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Estimation of Atmospheric 
Path-Radiance by the Covariance 
Matrix Method 

Landsat data from areas of homogeneous reflectance in hilly terrain 
are used as test areas for estimation of the band-specific 
atmospheric path-radiances. 

INTRODUCTION al., 1977) that the additive radiance contributed by 

I N THE APPLICATION of Landsat data to mineral the atmosphere during imaging results in incom- 
exploration and rock type discrimination, work- plete removal of the surface topographic effects if' 

ers have used ratios of the digital numbers to sub- not corrected prior to ratioing. Kowalik (1981) has 
due surface topographic effects and to enhance the modeled the additive effects of the atmospheric 
difference between the spectral properties of dif- path-radiance and skylight irradiance in ratios of 

ABSTRACT: A new method has been developed cis an  extension of Chavez's Re- 
gression Technique (Chavez,  1975) to  provide estimates o f  the  atmospheric 
path-radiance i n  the four Landsat ~ s s  bands. The  extension uses the correlation 
between all four bands of data simultaneously instead o f  i n  pairs. The  Regres- 
sion Method and this  extension do  not require ciuxiliury data, bu t  operate solely 
upon the  digital numbers recorded o n  the Landsat tapes. Furthermore, they d o  
not require the presence of sites of low reflectance (basalt flows, clear lakes) or 
sites of low irradiance (shadows due to  topography or clouds) i n  the Landsat 
data, or topographic slope data. Instead, w e  use Landsc~t data from areas of  
homogeneous reflectance i n  hilly terruin as test areas for estimation of  the 
band-specific atmospheric path-radiances. 

The  method has been applied t o  Landsat data from diverse terrain types and 
utmospheric conditions using three different Landsat images covering semi-arid 
western Nevada, temperate eastern Pennsylvania, and tropical central New 
Guinea. The  method yields reasonnble results from euch area. 

ferent rock types (e.g., Vincent, 1973; Rowan e t  ul., Landsat data, and showed that both effects con- 
1974; Vincent and Rouse, 1977; Raines e t  al., tribute to falsely large ratio values* on slopes 
1978). It has been noted by several authors (e.g., which are well-illuminated and to falsely low 
Krieglar et al., 1969; Rowan e t  al., 1974; Chavez e t  

* Ratio values are considered here with the longer 
* Now with the U.S. Geological Survey, Box 25046, wavelength band in the numerator (514, 614, 714, 615, 

M.S. 964, Denver Federal Center, Denver, CO 80225. 715, 716). 
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ratios on poorly-illuminated slopes during imag- 
ing by Landsat. 

This paper presents the Covariance Matrix 
Method (CMM) for estimating the additive path- 
radiance in remote sensing data from the data it- 
self. This method is an extension of Chavez's Re- 
gression Technique (Chavez, 1975) which uses 
the correlation between bands paired individually 
with Band 7 to estimate the path-radiance. The 
CMM technique presented here uses the correla- 
tion between all bands simultaneously. 

The aim of estimating the path-radiance is to 
obtain appropriate correction values which sub- 
due the residual topographic effects present in raw 
ratiosf of Landsat data so that the ratios are spec- 
trally more descriptive of the actual conditions on 
the ground. 

Q 

A11 Landsat data processing discussed herein 
was performed in the Stanford Remote Sensing 
Lab (SRSL) on a PDP11134 minicomputer with in- 
teractive software developed in house. 

The radiance measured by a sensor looking ver- 
tically through the atmosphere is composed of two 
primary terms-the brightness contributed by the 
surface in the field of view of the sensor, and the 
brightness which did not originate from the sur- 
face within the field of view. The former term is 
information, and is due to direct solar and indirect 
illumination; the latter term is noise or atmo- 
spheric path-radiance. 

In model form, the measured radiance y, for 
pixel i and spectral band j can be expressed as 
follows: 

where cix3 is the information due to the direct 
solar irradiance, d j  is the atmospheric path- 
radiance, and e, is the variability unexplained by 
the model, including the contribution due to 
pixel-specific indirect irradiance. 

