~ne.  Small Trees, Poor Stock~ng - - - - 

I I I 

Band 4 Band 5 Band 6 Band 7 
(0.5-0.6pm) (0.6.0 7pm) (0 7-0.8pm) (0.8-1.lpm) 

I .  4. The four Imnd digital number patterns for the 
nine spectral classes assigned to the ponderosa pine 
species grouping. Note: band 7 dn  values are scaled from 
0 to 63, barld 4, 5, and 6 dn values are scaled from 0 
to 127. 

flectance is traditionally lower than the green, 
when examining vegetation (Kalensky and Wilson, 
1975). Research summaries by Steiner and Cuter- 
man (1966) concerning Kussian data on spectral 
reflectance ofvegetation, soil, and rock types show 
that this may not always 11e the case. The Russian 
work on the influence of crown and stand structure 
on reflectance indicates that, when examining 
whole crowns, the red reflectance is often equal to 
or slightly higher than the green reflectance. It is 
our belief that the soil type (white pumice soil), 
the wide nodelinternode relationship of fir, and 
the minirnum amount of needle surfice area ex- 
posed may have contril~uted to the upward slope 
between band 4 and 5. 

When examining these curves for uniqueness, it 
is interesting to note the low digital value of band 
7 relative to band 5. The other species categories 
have digital values for band 7 differing from band 
5 by not more than -2.05 to +9.22. The fir exhibits 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1981 

Fir, Large Trees, Good Stock~ng- 
Fir, Large Trees, Poor Stocklng ---- 

0 1 I I 

Band 4 Band 5 Band 6 Band 7 
(0.5-0.6pm) (0.6-0.7pm) (0.7-o.epm) ( 0 . 8 . 1 . 1 ~ ~ )  

FIG. 5.  The four band digital number patterns for the 
six spectral classes assigned to the fir species grouping. 
Note: band 7 dn values are scaled from 0 to 63, band 4,5, 
and 6 dn values are scaled from 0 to 127. 

Lodgepole Plne. Large Trees, Good Stocking 

0 0  Band 4 Band 5 Band 6 
Band 7 

(0 5-0 6pm) (0 6-0 7pm) (0 7-0 6pm) (0 6 I lpm) 

FIG. 6 .  The four band digital number patterns for the 
two spectral classes assigned to the lodgepole species 
grouping. Note: band 7 dn values are scaled from 0 to 63, 
band 4, 5, and 6 dn values are scaled from 0 to 127. 

Band 4 Band 5 Band 6 Band 7 
(0 5-0.6pm) (0.6-0.7pm) (0.7-0.6pm) (0 6-l. lpm) 

FIG. 7. The four band digital number patterns for the 
representative spectral classes of the major resource 
categories defined. Note: band 7 dn values are scaled 
from 0 to 63, band 4,5,  and 6 dn values are scaled from 0 
to 127. 

a larger negative difference, with a range of -3.28 
to -13.9 digital numbers. 

The lodgepole resource category is charac- 
terized in Figure 6. The average slope is slightly 
downward (-1.05 dn1O.l pm) between bands 4 
and 5 .  This subtle downward slope separates this 
category from mixed conifer (average -2.5 dn1O.l 
pm) and ponderosa pine (average +0.73 dn1O.l 
pm). 

It was difficult to identify low density categories 
of lodgepole or knobcone pine. Dense (>40 per- 
cent crown closure) stands of these species pro- 
vided good identifiable spectral responses. When 
the stand density dropped below the 40 percent 
threshold, it was difficult to identify unique spec- 
tral responses that could be accurately called 
lodgepole pine. The low density lodgepole areas 
were usually included in the transition category. 

