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constraints, and the pseudo-inverse are discussed 

INTRODUCTION 

W H E R E  C L O S E - R A N G E  P H O T O G R A M M E T R Y  is 
employed as a tool for precise three- 

dimensional measurements, the parameters of 
primary interest in a self-calibrating bundle ad- 
justment are usually the coordinates of the object 
target points. In addition, the variance-covariance 
matrix of these parameters is sought in order to 
ascertain the a posteriori precision of both the 
object point coordinates and functions of these co- 
ordinates; e.g., distances, areas, volumes, and co- 
ordinate differences. One useful, albeit limited, 
indicator of the overall accuracy of target point 

tional accuracy with respect to the reference coor- 
dinate system. However, in high-precision close- 
range photogrammetry, checkpoint coordinates 
are invariably unavailable; indeed, "control" is 
often arbitrarily assigned so as to be just sufficient 
to define the origin, orientation, and scale of the 
photogrammetric network. This paper considers 
only minimally constrained networks, and for such 
cases a, affords the photogrammetrist a useful 
one-number summary of photogrammetric net- 
work strength. However, the mean positional 
standard error provides only a limited measure of 
internal or datum-independent precision because 
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determination is the estimator ii,2 which is termed 
the mean variance of the X, Y, Z object space coor- 
dinates. 

A commonly used accuracy indicator in aerial 
triangulation adjustments is the root-mean-square 
(RMS) error, s , ,  of the ground coordinates. Where 
checkpoint coordinates are available, s, can be 
considered to be an unbiased estimate of CC, the 
mean standard error (e.g., Ebner and Griin, 1979). 
The RMs error, s,, then indicates the average posi- 
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it is a datum-biased estimate, its magnitude being 
influenced by both the configuration and type 
(weighted or absolute) of the minimal control. 

As has been pointed out by a number of authors 
(e.g., Pope, 1971; Sprinsky, 1976), geodetic network 
optimization criteria should include the need to 
account for off-diagonal covariance information 
contained in the parameter variance-covariance 
matrix in addition to the on-diagonal variances 
from which az is computed. This need has given 
rise to network analysis based on estimable quan- 
tities or invariants which describe the network in- 
dependent of the arbitrarily assigned datum. 
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Under general affine transformations of the object 
space coordinate system, parameters of shape and 
their a posteriori standard errors remain invariant. 
For example, under a similarity transformation, 
both angle and distance-ratio values are unaltered 
and, if the network has no defect of scale, dis- 
tances remain invariant. However, in the photo- 
grammetric context distances determined in a 
scale defective network will not remain invariant 
with changes in minimal control, a property also 
shared by other functions of the X, Y, Z object 
point coordinates. 

Because a general affine transformation of the 
reference coordinate system is a distinctly differ- 
ent operation from a change in the minimal con- 
straint configuration (Pope, 1971), only informa- 
tion introduced into the photogrammetric adjust- 
ment by the actual observations is preserved 
without change under a variation of the minimal 
constraint. In a self-calibrating bundle adjustment 
the x, y photo coordinates are unbiasedly estima- 
ble, and this is generally also true for the addi- 
tional parameters of the image space. Thus, in 
order to obtain a measure of object point positional 
accuracy which is independent of the minimal 
constraint, one must consider a function of the 
image coordinate variances; for example, some 
fraction of the scale number multiplied by the de- 
rived mean standard error of the photo coordi- 
nates. While such an approach may be practical in 
aerial triangulation, it is far less applicable in 
close-range projects which employ convergent 
imaging configurations and non-uniform scale 
between the photographs. 

In the absence of useful invariant measures of 
object space coordinate precision, CC again ap- 
pears as a practical indicator of photogrammetric 
network strength. For this investigation, the op- 
timization criterion adopted in the initial stages is 
that the selected minimal constraint should 
minimize the mean positional standard error, CC. 
However, in the discussion of inner constraints 
this criterion is extended to include the minimiza- 
tion of CCp, the mean coordinate standard error 
of c' selected object target points. The essence of 
both criteria is that for some "best fitting" reference 
coordinate system an optimum value of positional 
accuracy is obtained. 

