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Orientation and Construction 
of Models 

Part I: The Orientation Problem in 
Close-Range Photogrammetry* 

The orientation problem of a stereoscopic pair of photographs taken 
with non-metric cameras is investigated both for the general case and 
for the usual case in close-range photogrammetry. 

0 NE OF THE MOST important items in close-range photogrammetry is the orientation problem of 
central perspective photographs taken with non-metric cameras, because their interior orientation 

elements are usually not given. Much research'-3 has been carried out on the development of orienta- 
tion techniques for individual photographs, including non-central projective parameters such as lens 
distortion (camera calibration method). Little, however, has been done in the way of investigating the 
orientation problem of a stereoscopic pair of photographs taken with non-metric cameras. Only in a few 
papers4s5 has this problem been discussed, but not fully explained. Thus, it will be fundamentally 
investigated in this report. 

In the actual calibration of non-metric cameras, lens distortion and film deformation must be consid- 
ered in addition to the exterior and interior orientation parameters of the photograph. However, these 
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given here is quite fundamental and is applicable to val-ious photogrammetric 
problems such as the calibration problem of non-metric cameras and the orien- 
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method can be developed to provide interior orientation parameters for each of 
a stereoscopic pair of photographs, respectively, by using only distances in  the 
object space as control. To perform the practical test of this calibration method 
and to find various applications of the proposed orientation theory is my next 
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elements have no mathematical relationship to central projective geometry and can be determined from 
other geometrical considerations6. Therefore, these non-central projective parameters are neglected in 
the discussion of this report. 

The general orientation problem of a stereoscopic pair of photographs is discussed, first algebraically 
and then geometrically. The concept ofa multi-dimensional space having more than three dimensions is 
introduced into the geometrical approach so as to clarify the photogrammetric meaning of the orienta- 
tion problem. Also, through geometrical consideration of the orientation problem in the multi- 

* Parts I1 and I11 of this article will be published in subsequent issues. 
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dimensional space, the orientation theory can be easily derived for the usual case in close-range photo- 
grammetry, where three interior orientation parameters (three elements for the principal point) are 
unknown for each picture. Thus, some new theoretical characteristics of the orientation problem of a 
stereoscopic pair of pictures taken with non-metric cameras are clarified, and useful orientation tech- 
niques to calculate directly the traditional photogrammetric parameters are proposed. 

Since the orientation theory given here is quite fundamental, it has various application possibilities to 

close-range photogrammetry, 
calibration of non-metric cameras, 
orientation of stereo-strip imageries, and 
independent model construction in aerial triangulation by means of a triplet method with unknown interior 
orientation. 

CHARACTERISTICS OF GENERAL COLLINEARITY EQUATIONS 

The general collinearity equations relating a photographed object point P(X,Y,Z) and the image point 
p(x,y) are given in the form 

whereAi(i = 1, . . . , 11) denote independent coefficients. However, this relationship cannot be central- 
perspectively considered in a three-dimensional space, because a camera has only nine independent 
parameters (six exterior and three interior orientation elements). In order to grasp the geometrical 
meaning of Equation 1 in a central perspective way, the concept of a multi-dimensional space having 
more than three dimensions must be introduced. 

Equation 1 can be considered geometrically in still another way based on a central projection and an 
orthogonal projection in a three-dimensional space. This concept was first found by Abdel-Aziz and 
Karara7, and will be discussed as follows. First, the x, - y, plane of the comparator coordinate system 
(x,,y,,z,) is assumed not to be parallel to the picture plane (see Figure 1). The object-space coordinate 
system (X,Y,Z) is taken as a right-handed, rectangular Cartesian system with its origin at an arbitrary 
point in the object space. The picture coordinate system (x,y), which is necessary only in the interme- 
diate derivation process, is selected with its origin at the principal point, H, on the picture plane. The 
projection center, O,, of the photograph is expressed as X,,Y,,Z, in the object-space coordinate system 
and as x,,,y,,,z,, in the comparator coordinate system. Further, c denotes the principal distance. The 

FIG. 1. General collinearity condition. 
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central projective relationship between an object point P(X,Y,Z) and its image point p ( x , y )  is described 
in the form 

X - X ,  [" = .(D.D~D.)~ 1 YJ (2)  

where Dm, D,, and D, are rotation matrices of rotation elements 4, w ,  and K ,  respectively, and denotes 
a scale factor. Eliminating h from Equation 2, we get the conventional collinearity equations 

(D@DaDK)' = 

Equation 3 can also be expressed in a matrix form, i.e., 

The relationship between a picture point p ( x , y )  on the picture plane and its measured image point 
pc(xc ,yc )  is described as 