The term ci is an unknown constant multiplier 
which describes the pixel's topographic surface 
orientation with respect to the solar position dur- 
ing imaging. ci equals cos cy where a is the angle 
between the sun vector and the normal to the 
topographic surface at pixel i. 

The x, term is proportional to the average sur- 
face reflectance of pixel i in spectral band j, where 
the proportionality factor is a product of quantities 
which are not pixel-specific over suitably small 
areas of interest. We may write 

where 

Sj = system gain factor in spectral band j; 

f Raw data, i.e., data which has not been corrected for 
the atmospheric path-radiance or skylight effects. 

= atmospheric transmittance from ground 
to satellite in band j; 

= direct solar irradiance in band j upon 
a surface perpendidicular to the in- 
coming rays at the base of the at- 
mosphere; and 

P, = the reflectance of the pixel i in band 
j, assumed to be Lambertian. 

The additive term d, in Equation 1 is the un- 
known atmospheric path-radiance for spectral 
band j; dj is taken to be constant across the small 
area of interest. 

Of course, the path-radiance will not be exactly 
constant across an image but will vary due to (a) 
changes in the atmospheric conditions across an 
image, (b) direction of scan view relative to the 
sun position, and (c) variation in the average 
radiance in the area surrounding the pixel being 
viewed at any instant. Turner et al. (1971) and 
Malila et al. (1976) have modeled the significance 
ofthe first two effects. Turner (1978) and Otterman 
et al. (1980) present results of modeling which 
show the significance of the third effect. Dave 
(1980) has modeled the second and third effects. 
These three effects would contribute to a slightly 
different total dj noise term at each pixel in an 
image. Ideally, one would want to subtract the ap- 
propriate pixel-dependent dj noise term from each 
pixel, but no statistically based method could do 
this. 

The term e, in Equation 1 is the residual unex- 
plained variability which is assumed to be small 
relative to the variability explained by means of 
the model. It contains, inter alia, the contribution 
of terrain light and skylight, as well as model de- 
partures. 

Because areas of geologic interest are com- 
monly hilly, the surface orientation term, c, will 
vary rapidly from pixel to pixel across an image. It 
is often desirable to remove the brightness effects 
due to this variation by calculating specific band 
ratios for each pixel. In the ratio, ci may effectively 
cancel if corrections are applied for the additive 
path-radiance and if the residual term e, in Equa- 
tion l is relatively small. Fortunately, the skylight 
term can be small compared to the direct ir- 
radiance term, and has a small detrimental effect 
upon ratio values on high sun angle Landsat data 
over topographically rough terrain (Kowalik, 
(1981). 

DERIVATION OF COVARIANCE MATRIX 
METHOD (CMM) 

The CMM method presented here cannot provide 
a pixel-specific atmospheric correction, but it can 
provide a correction which is locally specific in an 
average sense to pixels in a given part of an image. 
The data requirements for the CMM method will 
now be described, and the derivation of estimates 
of atmospheric path-radiances, dj, will be detailed. 

If one has a homogeneous test area for which the 
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basic surface reflectance, P,, is approximately con- 
stant over all pixels for each spectral band, then P ,  
= Pi and xu = xj  in Equation 2. Therefore, for such 
a test area, a reduced model is 

I y, = cixj + dj  + e,. (3) 

The unexplained residual variability term, e,j, 
must now encompass greater model errors be- 
cause of a more parsimonious model, but it is still 
taken to be small relative to the variability ex- 
plained by the model. That is, any and all devia- 
tions from the simplified form of Equation 1 which 
is given in Equation 3 are lumped together into a 
composite residual term-including effects due to 

, the indirect irradiance, deviations from homoge- 
neity of the "homogeneous" area, and deviations 
from Lambertianess of the pixels within the ~ g c  homogeneous" area. The approximations in- 
volved and the composite nature of the estimates 
should be understood. 

Suppose, in addition, that the test area has suffi- 
1 cient topographic relief so that the sun angle factor 

ci is not the same for all pixels. Then the first two 
terms of Equation 3 do not collapse together, and 
it is possible to estimate the atmospheric path- 
radiances, d,, for each spectral band, j, up to a 
linear function. Further, if d,,  say, is exogenously 
specified, then absolute estimates for the path- 
radiances in the other spectral bands can be cal- 
culated. 