Minimal constraints may be weighted or abso- 
lute. Although there is a limited distinction be- 
tween the nature of "weighted-unknown" and 
"fixed" minimal control coordinates as far as the 
solution of a network adjustment is concerned, the 
magnitude of CC is dependent on the type of con- 
straint imposed. Fraser (1980) has shown that for a 
minimally constrained photogrammetric bundle 
adjustment the condition Cc = minimum for a par- 
ticular minimal control pattern can only be  
achieved when the constraint is absolute. A brief 
account of weighted constraints is presented in 

this paper, though for a more detailed discussion 
the reader is referred to Fraser (1980). 

Directly connected with precision is the theory 
of external reliability (Baarda, 1967; 1968). With 
regard to photogrammetric adjustment, external 
reliability measures can be used as tolerances 
which may in turn offer criteria for expressing the 
accuracy of both adjusted object space coordinates 
and functions of these coordinates. However, such 
sensitivity measures generally require a minimum 
CC if they are to be optimized for a particular 
photogrammetric network design. Thus, the pur- 
suit of minimum CC is still warranted for any 
minimally constrained adjustment. For a full ac- 
count of the concepts of external reliability as 
applied to phototriangulation, the reader is re- 
ferred to Forstner (1979, 1980) and Griin (1978, 
1980). -. 

In the following sections aspects of constrained 
least-squares estimation are reviewed, including 
minimum-variance estimation and the pseudo- 
inverse and inner constraint approaches to mini- 
mally constrained photogrammetric adjustments. 
The emphasis is placed on the attainment of 
minimum mean variance. The influence of varia- 
tions in minimal constraint configurations on the 
magnitude of both CC and act has been quantified 
using a small close-range photogrammetric net- 
work. This test experiment is detailed and the re- 
sults are discussed. 

T H E  LINEAR MODEL 

Consider the linear functional and stochastic 
model 

v = A X - L  
E(V) = 0 + E(L) = AX 

D(V) = L = a: P-' 

where A is the design matrix with dimensions n x 
u (n > u) and rank R(A) s u; L is an n x 1 stochas- 
tic vector of observations; X is the non-stochastic 
vector of unknown parameters of dimension u; V is 
a stochastic n-vector of residuals; L is the 
positive-definite variance-covariance matrix of the 
observations; P is the weight matrix; a: is the a 
priori variance factor; and E and D are the expec- 
tation and dispersion operators, respectively. 

A necessary and sufficient condition for the 
equation 

to be solvable is that (Albert, 1972, p. 30) 

where A+ is a chosen member of the family of 
generalized inverses, termed the pseudo-inverse. 
Characteristics of the pseudo-inverse will be de- 
tailed in a later section. Equation 3 can be viewed 
as being a consistency condition and if the system, 
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Equation 2, is consistent, then the rank and dimen- 
sions of A determine whether X is unique, or 
whether many solutions exist. 

If the design matrix A has no rank defect, i.e. 
R(A) = u, a unique estimate, the least-squares es- 
timate, a,* can be obtained for X; that is, 

8 = N-'ATPL where N = ATPA. (4) 
In the full rank case N-' = N+, thus satisfying the 
consistency condition and also yielding best linear 
unbiased estimations, 8 and 8:, while minimizing 
VTPV. The corresponding variance-covariance 
matrix, S,, of the parameter estimates, 8, is giv- 
en by 

2 ;, = &;N-1 (5)  

where 8; is the a posteriori variance factor. 
The linear model of the self-calibrating bundle 

adjustment will assume the form of Equation 1 in 
cases where prior information about the structure 
and distribution of the parameters, X, is not taken 
into account. In order to ensure a unique solution 
for the parameters (exterior orientation elements, 
object space coordinates, and additional parame- 
ters) according to Equation 4, minimal constraints 
need to be imposed because information required 
to overcome the network defect of d = 7 (three for 
position, three for oriertation, and one for scale) is 
lacking in the observaiions L (photo coordinate 
measurements). 