(4' 

where D,, Do, and D, are rotation matrices of rotation parameters a, p, and y about the comparator 
coordinate axes y,, x,, and z,, respectively. The coordinate z ,  is an unnecessary value for the derivation. 
From the first and second equations of Equation 4 we get 

where 

Equation 5 means that the measured image coordinates (x, ,y , )  can be obtained by an orthogonal trans- 
formation of a picture point p ( x , y )  into the x, - y, plane of the comparator coordinate system (xC,yc,z , ) .  
Further, Equation 5 can also be given in the following matrix form: 

By substituting Equation 3a into 5a, we obtain 
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which can be reduced to the next form i.e., 

Because Equation 6 has 12 parameters (+,o,~,X,,Y,,Z,,a,p,y,x,,,y,,,c), all coefficientsAi(i = 1, . . . , 11) in 
Equation 7 are independent. Thus, Equation 7 is identical to the general collinearity equations (Equa- 
tion l). Consequently, it can be understood that the relationship between an object point P(X,Y,Z) and 
its measured image point p,(x,,y,) has the general central projective characteristics. In the following dis- 
cussions, we will use Equation 7 as the general collinearity equations instead of Equation 1. 

Because the number of independent coefficients in Equation 7 is 11, there is one dependent param- 
eter among 12 photogrammetric orientation elements (+,o,~,X,,Y,,Z,,a,p,~,r,,,y~,,c) in Equation 6. It fol- 
lows that we can select one of the 12 parameters in Equation 6 arbitrarily. Therefore, let us assume that 
y is equal to zero. Omitting y from Equation 6, we have the general collinearity equations of a photo- 
graph with respect to the 11 general photogrammetric orientation parameters (+,o,~&,Y,J,,~~~~,,y,,c). 

CHARACTERISTICS OF GENERAL CENTRAL PROJECTIVE ONE-TO-ONE CORRESPONDENCE BETWEEN TWO 

THREE-DIMENSIONAL SPACES 

The general central projective one-to-one correspondence is expressed between two three- 
dimensional spaces (X,,Y,,Z,) and (X,,Y2,Z2) in the forms 

in which the coefficients Bi(i = 1, . . . , 15) are all independent. In a geometrical sence, Equation 8 can 
also be considered to express the general central projective relationship between two three-dimensional 
spaces in a multi-dimensional space having more than four dimensions. However, we will consider the 
general central projective one-to-one correspondence (Equation 8) between two three-dimensional 
spaces according to the concept based on a central projection and an orthogonal projection, as in the 
previous paragraph. This procedure will be described in a four-dimensional space as follows (see Figure 
2). The object-space coordinate system (X,Y,Z,T), the fictitious three-dimensional picture coordinate 
system (x,y,z), and the fictitious comparator coordinate system (x,,y,,z,,t,) are selected as is demon- 
strated in Figure 2. The projection center 0, of a fictitious three-dimensional photograph is expressed as 
(xco,yeo,zco,tco) in the comparator coordinate system and as (X,,Y,,Z,,T,) in the object-space coordinate 
system. Further, c denotes the principal distance of the fictitious photograph. Also, the object space is 
assumed to be a three-dimensional plane (X,Y,Z). 

The central projective relationship between an object point P(X,Y,Z,O) and its three-dimensional 
image point p(x,y,z) is given in the form 

X - X ,  W = .D*D"D.Dw)t [ (9) 

in which Dm, D,, D,, and D, are rotation matrices of rotation elements +, o, K ,  and p about the 
object-space coordinate axes Y, X, Z, and T, respectively, and A denotes a scale factor. Eliminating A from 
Equation 9, we have 

X = -C 
el l(x - X o )  + elz(Y - Yo) + - Z,)  + el,@ - To) 
e,,(x - X,) + eu(Y - yo) + e4,(Z - 2,) + e4(0 - To) 
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FIG. 2. Four-dimensional transformations. 

where 

k41 e 4 ~  e4,  e d  . 
Equation 10 is also expressed in matrix form as 

where 

e3,(X - X,) + e,,(Y - Y o )  + e,(Z - Z,) + e,,(O - To)  
5 = erl(X - X,) + e d Y  - Y o )  + e,(Z - Z,) + e,(O - To)  . 