The model (Equation 3) as stated is under- 
specified because there are always alternative pa- 
rameter values c:,  x,', d,' for which c,x, + d, = c;< + 
d; for all i and j. However, as will be shown, 
specifying a value a priori for the path radiance on 
one spectral band will be sufficient to provide 
unique estimates for the path radiances in all other 
bands. 

The required estimates are obtained by the 
method of least squares. Specifically we wish to 
choose parameter values which minimize 

Differentiating with respect to each of the un- 
knowns leads to a set of simultaneous equations 
when the derivatives are set to zero; i.e., 

where n is the number of pixels. Combining Equa- 
tions 6 and 7 to eliminate dj gives 

where 1 is the average of the ci Solving Equation 
7 for dj gives 

d .  = p -3% 
I I j. (9) 

Now substitute the above for dj  in Equation 5 and 
solve for (ci - Z), i.e., 

where yj is the observable average over all pixels 
of the measured radiance in band j. Substituting 
Equation 10 into Equation 8 gives 

where 

and 

Sjk  is the calculated covariance between the mea- 
sured radiance in bands j and k, from which the 
name of our method is derived. Since the Sjk in- 
volve only the observed data, i.e., the y's, they may 
be calculated directly. Equation 11 may now be 
used to solve for the unknown g's iteratively in 
terms of the measured radiances. The xj's for all 
bands are then estimated simultaneously. 

It is useful to recast Equation 11 in matrix form; 
i.e., 

x  = q s x ,  

which indicates that the parameter vector x is an 
eigenvector of the covariance matrix S. 

The vector x  is taken to have all positive compo- 
nents in the construction of the model since x, is 
the direct solar irradiance for band j. Now, no two 
eigenvectors can have all positive components be- 
cause they are orthogonal. Therefore, there will be 
a unique all-positive eigen vector of S ,  up to a 
constant multiplier. This all-positive eigenvector 
will be the required solution for Equation 11 or 
Equations 11 or 12. 

If one of the path-radiance values, d j ,  is 
specified a priori, then the others can now be es- 
timated. For example, suppose we take d ,  = 0, 
then Equation 9 gives E = ~ , / x 7 ,  and 

Since the xjlx, do not depend on the unknown 
constant multiplier, they can be derived abso- 
lutely from the proportional solution obtained to 
Equations 11 or 12. 

To test the fit of the underlying model to the 
data requires auxiliary data, but comparisons with 
path-radiances calculated by other methods in 
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ratio applications are useful. Computing the re- 
quired eigenvector of the covariance matrix S 
could be tried by the iterative method suggested 
by Equation 8 or by some other method, but care is 
needed to check convergence and senstivity to 
starting values. For the data we have so far 
analyzed this has not been a problem. The method 
will not work, for example, if all spectral bands are 
uncorrelated. 

The Regression Method for estimating the d, 
noise term (Chavez, 1975) uses a regression of the 
brightness data in each band against Band 7. The 
Y-intercept of the regression equations provide an 
estimate of the d, noise in the other bands because 
the information content of the Landsat bands 
tends to be highly correlated. The Regression 
Method provides composite estimates of the addi- 
tive terms just as the CMM method does, and esti- 
mates from each method are commonly similar. 
The CMM method applied to two spectral bands is 
equivalent to the Regression Method. 

The most common technique for estimating the 

dj noise term, the Histogram Minimum Method 
(HMM) (Chavez, 1975; Taranik, 1977), assumes that 
a pixel of very low reflectant (basalt flows, clear 
water) or low irradiance (shadowed due to topog- 
raphy or clouds) occurs somewhere in the entire 
Landsat image. For such a pixel, the dj information 
term is assumed to be negligible and the satellite 
measurement is therefore an estimate of dj noise. 
In practice a suitable pixel may not be present, 
especially in highly reflectant desert terrain on 
imanerv recorded under sun elevation angles 
highuer ihan the angle of repose (about 33 degreis). 