MINIMUM-VARIANCE ESTIMATION 

One widely used scheme for imposing minimal 
constraints to overcome the datum defect inherent 
in the positive semi-definite matrix, N, is to sup- 
press d appropriate columns from the design ma- 
trix, A. An algorithmically more flexible approach, 
particularly suited to close-range photogrammetric 
surveys where it is desired to control no more than 
the origin, orientation, and scale of the object 
space coordinate system, is to append additional 
rows to the linear model, Equation 1. A minimum 
of d rows will be required, and these can be 
viewed as being additional observation equations, 
fictitious or real. The linear model then becomes 

[I]+[:]x=[];~:.] 
where Pxo is a weight matrix indicating the level of 
prior constraint on the parameters, X. For the fol- 
lowing discussion it is convenient to introduce a 
relative weighting coefficient, k2, where Pxo = 
k2Px. 

The introduction of prior information regarding 
the mean, XO, and variance, Zxo, of what is now the 
random vector, X, leads to a further estimate, the 

* The cap (2) indicates a least-squares estimate from a 
minimal constraint adjustment, whereas the tilde (X) is 
used to identify the minimum-variance estimate. 

minimum-variance estimate, X (e.g., Luenberger, 
1969, p. 87), whereby 

which minimizes the function 

The solution vector, X, can only be obtained if the 
normal matrix is non-singular, and for certain Pxo 
this non-singularity can always be ensured. For 
example, if Px = I, (N + k2PX) is non-singular for 
non-zero k (Albert, 1972, p. 12). The minimum- 
variance estimate, X, has the structure of a mul- 
tivariate weighted average between the standard 
least-squares estimate, 8, and the prior mean, XO, 
in accordance with the magnitude of P,o. 

Equation 6 can also be considered as a Bayesian 
formulation (e.g., Lindley and Smith, 1972; Boss- 
ler, 1972), although under this approach the de- 
grees of freedom differs marginally from the value 
given in Equation 8. Such a variation can be con- 
sidered inconsequential for most photogrammetric 
adjustments, thus making the Bayesian and 
minimum-variance estimation approaches effec- 
tively equivalent. 

The mean variance or, more correctly, the mean 
square error of the point estimates, X, is given by 

ai2 = l/u trx: where Zg = 6,2 [N + k2Px1-' (9) 

The mean square error comprises two compo- 
nents: variance and bias (Marquardt, 1970), and its 
magnitude is inversely proportional to that of the 
smallest eigenvalue of N. Thus, is seriously 
inflated when (N + k2Px) is near singular. Ac- 
cording to two theorems of ridge regression (e.g., 
Draper and van Nostrand, 1979), 4 is a monotone 
increasing function of k while ag2 is a continuous 
monotone decreasing function of k. In a network 
adjustment the aim is to assign values to k2Px such 
that a ?  << 5; while not inflating r#~ to any serious 
degree. 

THE PSEUDO-INVERSE 

As a first approach in seeking the optimization of 
i+,, the minimal constraint yielding a;, = minimum 
can be considered. In accordance with free net- 
work adjustment theory (e.g., Pope, 1971; Welsch, 
1979), the solution 

will yield a minimum value of 5% the minimal 
constraint condition being llfql = minimum. Geo- 
metrically, this condition can be interpreted as 
fixing the coordinate system origin at the center of 
gravity of the photogrammetric network (as de- 
fined by the provisional coordinates), maintaining 
average network orientation and holding the mean 
scale as fixed. In the sense of minimizing the mean 
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variance of the parameters, Equation 10 yields the 
optimum solution of the overdetermined system, 
Equation 1. 

The pseudo-inverse of the matrix [P112A] has the 
following property (Albert, 1972, p. 26): 

Further, [P112A]+ may be expressed by the limit 
definition (Pope and Hanson, 1972; Albert, 1972, 
P 19) 