On the other hand, the relationship between a picture point p ( x , y , z )  and its measured image point 
pc(xoy, ,zc)  is described as 

I] = DaDflD7D. I] + [ (12) 

Where D,, Dgt D,, Do are rotation matrices of rotation elements a, 0, y ,  and 9 about the fictitious 
comparator coordinate axes y,, x,, z,, and t,, respectively. The first, second, and third equations of 
Equation 12 are described in the form 

xc - xco = d ] ] ~  + d l z y  + d laz  - d 1 4 ~  

Y C  - Y C O  = dzlx + d22y + d 2 3 ~  - d 2 4 ~  
z ,  - z,, = d3,x + d32y + d33z - d 3 4 ~  
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Equation 13 indicates that the measured image coordinates (x,,y,,z,) can be obtained by an orthogonal 
transformation of the picture point p(x,y,z) into the three-dimensional plane (x,,y,,z,) of the fictitious 
comparator coordinate system (x,,y,,z,,t,). Also, Equation 13 can be expressed in a matrix form as 

L -I L1-l 

By substituting Equation 11 into Equation 14, we have 

which reduces, simply, to 

AJ + AlOY + A,,Z +A, ,  
Z, = 

A,J + A14Y + A,,Z + 1 . 
Because Equation 14a has 16 parameters ( ~ , o , ~ , p , X , , Y , , Z , , T ~ , y ~ ~ , z ~ ~ , c , ~ , ~ , ) ,  all coefficients Ai(i = 
1 , .  . . , 15) are independent. This means that the relationship (Equation 15) between an object point 
P(X,Y,Z) and its measured image point p,(x,,y,,z,) is identical to the general central projective one-to- 
one correspondence (Equation 8) between two three-dimensional spaces. It follows that the general 
central projective one-to-one correspondence between two three-dimensional spaces can also be com- 
posed of two transformations in a four-dimensional space: central projective transformation and ortho- 
gonal transformation. 

ALGEBRAIC CONSIDERATION 

The fundamental equations for the general orientation problem of central perspective photographs 
are the general collinearity equations (Equation 7 )  between a photographed object point P(X,Y,Z) and 
its measured image point p,(x,,y,). Since Equation 7  cannot be central-projectively inverse-transformed, 
it is necessary to employ a stereoscopic pair of photographs for the unique determination of an object 
point from the measured image coordinates, if the object space is three-dimensional. The orientation 
problem for a stereoscopic pair of photographs will be discussed by introducing an algebraic approach 
as follows: 

The general collinearity equations are described in the form 

for the left photograph, and 
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for the right one, respectively. Equations 16 and 17 can also be rewritten in linear form with respect to 
the object space coordinates (X,Y,Z) as 

( ~ ~ 1 . 4 9  - 4 l ) X  + ( ~ ~ 1 . 4 1 0  - 4 z ) Y  + ( ~ ~ 1 . 4 1 1  - A3)Z + ( % e l  - 4 4 )  = 0 

( Y C l . 4 9  - 4 5 ) X  + ( Y C 1 ~ 4 1 0  - 4 6 ) Y  + ( y c 1 . 4 1 1 -  4 , ) Z  + ( Y C l  - 4 8 )  = 0 

( x c Z . A 9  - Al)X + ( x C Z ' A l 0  - AZ)Y + (xc!4.All - A3)Z + - ZA4)  = O ( I 8 )  
( Y ~ z . A ,  - As)X + ( y c z . 4 1 0 -  A6)Y + ( Y ~ z . A ~ ~  - A7)Z + ( Y ~ Z  - AB) = 0 . 

The condition that Equation 18 is satisfied for an arbitrary object point P(X,Y,Z) can be given in the 
following determinant form 

~ " 1 . 4 9  - 4 1  ~ ~ 1 . 4 1 0  - 4 2  xel.A1l - A3 r e 1  - A4 

~ e 1 . 4 ~  - A5 ~ ~ 1 . 4 1 0  - A6 ~ e l . 4 1 1  - 4 7  Y C I  - 4 s  

xCz.As - Al xcz~Alo - AZ xCz~Al1 - A3 xcz - A4 = 0. (191 
yc2'A-a - A5 Y ~ Z ' A I O  - A6 ~ ~ z ' A l 1  - A7 Y c 2  - 9 8  

On the other hand, the space coordinates (X,Y,Z) of an object point can be uniquely determined by 
means of the first, second, and third equations of Equation 18, if the condition (Equation 19) is valid for 
all photographed object points. Thus, (x,l,ycl,x,z) (the x, and y, coordinates of a left measured image 
point and the x, or y, coordinate of the corresponding right one) and (X,Y,Z) (the space coordinates of the 
object point) must be central-projectively transformed from each other under the condition of Equation 
19. It means that the following three equations with respect to (X,Y,Z), i.e., 

must have the solution in the form 

z = 
Bgxc1 + BloyCl + B I I X ~ : !  + B I Z  
B t Z x c 1  + B , ~ Y ~ I  + B I S ~ ~ Z  + 1 

in which the coefficients B i ( i  = 1, . . . , 15) are all independent. Accordingly, Equation 20 can also be 
rewritten as 

B z  + Bi0Y + B; lZ  + Biz 
xc2 = B;J + B14Y + B&Z + 1 , 

if the condition (Equation 19) is satisfied for an arbitrary object point. 
The discussion mentioned above revealed the following facts: The 15 independent parameters can be 

mathematically determined by means of Equation 21, if five points are given in the object space. Then, 
seven independent elements must be mathematically obtained from the condition (Equation 19), since 
22 independent parameters must become known for the unique determination of all photographed 
object points from their measured image coordinates. 