ESTIMATES FROM THE CMM, REGRESSION, 
A N D  HMM TECHNIQUES 

Landsat data from rectangular blocks of pixels 
(N = 100 to 420) were taken from five different 
homogeneous-appearing areas in western Nevada 
on a Landsat-1 image from 16 September 1972 
(sun elevation = 46", Scene ID = 1055-18053). 
The five areas are from the Sand Mtn. dune, Desert 
Mtns., Sand Springs Range, Cocoon Mtns., and 
Stillwater Range (Figure 1). The specific blocks of 
pixels within these areas were chosen visually 

Stlllwaler Range 

.Sand M t n  Dune 
.Sand Sprlngs Range 

Goldtoeld 
0 10 20 30 40 50 km 

\ \ 

FIG. 1. Location map of the western Nevada area studied showing the Landsat 
image frame border of the Walker Lake scene. The small map in the legend shows 
the area in Nevada covered by Figure 1. 
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from a color television display of a false color rep- 
resentation of the Landsat data. 

The Sand Mtn. dune is composed of aeolian 
grains, predominantly quartz with abundant vol- 
canic lithic fragments. Dark-colored Tertiary 
andesite and basalt units outcrop in the Desert 
Mtns., Cocoon Mtns., and Stillwater Range in the 
areas from which the Landsat data were extracted. 
Cretaceous granitic rocks outcrop in the Sand 
Springs Range sample area. All of these areas ex- 
cept the Sand Mtn. dune have a sparse cover of 
low bushes (mean about 14 percent cover), pre- 
dominantly of the Atriplex confertifoliu vegeta- 
tion province (Daubenmire, 1978). The Sand Mtn. 
dune has no vegetation cover where sampled. 

dj noise estimates for the five data blocks were 
obtained by both the CMM and Regression algo- 
rithms. The path-radiance in Band 7 was assumed 
to be 0.0 DN in each case. Histogram minimum 
values were obtained from the immediate sur- 
roundings (within 15 km) and from the whole 
Landsat scene. The Histogram Minimum Method 
(HMM) was not intended by Chavez (1975) to oper- 
ate locally. We apply it to local areas here to dem- 
onstrate that estimates from the CMM and Regres- 
sion Methods are noticeably different from the 
local HMM estimates. The whole scene HMM esti- 
mates are from Walker Lake, a large, 200 ft deep 
terminal pluvial lake (Koch et ul., 1979) which lies 
near the center of the Landsat frame (Figure 1). 
These four sets estimates are given in Table 1. 

The noise estimates obtained by the CMM and 
Regression Methods are similar. Except for the 
Sand Mtn. dune estimate, they are also smaller 
than the whole scene HMM estimates. The local 
HMM estimates are largest. 

The CMM and Regression estimates describe the 
local composite additive effect more accurately 
than the HMM estimates. This can be demonstrated 
by study of the effect of each correction upon ratio 
values. 

Figure 2 shows Landsat-l 514 ratio values from 
ten pixels along a scan line in the hilly terrain of 
the southern Stillwater Range on 16 September 
1972. The area traversed by the scan line is fairly 
homogeneous in reflectance and was not within 
the same area sampled to obtain the CMM and Re- 
gression estimates. If the additive dj noise effect is 
properly removed, the ratio values should be quite 
similar all along the traverse because the surface 
orientation effect will be subdued. 

The raw ratio values from well-illuminated 
southeast facing slopes are larger than those from 
the northwest facing slopes along the traverse. 
This effect is a predictable result of the additive dj 
noise effect (Kowalik, 1981). The two sets of HMM 

estimates each cause the opposite effect-the 
poorly-illuminated northwest-facing pixels are as- 
signed abnormally large ratio values because 
those estimates were too large. dj noise estimates 
which are too large can yield falsely large ratio 
values over poorly-illuminated sites, as this exam- 

TABLE 1. ESTIMATES OF d, FROM LANDSAT-1 DATA (16 Sep 72, SUN ELEVATION = 46") FOR FIVE DIFFERENT AREAS 
IN WESTERN NEVADA. THE CMM, REGRESSION, LOCAL HISTOGRAM A N D  SCENE HISTOGRAM ESTIMATES ARE PRESENTED. 