[ P " ~ A ] +  = lim [ A T p ~  + k21]-' ATP1I2. (12) 
k2-+0 

Post-multiplication of Equations 11 and 12 by 
P1IzL yields 

8 = N + A T P L  = lim [ N  + k21]-' A T P L  (13) 
kZ+0 

From Equation 13 it is apparent that for P x  = I-and 
k "small" the minimum-variance estimate, X ,  is 
equivalent to 8. Fraser (1980) has shown for a 
close-range photogrammetric network that the im- 
plied equality X - 8 may hold for a large range of k 
values. As- a general rule the minimum-variance 
estimate, X ,  obtained with Pxo = k21 can be ex- 
pected to approach the-pseudo-inverse estimate, 
8, when V T P V  >> k2VTV = 0; i.e., when the 
weighted constraint, k21, on the prior means, XO, is 
numerically equivalent to the absolute minimal 
constraint 118 11 = minimum. The fact that weighted 
constraints act as absolute constraints as far as the 
solution is concerned is well recognized (e.g., 
Pope, 1971). In the case of Equation 13 the nu- 
merical restriction on k2  is that firstly it must be of 
sufficient magnitude to ensure that [ N  + k21] is 
numerically regular, and secondly it must not be 
large enough to numerically overconstrain the 
solution. 

When it is recalled that the pseudo-inverse 
yields a minimum mean variance estimate, a i 2 ,  for 
the parameters, and that an equivalent solution to 
this minimal constraint approach can be obtained 
by assigning a loose a priori variance, Vk2,  to all 
parameters, one question that arises is whether [ N  
+ kzI]-I is a minimum-trace variance-covariance 
matrix. Should the equality [ N  + k21]-I = N +  be 
valid over a broad range of k values, as was Equa- 
tion 13, then an optimum estimate of the mean 
variance of the parameters would be obtained by 
means of the minimum-variance approach (Equa- 
tion 7) with PXo = k21. 

The matrix [ N  + k21] can be expressed in terms 
of the pseudo-inverse by the series expansion 
(e.g., Pope and Hanson, 1972): 

For sufficiently small k the right-hand side of 
Equation 14 will only approach N+ when the pro- 
jection matrix [I  - N N + ]  of rank d is close to a null 
matrix. But, for rank defective N ,  N N +  + I and k-' 
operates as an inflation factor on the projection 
matrix. Thus, for minimal constraint adjustments, 
the inverse [N + k21]-I is an unsatisfactory, typi- 
cally seriously inflated variance-covariance matrix 
of the parameters. 

In order to overcome the rank defect in the 
photogrammetric network, P, can be structured as 
a diagonal matrix comprising seven appropriate 
non-zero elements, each of unit value. The impo- 
sition of this weighted constraint removes the sin- 1 
gularity of the normal equation matrix, but the 
magnitude of trSx is still dependent on the value 
of k Z .  This can be illustrated by referring to the 
singular value decomposition of [ N  + k 2 P x ] .  
Minimum a2 is obtained when k2  is selected such 
that the smallest eigenvalue A, of [N + k T x ]  at- 
tains its maximum magnitude. It is intuitively ap- 
parent that A, becomes a maximum as k 2  m (e.g., 
see Fraser, 1980), then the weighted minimal con- 
straint k2Px  becomes numerically equivalent to the 
absolute constraint imposed by suppressing seven 
appropriate columns from the design matrix A .  
Thus, it can be stated that for a selected minimal 
constraint the minimum value of is obtained 
when the constraint is absolute and of all possible 
absolute minimal constraints, the condition 1141 = 
minimum will yield the optimum value of the 
mean standard error of the parameters. 

Whereas the pseudo-inverse can be used to 
yield minimum a;, no such assurance can be made 
regarding the mean positional standard error of the 
object space coordinates, a,, in a self-calibrating 
bundle adjustment. The trace of N+ can be ex- 
pressed as the sum of three component traces: 

where So, I;,, and I;, are a posteriori variance- 
covariance matrices of the exterior orientation 
elements, object space coordinates, and additional 
parameters, respectively. Minimum a? need not 
imply minimum trz,. For example, consider the 
case of very long focal length photography where, 
typically, trI;, > trS, if the minimal constraint is 
imposed by fixing seven coordinates of three object 
target points (say 2 x XYZ and 1 x 2). The influ- 
ence of the pseudo-inverse in providing an op- 
timized presentation of*; in.such an adjustment is 
to achieve a reduction in the magnitude of tr8, at 
the expense of an increase in the magnitude of 
trI;,. Nevertheless, N +  may effectively mini- 
mize 5,. 