In the general photogrammetric orientation problem of a stereoscopic pair of photographs, Equation 
19 corresponds to the condition for model construction (the coplanarity condition of corresponding 
rays). Also, the stereo model is constructed in a three-dimensional space. On the other hand, Equation 
21 or 22 is equivalent to the general central projective one-to-one correspondence between the model 
space (XM,YM,ZM) and the object space (X,Y,Z), i.e., 
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or inversely in the form 

E S ,  + E;,Y, + E;,Z,  + Eiz z = 
E;,X, + E;,YM + E;,Z,  + 1 . 

The condition (Equation 19) and the general central projective one-to-one correspondence (Equation 
23 or 24) between the model space (XM,YM,ZM) and the object space (X,Y,Z) are fundamentally employed 
in order to perform the general orientation of a stereoscopic pair of pictures in the algebraic way. 
However, these two types of equations are very inconvenient for this purpose, because seven indepen- 
dent parameters in Equation 19 are difficult to define. Thus, we will take another approach to calculate 
directly the 22 independent coefficients ,A,(i = 1,2; j = 1, . . . , 11) in Equation 16 and 17. Mathematic- 
ally, the condition (Equation 19) can be set up for seven corresponding left and right measured image 
points, and Equation 20 for five given object points. We will then get 22 independent equations for the 
determination of the 22 independent coefficients d , ( i  = 1,2; j = 1, . . . , 11). By solving these 22 
equations with respect to the 22 unknown coefficients simultaneously, we can obtain the 22 parameters 
necessary for the unique determination of all photographed object points. 

GEOMETRICAL CONSIDERATION 

We can also consider the general orientation problem of a stereoscopic pair of photographs geomet- 
rically, using the fact that the relationship (Equation 7) between an object point P(X,Y,Z)  and its 
measured image point pc(xc,yc) has the general central projective property in the case where the x, - y, 
plane of the comparator coordinate system (xc,yc,z,) is not parallel to the picture plane. This orientation 
procedure will be precisely outlined as follows (see Figure 3). The general photogrammetric orientation 
parameters are defined as +,, o,, K,, XO1, Yo,, Z,,, x,,,, yco1, cl, a,, and P ,  for the left picture and as +,, 0,, KZ, 
Xo2, Yo,, Zo2, xco2, ycoz, c,, a,, and p2 for the right one, respectively. First, we will discuss about the stereo 
model construction in a three-dimensional space. The experior orientation elements (relative ones in 
conventional photogrammetry) are assumed to be five rotation parameters (c$~,K~,+~,w~,K~).  Correspond- 
ing rays gl(ll,ml,n,) and g,(lz,m2,n2) are expressed in the model coordinate system (X,,Y,,Z,) as 

where (l,,m,,n,) and (l,,mz,n,) denote direction cosines of the corresponding rays g, and g,, respectively, 
and B is the model base. The direction cosines will be derived in the following way. We will, at first, 
find space coordinates (MXp,,Yp,MZp) of a picture point p(x,y) in the model coordinate system (XM,YM,ZM), 
which are termed the transformed picture coordinates. They are given in the form 

for the left picture, and 
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Orirntat~on System 0 
General orientation problem of a stereoscopic pair of photographs. 

for the right one, respectively. Further, the next expression will be  adopted, i.e., 

= D@DwDK rj 
which denotes the reduced transformed uicture coordinates. The direction cosines can be described by 
means of Equation 29 in the form - 

1 = ,X,IA, m = ,%/A, n = ,Z,/A 
where 

The relationship between a picture point p(x ,y )  and its measured image point p,(x,,y,) is obtained from 
Equation 5 as 

Equation 31 can also be expressed in matrix form as ] = I t  d l j  -'r - " + 
(32) 

dzt d22 Y T  - YCQ + d23~ 
where d,, is a matrix element with respect to a and p about the comparator coordinate axes y, and x,. By 
substituting Equation 32 into Equation 29, we get the final expression for the reduced transformed 
picture coordinates, i.e., 

- xco + dl3c) + hl!Z(yC - YCO + d ~ 3 c )  

- x,, + dlac) + h z z ( ~ ,  - YCO + d 2 3 ~ )  
-C 1 

in which 
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The coplanarity condition of corresponding rays g, and g, can be derived from Equations 25 and 26 in 
the form: 

B 11 1 2  

0 m1 m, = 0. 