THE SAME DATA SETS WERE USED FOR THE CMM AND REGRESSION ALGORITHMS FOR EACH AREA. VALUES ARE I N  

DIGITAL NUMBERS (DN), 0-127 SCALE 

Hist Min Hist Min 
CMM Regression Local Scene 

Cocoon Mtns. 
(N = 400 pixels) 

Stillwater Range 
(N = 100 pixels) 

Desert Mtns. C4 
(N = 400 pixels) C5 

C6 
C7 

C4 
C5 
C6 
C7 

C4 
C5 
C6 
C7 

Sand Mtn. C4 
(N = 144 pixels) C5 

C6 
C7 

Sand Springs Range C4 
(N = 200 pixels) C5 

C6 
C7 
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FIG. 2. The 514 ratio values from a traverse of hilly ter- 
rain in the Stillwater Range, Nevada. The ratio values 
are shown in raw mode and after corrections four differ- 
ent path radiance estimation methods were applied. 

ple shows. This problem partly explains why some 
researchers have preferred to use ratio data in 
mineral exploration which has not been corrected 
for the dj noise effect (e.g., Rowan et al., 1974; 
Krohn et al., 1978). Abnormally large ratio values 
are easily generated locally by a correction which 
is slightly too large. 

When the CMM estimates from the Stillwater 
Range are applied, there is no longer a preference 
for well- or poorly-illuminated pixels to be high or 
low in ratio values in agreement with the homoge- 
neity of reflectance along the traverse. I t  is not 
known how much of the variability remaining in 
the ratios corrected by the CMM estimates is due to 
slight spectral inhomogeneity along the pixels or 
to noise in the Landsat data and to an imperfect 
correction. 

The Regression estimates provide corrected 
ratio values which are similar to those from the 
CMM method, but with a slightly larger standard 
deviation (Figure 2). 

This example of the usefulness of estimates from 
the CMM and Regression methods is not restricted 
to these ten pixels and is repeated consistently in 
other areas. 

Note that the absolute value of the ratios in Fig- 
ure 2 are directly related to the dj noise estimates 
which were subtracted. In all cases, a larger d, es- 
timate was subtracted from the denominator than 
from the numerator. Therefore, the ratios are 
larger after a correction. 

The CMM and Regression estimates of d, for the 

Sand Mtn. dune are much larger than the esti- 
mates from the other four areas. This effect has 
been observed on other Landsat data sets from the 
Sand Mtn. area, and similarly large estimates have 
also been obtained from Landsat data over the 
Kelso dunes in the Mojave Desert of southern 
California. We attribute the larger estimates from 
the Sand Mtn. dune and Kelso dune areas to a 
much larger indirect irradiance term, and to a 
larger local path-radiance term (see Otterman, 
1978) for these unvegetated and highly reflectant 
areas. The adjacent volcanic and granitic ranges 
are somewhat vegetated and have a less reflectant 
rocWsoil cover. The local path-radiance and indi- 
rect illumination terms should therefore be 
smaller for those areas. 

We conclude that the Histogram Minimum 
Method can provide dj noise estimates which are 
too large or too small and which are not locally 
applicable for proper removal of the topographic 
effect by ratioing. The CMM and Regression esti- 
mates take the local conditions into account and 
can provide appropriate estimates of the additive 
terms. 

The CMM and Regression Methods thus have the 
potential for providing spatially varying estimates 
of the path-radiance. It should be realized that be- 
cause part of the estimate is due to the indirect 
irradiance signal ,  subtraction of different esti- 
mates from different parts of a scene may result in 
lower classification accuracy when numerical 
classification schemes based on the band variables 
are used. On the other hand, when ratio variables 
are used, subtraction of spatially varying estimates 
should subdue the variability of the ratio values 
due to topographic effects better than subtraction 
of a constant value verywhere in the scene. 

To test the CMM and Regression methods in 
non-desert terrain, we applied those two methods 
to blocks of Landsat data from hardwood forested 
hills on the Pocono Plateau in eastern Pennsyl- 
vania and to the mountainous rainforests of New 
Guinea. Those dj noise estimates and the HMM val- 
ues are given in Table 2. The path-radiance in 
Band 7 was assumed to be 5 DN (0-127 scale) for 
these heavily vegetated terrains. The value of 5 
DN was estimated from a table of modeled path- 
radiance values for Landsat imaging under various 
atmospheric, illumination, and background re- 
flectance conditions in Malila et al. (1976). The 
CMM and Regression estimates are very similar 
within each data set, and they correspond in size 
to the respective HMM estimates. 