T h e  mean variance, a," obtained via the  
pseudo-inverse, N + ,  may be interpreted as a mea- 
sure of the error implied in object space coordi- 
nates due solely to observational uncertainties 
(see Sprinsky, 1976, p. 50). However, it must be , 
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remembered that N+ refers to an artificial datum or 
statistical origin and, as pointed out by Bossler 
(1973), comparisons between the estimate cc2 ob- 
tained via the pseudo-inverse and the mean vari- 
ance of object space coordinates obtained from the 
variance-covariance matrix, Z:, are therefore in- 
equitable. However abstract the concept, N+ pro- 
vides the photogrammetrist with a minimum-trace 
variance-covariance matrix with which to assess 
the precision of both the object space coordinates 
of a minimally constrained network and desired 
functions of those coordinates. Although some 
may question the validity of the pseudo-inverse as 
a variance-covariance matrix, N+ can be employed 
to compute meaningful precision estimates for 
certain linear combinations of X (e.g., Bossler, 
1973; Sprinsky, 1976). 

INNER CONSTRAINTS 

For this investigation, the pseudo-inverse was 
computed by means of a singular value decompo- 
sition algorithm. Such a method of computation is 
rather expensive in terms of both computer time 
and storage, yet it does have the advantage of di- 
rectly yielding the eigenvalues of N from which 
precision and reliability bounds can be formulated 
(e.g., Pelzer, 1979). A mathematically equivalent 
method of computing the estimates 8 = N+ATPL is 
by means of the use of inner constraints. Meissl 
(1969) has shown that a free network solution can 
be obtained by subjecting a given network to a 
Helmert transformation. That is, the solution con- 
ditions VTPV = minimum, )If41 = minimum, and 
trZ;( = minimum can be satisfied by subjecting the 
photogrammetric network to three rotations, a 
scale change, and three translations, all differen- 
tially small. This approach, which is fully devel- 
oped in Blaha (1971), is subject to the same com- 
ments regarding the validity of the variance-co- 
variance matrix as were made for N+. Nevertheless, 
the method is perhaps the most straightforward 
of a number of techniques for implementing an 
inner constraint solution (Blaha (1980) discusses 
five mathematically equivalent approaches) as it 
involves simply "bordering" the singular normal 
matrix N with a transformation matrix G which 
satisfies the condition AG = 0. The solution vector 
8 is then obtained as 

vhere K, is a vector of Lagrangian multipliers of 
length d. 

With the relatively small networks encountered 

in close-range photogrammetry, a direct solution 
can be considered for the bordered normal equa- 
tion system. Such an algorithm is the block 
Gaussian elimination for symmetric indefinite 
matrices developed by Bunch and Parlett (1971). 
In situations where the size of the network is such 
that a direct solution to Equation 16 is no longer 
feasible, the method of recursive partitioning of- 
fers an advantageous alternative approach (Blaha, 
1980; Brown, 1980). 

In the context of a photogrammetric network 
having defects of translation, orientation, and 
scale, G can be partitioned into the form 

GT = (GT, G,T) (17) 

where, for the exterior orientation parameters of 
photo i (Granshaw, 1980), 

- 
1 0 0 0 z', -YC , xi 
0 1 0  0 X', Y', 
0 0 1 YT -x; 0 z', 
0 0 0  1 0 0 0  
0 0 0  0 1 0 0  
0 0 0  0 0 - 1 0  

and, for the object sapce coordinates of point j, 

-xj 0 zj 
If the network defect is less than seven, appro- 

priate columns are suppressed from G,, and Gq. 
For example, if a priori information regarding the 
scale of the network has been incorporated in the 
bundle adjustment, column seven of G could be 
suppressed. 