Figure 7 is a graph of spectral curves displaying 
representative spectral classes for each resource 
category. The graph shows the typical slope char- 
acteristics for each conifer resource type. From 
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TABLE 2. MATRIX OF CLASSIFICATION ACURACIES FOR TREE SPECIES/SIZE/DENSITY 

Landsat 

Proportion 
Category MLG MSG MLP PLG PSG PSP FLG FLP LPG Other Total Correct 

MLG 
MSG 
MLP 
PLG 
PSG 
PSP 
FLG 
FLP 
LPG 
Other 
Total 

Proportion 
Correct 

this, one can observe the subtle but distinct slope Classification accuracies were generally above 
characteristic. The remainder of the resource 80 percent for the timber resource categories. Be- 
categories (water, lava, grass, etc.) have typical fore one judges these accuracy levels to be too low 
predictable curve shapes and relative positions for timber inventory work, it is important to 
(Lillesand and Kiefer, 1979). analyze where and how errors were made. Of the 

EVALUATION OF CLASSIFICATION ACCURACY 

Accuracy data for a pixel-by-pixel comparison of 
the Landsat classification with air photointerpre- 
tation is presented in Table 2. A one percent, ran- 
dom start, cluster sample of the McCloud Landsat 
classification was completed to provide this data 
(Yamane, 1967). The table indicates the number of 
pixels classified by Landsat as well as pixels iden- 
tified by photointerpretation. 

The rows in the table indicate the number of 
pixels truly found in a particular resource category 
from photointerpretation. We assumed that 
photointerpretation provided the true vegetative 
cover. This assumption of correct photointerpre- 
tation was considered accurate as the photoin- 
terpreter had extensive knowledge of the District 
as well as the photos. The number of pixels classi- 
fied into a particular resource category by Landsat 
is indicated in the columns of the table. 

493 pixels that were truly MLG, 86 were misclassi- 
fied into other categories (Table 2). However, 37 
were placed into other size and density categories 
of mixed conifer and 43 were placed in the other 
conifer categories. Notice that this pattern of error 
distribution is consistent for the other timber re- 
source categories. In general, classification errors 
were insignificant (3.2 percent) in terms of placing 
forest pixels in non-forest categories. 

An aggregation of the timber type variables was 
completed to demonstrate the mapping of tree 
species alone (Table 3). Most categories were 
above 80 percent (omission and commission) with 
the exception of lodgepole pine. The high accu- 
racy (0.94 relative to omission errors) for mixed 
conifer can be attributed to the large amount of 
training data available, as mixed conifer is the 
most abundant resource type on the District. The 
low (0.68 relative to omission errors) accuracy for 
lodgepole was a result of insufficient training data 

Landsat 

Proportion 
Category Mixed Ponderosa Fir Lodgepole Other Total ' Correct 

g Mixed 
Ponderosa 

f Fir 
Lodgepole 

$ Other .g Total 
C)  

3 Proportion 
& Correct 
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and  its extensive association with the  other  conifer 
species. 

Guided  clustering has allowed the  development  
of a niaximum n u m b e r  of low variance spectral 
classes. T h e s e  classes precisely r e p r e s e n t  t h e  
t i m l ~ e r  type groupings identified in  this inventory 
project. Classification accuracy ranged ti-om 0.83 
overall for species, size, a n d  density to 0.88 overall 
for species alone (all accuracy proportions relative 
to  errors of omission) .  T h e  comparat ive curve  
shape of these spectral classes is diagnostic for t h e  
species groupings defined.  T h e  slope of the  curve 
be tween  bands 4 and  5 was most characteristic. 
Stands dominated 11y ponderosa pine were  repre- 
sented I)y spectral curves having a slight upward 
t rend  from band  4 to band  5 (average slope of 
+0.73 dni0. l  p m )  Stands dominated b y  t rue fir 
species showed a n  average upward slope of +3.18 
dniO.1 p m ,  whi le  mixed conifer stands exhibited 
an average downward slope of -2.53 dnl0. l  p m .  
Stands dominated by  lodgepole p ine  showed a re- 
d u c e d  d o w n w a r d  average  s lope  (-1.05 dn1O.l 
~ " 1 ) .  

By using representat ive s lope characteristics 
and  detailed photointerpretation, it was possible 
to  place u n l a l ~ e l e d  spectral classes into accurately 
defined resource categories. 
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