0 nl nz 

The condition (Equation 34) reduces, simply, to 

From the coplanarity condition (Equation 35) of corresponding rays, we can determine mathematically 
seven independent orientation parameters among 15 photogrammetric orientation elements (C#I,,K~,X,,~, 

included in Equation 35. Then, a stereo model is constructed in a 
three-dimensional space. 

On the other hand, the general central projective one-to-one correspondence (Equation 23) must be 
valid between the model space (X,,Y,,Z,) and the object space (X,Y,Z). Also, 15 independent orienta- 
tion parameters can be mathematically obtained from the one-to-one correspondence (Equation 23), if 
five points are given in the object space. This means geometrically that the constructed stereo model 
and the object exist in different three-dimensional spaces in the multi-dimensional space having more 
than three dimensions, because the three-dimensional similarity transformation (the three-dimensional 
central projective transformation) must be satisfied between the model and object, if they lie in the same 
three-dimensional space. 

The coplanarity condition (Equation 35) of corresponding rays and the general central projective 
one-to-one correspondence (Equation 23) between the model and object spaces have very inconvenient 
forms for calculating directly the 22 traditional photogrammetric orientation parameters of a stereo- 
scopic pair of photographs, first because seven independent photogrammetric orientation elements for 
the model construction must be defined, and second because it is difficult to express the general central 
projective one-to-one correspondence (Equation 23) in terms of 15 independent photogrammetric 
orientation elements. Therefore, we will take another approach to construct a stereo model in the same 
three-dimensional space as the object one, as is usually done in conventional photogrammetry. Also, for 
this end the second condition for the model construction must be introduced, which can be derived from 
the object space information. This orientation procedure will be described as follows (see Figure 4). 

We know in conventional photogrammetry that the model is similar to the object, i.e., if they exist in 
the same three-dimension1 space. As the second condition for the model construction we use this 
similarity condition, because it is also valid between two three-dimensional spaces in the multi- 
dimensional space having more than three dimensions. On the other hand, the model and object spaces 
have the general central projective one-to-one correspondence uniquely determined with five given 
points. It follows that we must apply the similarity condition to the five points given in the two 
three-dimensional spaces so as to make them similar (see Figure 5) .  Also, since the degrees of freedom 
of five points in a three-dimensional space are nine, we can construct the similarity condition between 
two three-dimensional spaces by setting up the following expression: 

LMi (line segment in the model space) 
= m (constant) 

LOi (line segment in the object space) 

for nine independent line segments. In the above expression, m denotes the scale factor between the 
model and the object. Therefore, we get eight independent equations from the second condition to 
construct a stereo model in the same three-dimensional space as the object one. Consequently, we 
obtain 15 independent equations (seven coplanarity equations plus eight equations based on the simi- 
larity condition) for the determination of the 15 unknowns during the phase of the model construction in 
the same three-dimensional space as the object one. The expression for the similarity condition is 
actually derived from Equations 25 and 26 in the form 
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ZM 

- x  
0 

construction in the same three-dimensional space as the object one 

Xyk)' + (YMi - Yyli)' + ( 2 ~  - 2 ~ ) '  
= m. 

(Xi  - X,)" (Yi - Y,)' + (Zi  - 2,)' 

for the general case. 

Solving the coplanarlty condition (Equation 35) and the similarity condition (Equation 37) with 
respect to 4 1 ,  KI ,  x,,,, ycol ,  cl, al,  PI, &, wzr  K Z ,  xCoZ,  ycoz, c2, a2, and P2 simultaneously, we can calculate a 
model point PbI(XM,YM,ZM) by means of Equation 36 in the same three-dimensional space as the object 
one. Then, all model points can be transformed into the object space by the three-dimensional similarity 
transformation 

Through the consideration of the general orientation ~ r o b l e m  of a stereoscopic pair of photographs 
discussed above, we can see that the general central projective one-to-one correspondence (Equation 8) 
between two three-dimensional spaces is divided into the similarity condition and the three- 
dimensional similarity transformation (the three-dimensional central projective transformation). 