As a conceptually equivalent method to the 
pseudo-inverse approach, the imposition of inner 
constraints yields minimum 5% but not necessarily 
minimum 5,. In seeking to circumvent this prob- 
lem, consider the case where Go = 0. Here trZc is 
minimized explicitly and thus the desired aim of 
achieving an optimum value of i?, is realized. This 
approach has been taken one step further by Papo 
and Perelmuter (1980) who have reported a 
method whereby inner constraints are assigned 
only to a selected subset of the object space coor- 
dinates, thus yielding a mean standard error, Ccr, 
which is a minimum for this chosen coordinate 
subset. The authors state that such an approach 
provides a superior means for filtering out mea- 
surement errors. However, it is less than clear as to 
why this should be so, especially considering that 
the adjusted observables (photo coordinate mea- 
surements) are invariant with changes in the 
minimal constraint configuration. 

In comparison to the normally adopted proce- 
dure of "fixing" seven coordinate values a priori, 
the approach suggested by Papo and Perelmuter 
(1980) does display advantages in the context of 
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optimizing both the mean variance of object point 
coordinates and the precision of functions of these 
coordinates. Rather than "hanging" the network 
on three points, mean origin, scale, and orientation 
are determined from the provisional coordinates of 
c' selected points. An example of where such an 
approach may be applicable is in a close-range 
photogrammetric network comprising a closely 
grouped cluster of points of interest, plus outlying 
points which have simply been included to en- 
hance the geometric strength of the network. The 
small test network discussed in the following sec- 
tion includes such a configuration. 

Rather than adopting the more complex algo- 
rithmic formulation of Papo and Perelmuter 
(1980), it appears more generally practical to im- 
plement the inner constraint condition 11&,ll = 
minimum for the chosen c' object points via the 
"bordering" technique described above. For a 
self-calibrating bundle adjustment, this would 
lead to an inner constraint matrix of the form 

where m is the number of photos, c the number of 
object points and a the number of additional pa- 
rameters. The form of G given by Equation 20 has 
been applied in an experiment conducted for this 
investigation. 

DESCRIPTION 

The principal aim of the experiment conducted 
was to examine the extent of variations in the 
mean positional standard error of the object target 
point coordinates which accompany changes in 
the minimal constraint configuration in a small 
photogrammetric network adjustment. Both self- 
calibration and the standard bundle adjustment 
were to be considered. For the present investiga- 
tion only absolute minimal constraints are consid- 
ered because an analysis of the influence on the 
estimate ifkc of changes in both k2 and the minimal 
control pattern has been previously reported in 
Fraser (1980). 

A total of 17 photogrammetric adjustments of the 
same network were computed. A different mini- 
mal constraint was applied to each, the constraint 
being one of three distinct formulations: 

P,o = k2Px, with Px being a diagonal matrix com- 
prising seven non-zero elements, each of unit 
value, and Ilk = 0.0001 (i.e., standard error = 1 
pm). This is equivalent to "fixing" seven coordi- 
nates, chosen here to be 13 combinations of 2 x 
X,Y,Z and 1 x 2, and one case of fixed exposure 
station exterior orientation parameters plus a 
scale constraint. 
Imposition of the condition 11811 = minimum. This 
approach includes the pseudo-inverse technique 

and the equivalent method of full-column inner 
constraints, Equation 16.  
Inner constraints applied only to the object space 
coordinates, i.e., JI&JI = minimum; and imposition 
of the condition JJ&,JJ = minimum for the subset 
of coordinates of c' object target points. 

The experimental test network adopted is not 
atypical of an imaging geometry that might be 
employed in an engineering or industrial photo- 
grammetric survey. Figure 1 illustrates the geom- 
etry of the network which comprised four photos 
and 12 object target points. Eight of the object 
points lie in the XY plane (Z = 0),  with the re- 
maining four being at a "height" Z of 36 cm. Four 
exposure stations were used, with the kappa rota- 
tion at each being 90" or 180' different from the 
values at the remaining three. All camera axes 
were directed toward the center of the target array, 
point number 14, and this gave rise to a con- 
vergence angle of 90" between camera axes 1 and 
2. The camera axis at exposure station 3 was ap- 
proximately normal to the XY plane. A Hasselblad 
MK70 camera with Biogon 60-mm lens was used 
for the photography, the focal setting being 200 
cm. Preliminary photogrammetric data reduction 
involved the two-dimensional image transforma- 
tion using eight reseaux as control, single photo 
resections to determine the refined approximate 
exterior orientation element values, and space in- 
tersections to determine the approximate object 
point coordinates to an accuracy of 0.1 to 0.2 cm. 