The CMM and Regression methods cannot be 
applied indiscriminantly to any block of Landsat 
data. The methods assume that the variability in 
raw DN's of the test area is due to the surface 
orientation effect, not to variation of reflectance 
within the data block. The algorithms will always 
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TABLE 2. ESTIMATE OF d, NOISE FROM EASTERN PENNSYLVANIA AND NEW GUINEA (DN UNITS) 
-- - 

Hist Min Hist Min 
CMM Regression Local Scene 

Eastern Pennsylvania C4 25.4 
(ID = 1403-15120) C5 15.3 
Sun elevation = 49" C6 14.0 

C7 5.0 

New Guinea C4 16.5 
(ID = 1028-00140) C5 9.6 
Sun elevation = 49' C6 7.2 

C7 5.0 

/ calculate correction values which tend to subdue 
the variability of the ratios in the input data block. 
If reflectance inhomogeneity and/or no topogra- 
phy are present in an input data block, the calcu- 

1 lated estimates will not be appropriate estimates 
1 of the d, noise term. 
1 An important caveat to the assumption of terrain 

reflectance homogeneity of the test area is that the 
I reflectance be homogeneous as the satellite sees 

it. This constraint is far less stringent than if the 
surface had to be homogeneous upon the ground. 
The spectral and spatial resolution of Landsat are 
such that many areas in our experience appear 
"homogeneous" in reflectance, especially at low- 
sun elevation angles because shadowing due to 
surface roughness elements and a lower signal- 
to-noise ratio tend to homogenize the surface 
spectral character. At very low sun angles (-25 
degrees), however, topographic shadowing may 
be present, and not enough signal is available from 
the totally shadowed pixels to yield "homogene- 
ous" areas. At low sun angle, the HMM method 
might provide useful estimates of the path- 
radiance. 

The CMM and Regression Methods can provide 
similar and appropriate estimates of corrections for 
the additive terms to enable removal of topo- 
graphic effects by ratio variables. These two 
methods have the potential for providing spatially 
varying estimates of the path-radiance from the 
remotely-sensed digital data. However, because 
part of the estimate obtained from these methods 
is due to the indirect irradiance signal, the esti- 
mates are more directly related to the ground re- 
flectance than are the actual atmospheric path- 
radiance values. 
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Short Course 
Practical Applications of Close-Range Photogrammetry 

Swiss School for Photogrammetric Operators 
St. Gall, Switzerland 

10-28 May 1982 

The first two weeks of this three-week course, taught in both English and German, will concentrate 
mainly on carrying out photographic survey work, while the third week will be  spent in working with 
the plotting instruments and will be  designed to meet individual requirements as far as possible. Points 
of special emphasis in this intensive course include 

The theoretical background knowledge necessary for practical work, communicated in the form of lectures; 
Checking of that theoretical knowledge by setting up and carrying out object- and problem-related photo- 
graphic survey work; and 
Practical work with instruments (theodolites, levels, monometric and stereometric cameras, stereoplotters) in 
order to acquire a certain routine. 

The  course fee is SFr 1,800. Preliminary registration should b e  submitted by 31 October 1981 to 
Swiss School for Photogrammetric Operators 
Rosenbergstrasse 16 
CH-9000 St Gall 
Switzerland 

1981 ACSM Workshop Schedule 

The following ACSM workshops may be  of interest: 

23-24 October Land Informations Systems I, Milwaukee, Wisconsin, cosponsored by the Wisconsin 
Society of Land Surveyors 

13-14 November Land Information Systems I, Newark, New Jersey, cosponsored by the New Jersey 
Institute of Technology 

2-4 December Photogrammetry for the Land Surveyor and The Land Surveyor and  Professional 
Liability, Las Vegas, Nevada, cosponsored by the Western Federation of Professional 
Surveyors, 

For further information please contact 
Education Director, ACSM 
210 Little Falls Street 
Falls Church, VA 22046 