This chapter treats the simultaneous determination of all orientation unknowns of a stereoscopic pair 
of photographs geometrically for the general case where a ~hotograph has 11 independent parameters. 
In this orientation technique the 22 photogrammetric orientation elements are calculated directly and 

Model Space Object Space 

FIG. 5. Similarity condition for the general case. 
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simultaneously. Thus, we must consider the general orientation problem of a stereoscopic pair of 
photographs in the same three-dimensional space as the object one, as is demonstrated in Figure 6. 

Corresponding rays g, and g2 have the following expressions in the object-space coordinate system 
(X,Y,Z): 

x - x o z  y - - 0 2  z - - 0 2  g,: - - - 
l* 

- P z  
m2 n2 

in which (ll,ml,n,) and (lz,mz,n2) are direction cosines of g, and gz, respectively, and (X,,,Yol,Z,,) and 
(Xo2,Y,z,Z,z) indicate the projection centers of the left and right photographs in the object-space coordi- 
nate system. The direction cosines can be obtained in the same manner a ~ i n t h e  previous chapter. Also, 
the transformed picture coordinates (X,,Y,,Z,,) and the reduced ones (X,,Y,,Z,) of a picture point p(x,y) 
can be constructed in the same way as before. 

The coplanarity condition of corresponding rays is derived from Equations 39 and 40 in the form 

and it yields 

in which 

Further, an object point P(X,Y,Z) can also be given from Equations 39 and 40 as 

The coplanarity condition (Equation 42) is mathematically valid for seven sets of corresponding 
measured image coordinates (xCl, yCl) and (xCz, y,,), because it has seven independent orientation param- 
eters. On the other hand, we can set up Equation 43 for five points given in the object space, since 
Equation 43 is equivalent to the general central projective one-to-one correspondence between the 
model and object spaces. Then, we have 22 independent equations for the unique determination of the 
22 general photogrammetric orientation elements of the left and right photographs. Solving these 22 
equations with respect to the 22 parameters simultaneously, we can calculate space coordinates of all 
photographed points by means of Equation 43 in the object-space coordinate system. 

In conventional photogrammetry, the simultaneous determination of all unknown orientation param- 
eters of a stereoscopic pair of photographs is constructed in another wayg. The fundamental considera- 
tion is, however, based on Equations 39 and 40. In this orientation approach, ground control points are, 
at first, classified into the following four types: (1) ground control points with the space coordinates 
(X,Y,Z) given; (2) ground control points with only the planimetric coordinates (X,Y) known; (3) ground 
control points with only the height (the 2-coordinate) given; and (4) ground control points without the 
coordinate information. Then, (determination) equations for the unknown general photogrammetric 
orientation parameters are derived for each type of ground control points respectively. 
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zcr zc2 

FIG. 6. Analytical geometric simultaneous determination. 

(1) The first type. 
The (determination) equations for the first type are derived from Equations 39 and 40 in the form 

for the left photograph, and 

- 
m YPz 

Y = Yo, + "(z - Z,,) = Yo, + B y  +=-- (Z - Z,, - B,) 
n2 ZPz 

for the right one. Instead of Equations 44 and 45, we can use the general collinearity equations (ex- 
pressed in terms of the general photogrammetric orientation parameters) for the left and right photo- 
graphs, which is essential in photogrammetry. 

(2) The second type. 
The (determination) equations in this case are expressed as 

- 
I XP2 

X = X,, +"(Y - Yo,) = X,, + B, +--(Y - Yo, - By) 
m 2  YP2 

- - 

ZPl =-(X -X,,) = B, +&(x -X,, - B,) 
XPl XP2 

The first and second equations can be directly obtained from Equations 39 and 40, if the planimetric 
coordinates (X,Y) of a ground control point are known. The third equation indicates the condition that 
the Z-coordinate of this point calculated from Equation 39 must be equal to that from Equation 40. 

(3) The third type. 
For ground control points with only the height given, we have the conditions that the X and Y 

coordinates calculated from Equation 39 must coincide with those from Equation 40. This condition can 
be formulated in the next form, i.e., 
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1 1 
X,, + (Z - Zol) = Xaz t ( Z  - Z,Z) 

n l  n2 

m m 
Yo, + - (Z - Z,,) = Yo, + -2 (Z - Z,,) 

n I n2 

which is rewritten as 
- 

XPl Z P Z  - (Z  -Zol )  = B, +=--(Z -Z,,  - B,) 
ZPl ZPZ 
- - 

YPl YPz - (Z - Z, , )  = B ,  + - (Z - Z,, - B,) . 
ZP1 ZPZ 

(4) The fourth type. 
The (determination) equation for this type is the coplanarity condition (Equation 42) of corresponding 

rays g, and g,. 
In this conventional approach, the (determination) Equations 42, 44, 45, 46, and 48 are solved by a 

least-squares adjustment with respect to $,, w,, K ~ ,  X,,, Yo,, Z,,, x ,,,, y,,,, c,, a,, and p, for the left picture 
and &, wz, K ~ ,  Xo2, Yea, ZOz, xCoz, yCo2, c2, a,, and Pz for the right one simultaneously. However, it will be 
noted that the conventional approach must be essentially equivalent to the first one. Accordingly, we 
must be careful that the (determination) equations for the first, second, and third types of ground control 
points include one equation which is equivalent to the coplanarity condition of corresponding rays, 
respectively. 