In the self-calibrating bundle adjustments com- 
puted for the experiment, three inner cone param- 
eters were carried as weighted unknowns: the 
principal distance parameter, dc, and the principal 
point coordinates, x ,  and yo. These particular three 
additional parameters were carried not in the 
anticipation of significant accuracy improvements 
(the camera had previously been self-calibrated) 
but more to enable their influence on the magni- 

FIG. 1 .  Object target array and camera station configu- 
ration. 
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tude of a, to be evaluated. For all but four mini- 
mal control patterns, a standard bundle adjust- 
ment was also computed. 

RESULTS 

Image coordinates and additional parameters. 
As they represent the observables of the photo- 
grammetric network, the adjusted photo coordi- 
nates and their residuals are invariant with respect 
to changes in the type and pattern of absolute 
minimal constraint. In the adjustments without 
additional parameters the RMS value of the image 
coordinate residuals was s,  = s ,  = k2.3 pm, 
whereas for the self-calibration adjustments s,  = 
k2.1 pm and s, = 52.3 pm. 

Estimates of the inner core parameters dc, xo, 
and yo, along with their respective standard errors, 
were also found to be invariant under changes in 
the minimal constraint. However, the correlation 
coefficients expressing the degree of coupling 
between the additional parameters and both the 
exterior orientation elements and the object point 
coordinates were subject to dramatic variation, as 
will be detailed in the following paragraphs. 

Variations in minimal control. Table 1 lists the 
magnitude of the mean positional standard error, 
cr, computed for each minimal constraint configu- 
ration, for both the self-calibration and standard 
bundle adjustments. Serials 1 to 14 of the table 
illustrate how the magnitude of a, is closely re- 
lated to which minimal control point pattern is 
selected, i.e., to which seven object space param- 
eters are held fixed. 

The wide range of values of a, appearing in the 
table highlights the need for a careful choice of the 
minimal control pattern if one is to achieve an op- 
timal value of the mean standard error of object 
point coordinates. No attempt is made here to es- 
tablish more than a qualitative link between the 
magnitude of i?, and the geometry of the three 
points which form the minimal control, as in view 
of the uniqueness of most close-range photo- 
grammetric projects such an endeavor may prove 
futile. However, two observations which have 
been made regarding the relationship between the 
distribution of the minimal control and the mag- 
nitude of mean standard errors are that as the cen- 
troid of the control point triangle approaches the 
centroid of the object target array, c, tends to de- 
crease in magnitude, and this decrease is also ap- 
parent as the area of the triangle increases. 

For minimal control patterns Serials 1, 2, and 3, 
which appear to be "optimum" configurations, 
the a posteriori coordinate standard error of non- 
control points ranged in magnitude from 40 pm to 
195 pm. Point 14 exhibited the highest precision 
with standard error estimates of 48,40, and 80 pm 
for the X, Y, and Z coordinates, respectively, 
whereas for point 20 the corresponding values 
were 113,75, and 195 pm. The latter point, which 
lay farthest from the centroid and was only imaged 
on three exposures, displayed the lowest posi- 
tional accuracy. 

For Serials 1 to 13 in Table 1 the magnitude of 
Cc listed for each of the self-calibration adjust- 
ments is 2 to 5 pm greater than the value obtained 

TABLE 1. ESTIMATES OF THE MEAN POSITIONAL STANDARD ERRORS ec AND cc, OF OBJECT POINT COORD~NATES 

Minimal control point 
Serial configuration 

a. With additional b. Without additional 
parameters parameters 

"fixed" X,Y "fixed Z 

13, 24 35 
38, 41 24 
13, 17 35 
13, 17 24 
38,24 20 
20,41 35 
35,lO 17 
35,24 41 
4, 8 2 