In this chapter, the orientation problem of a stereoscopic pair of photographs will be discussed for the 
usual case in close-range photogrammetry, where the x, - y, plane of the comparator coordinate system 
(r,,y,,z,) is parallel to the picture plane (See Figure 1). Thus, the relationship between a picture point 
p(x,y) and its measured image point p,(x,,y,) reduces, simply, to 

Equation 49 means that the planimetric coordinates (xc,,yco) of the projection center of a photograph in 
the comparator coordinate system are identical to the principal point coordinates (x,,yH). Accordingly, 
we have 

(SO) 

Also the photogrammetric orientation parameters of a picture are reduced to nine, i.e., 4, w, K,X,, Yo, Z,, 
XH, YH, and c. 

ORIENTATION PROBLEM OF A STEREOSCOPIC PAIR OF PHOTOGRAPHS 

This paragraph treats the orientation problem of a stereoscopic pair of photographs, based on a 
geometrical consideration (see Figure 7). A stereo model is constructed by means of the coplanarity 
condition of corresponding rays gl(l , ,m, ,n , )  and gz(12,mz,nz): 

l M y o l  MyoZl 

where the reduced transformed picture coordinates are described in the form 

for the left picture, and 
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FIG. 7 .  Orientation problem of a stereoscopic pair of pictures taken with non-metric cameras. 

for the right one, respectively. First, we will investigate what relationship is valid between the model 
space (XM,YM,ZM) and the object space (X,Y,Z). According to the characteristics of the general central 
projective one-to-one correspondence (Equation 8) between two three-dimensional spaces discussed 
previously, it can be understood that in the case where the three-dimensional plane (x,,y,,z,) of the 
fictitious comparator coordinate system (x,,y,,z,,t,) is parallel to the three-dimensional fictitious picture 
plane (x,y,z), the four-dimensional central projective one-to-one correspondence is satisfied between 
the two three-dimensional spaces (x,,y,,z,) and (X,Y,Z) in the form 

Yc - Yco = -c 
ezl(X - X,) + ez2(Y - Yo)  + eea(Z - 2,) + ez4(o - To)  
e4,(X - X,) + ea(Y - Yo) + e,(Z - 2,) + e4,(0 - To)  

By indicating the principal point coordinates of the fictitious three-dimensional photograph as 
(xH,yH,zH), the four-dimensional central projective one-to-one correspondence (Equation 54) can also be 
described between (x,,y,,z,) and (X,Y,Z) as 

which has 12 independent parameters (+,~,K,~,X,,Y,,Z,,T,,~,,~,,Z,,C). Further, four points are mathe- 
matically necessary in the object space so as to determine the one-to-one correspondence. 
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From the discussion mentioned above, it follows that the four-dimensional central projective one-to- 
one correspondence must be valid between the model space (X,\[,Y,,Z,) and the object space (X,Y,Z), if 
the x, - y, plane (actual) of the comparator coordinate system (xc,y,,zc) is parallel to the picture plane. 
Also, the one-to-one correspondence includes 12 orientation parameters. Consequently, the coplanarity 
condition of corresponding rays provides mathematically six independent orientation parameters, since 
18 independent orientation elements must be determined in the orientation problem of a stereoscopic 
pair of pictures for the usual case in close-range photogrammetry considered here (Koelb14 found em- 
pirically that one interior orientation parameter in addition to the five exterior ones can be calculated 
from the coplanarity condition of corresponding rays by means of convergent photographs). 

By means of the coplanarity condition of corresponding rays itself we can determine six independent 
orientation parameters. Also, a stereo model can be constructed in a three-dimensional space of the 
four-dimensional one. However, the stereo model must be constructed in the same three-dimensional 
space as the object one in order to calculate directly the 18 independent orientation elements of the left 
and right pictures (see Figure 8). Therefore, the second condition for the model construction will be 
introduced. This is the similarity condition between the model space (XM,YM,ZM) and the object one 
(X,Y,Z). In order to make them similar, we must apply the similarity condition to four points which are 
necessary for the unique determination of the four-dimensional central projective one-to-one corre- 
spondence between two three-dimensional spaces (see Figure 9). Also, as the degree of freedom of four 
points in a three-dimensional space is six, we can construct the similarity condition by setting up the 
next expression 

LMi (line segment in the model space) - 
- m (constant) 

Lo, (line segment in the object space) 

for six independent line segments. Thus, five independent equations can be obtained as the second 
condition for the model construction in the same three-dimensional space as the object one. Conse- 
quently, we have 11 independent equations (six coplanarity equations plus five equations based on the 
similarity condition) for the determination of 11 orientation parameters ( + l , ~ l , + 2 , ~ Z , ~ Z , ~ H 1 , y H 1 , ~ 1 , ~ H 2 , y H 2 ,  
cz) included in Equation 51. 

By solving the 11 independent equations with respect to the 11 orientation unknowns in Equation 51, 
we can calculate a model point P,,(X,,Y,,,Z,,) in the same three-dimensional space as the object one. 
Finally, all model points are transformed into the object space by the three-dimensional similarity 
transformation. 

for the special case. Model 

Y x  
0 

construction in the same three-dimensional space as the object one 
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Model Space Object Space 

FIG. 9. Similaity condition for the special case. 

1 From the discussion given here, we can precisely see that a stereo model can be constructed only by 
means of the coplanarity condition of conjugate rays with five exterior orientation elements ($~~ ,~~ ,42 , ( t )2 ,  
K ~ )  in the same three-dimensional space as the object one, if all interior orientation parameters of a 
stereoscopic pair of pictures are given, as is for metric cameras. 

I SIMULTANEOUS DETERMINATION OF ALL ORIENTATION U N K N O W N S  FOR USUAL CASE 

The  orientation procedure based on the simultaneous determination of all orientation unknowns for a 
stereoscopic pair of pictures is almost the same as was discussed in the previous chapter. In this case, 
however, we must note the following three remarks: 

a picture has nine independent orientation parameters, 
the coplanarit~ condition of corresponding rays has six independent orientation elements, and 
four points are mathematically necessary for the determination of all orientation parameters of a stereoscopic 
pair of pictures. 

The  analytical orientation problem of a stereoscopic pair of photographs taken with non-metric cam- 
eras has been theoretically investigated in this paper. Non-central projective parameters such as lens 
distortion and film deformation were neglected in the discussion given here, since these are not param- 
eters related to central projective geometry and can be  determined from other geometric considerations. 
The  orientation problem was analyzed algebraically as well as geometrically for the general case where 
a photograph has 11 independent orientation elements, and the important aspects have been clarified 
that: 

The stereo model is constructed in a three-dimensional space with seven independent orientation parame- 
ters; 
The general central projective one-to-one correspondence must be valid between the model and object 
spaces, which is uniquely determined with five points; and 

I The general central projective one-to-one correspondence can be divided into the similarity condition and the 
three-dimensional similarity transformation (the three-dimensional central projective transformation). 

I 

Thus, a practically useful orientation method to calculate, directly, the general photogrammetric orien- 
tation parameters of a stereoscopic pair of pictures was developed by applying the similarity condition 
between the model and object spaces for the construction of the stereo model in the same three- 
dimensional space as the object one. Further, simultaneous determination of all orientation unknowns 
was also considered for the general case. 

The  case where the x, - y, plane of the comparator coordinate system is parallel to the picture plane is 
the most important one  in close-range photogrammetry. Careful geometrical considerations of the 
orientation problem have revealed the following important facts: 

The coplanarity condition of conjugate rays has six independent orientation elements; 
The four-dimensional central projective one-to-one correspondence is satisfied between the model and object 
spaces, which can be uniquely determined with four points; and 
The four-dimensional central projective one-to-one correspondence can also be divided into the similarity 
condition and the three-dimensional similarity transformation. 

The orientation theory discussed in this paper is applicable to the following problems: 

Orientation problem of stereo-strip lmagenes. It is essentially analyzed on the same geometrical basis, 
Calibration problem of non-metric cameras. According to Hallert6, the non-central projective parameters such 
as lens distortion can be determined from the coplanarity condition of corresponding rays. Thus, by adding 
lens distortion to measured image coordinates, we can calibrate non-metric cameras using the proposed 
orientation methods. The control requirement remains only as distance measurement which is comparatively 
easily performed. Further, it is possible to formulate Koelbl's method (self-calibration method of non-metric 
cameras) in another form. 
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Triplet model can be constructed even for the case where the interior orientation parameters are not given, 
under the assumption that the interior stability of aerial cameras is maintained. 
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