20,24 14 
13,14 8 
20,38 35 
41, 17 14 
"fixed" w, 4, K ,  Xc, YC, ZC, 

of camera station 3, 
and fixed scale 

llfql = minimum 
Il&.ll = minimum 

17 118,11 = minimum 
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in the corresponding standard bundle adjustment. 
This slight loss of mean precision is thought to be 
related to the determinancy of scale being less 
precise in the  photogrammetric adjustments 
which incorporated the Gaussian focal length as a 
weighted unknown. Typically, in each of the self- 
calibration adjustments the correlation coefficient 
between the additional parameters and the X, Y, Z 
coordinates ranged in magnitude from 0.01 to 0.4. 
But, the coupling between the parameters dc and 
Zc for exposure stations 3 and 4 was very signifi- 
cant, the correlation coefficient being about 0.97. 

Whereas the standard bundle method yields a 
marginal improvement in mean positional stan- 
dard error for Serials 1 to 13, the reduction in the 
magnitude of & is significant in Serial 14. In this 
adjustment, in which the exterior orientation ele- 
ments at camera station 3 were held fixed in addi- 
tion to the distance from the exposure station to 
point 14, the standard error improved by a factor of 
three. One plausible explanation for this is that the 
minimally constrained photogrammetric network, 
Serial 14a, was numerically scale defective. The 
normal equation matrix corresponding to Serial 
14a was not numerically positive-definite with A, 
and the two smallest eigenvalues, both having 
values less than zero. It is worthy of note that in 
this case there was only limited coupling between 
the additional parameters and the exterior orien- 
tation elements, yet the correlation between the 
inner cone parameters and the object point coor- 
dinates ranged up to 0.98, a marked increase over 
the corresponding values for Serials 1 to 13. 

Pseudo-inverse and full-column inner con- 
straints. As can be seen in Table 1, the pseudo- 
inverse solution and the mathematically equiva- 
lent full-column inner constraint method (Equa- 
tion 16) yield mean standard errors of magnitude 
106 and 57 pm,  respectively, for the  self- 
calibration and standard bundle adjustments. In a 
similar manner to that just described, for Serial 15a 
the imposition of the inner constraint condition 1141 
= minimum tends to significantly increase the cor- 
relation between the principal distance parameter, 
dc, and the X ,  Y, Z object point coordinates, thus 
inflating the magnitude of a,. Correlation coeffi- 
cient values reached 0.96 for numerous object 

justment. A consequence of this will undoubtedly 
be a fall-off in the precision of both sets of these 
parameters, but so long as the solution is stable 
there needs to be only limited concern in the 
context of seeking an optimum value of C,. 

The imposition of minimal control, Serials 1 to 
14, frees the exterior orientation elements and ad- 
ditional parameters from implicit constrai?ts, as 
does the  inner constraint condition llXcll = 

minimum. Serial 16 in Table 1 lists the values of:, 
obtained via the inner constraint approach with Go 
= 0 (see Equation 17) for the self-calibration and 
standard bundle adjustments. The two estimates 
for the mean positional standard error are essen- 
tially equal, with i?, = &50 pm. This value repre- 
sents a considerable improvement in precision as 
compared to the results obtained in Serials 1 to 15. 

Inner Constraint Condition I I $ , I I  = Minimum. 
This condition, described by Equation 20, which 
explicitly yields i?c, = minimum, was imposed for 
c' = 8 object target points; the outlying points 20, 
24,38, and 41 were not included in the sample. In 
Serial 17 a,, attains its optimum value of &40 pm, 
whereas i?, = 258 pm for the same adjustment. 
For the sake of comparison, the mean positional 
standard error Ti,, for the eight inner-most targets 
has been computed for Serials 2, 3, 15b, and 16, 
the respective magnitudes being 75, 62, 48, and 
46 pm. 

Relative Accuracy. Thus far the discussion has 
been confined to an examination of the mean po- 
sitional accuracy of object points with respect to an 
arbitrarily imposed reference coordinate system. A 
number of alternative measures of precision exist, 
which take into account the off-diagonal terms of 
the variance-covariance matrix 8,. Here, one such 
indicator of precision, the standard error of a com- 
puted distance between two object target points, 
will be considered. This relative measure of net- 
work strength is invariant with respect to transla- 
tion and rotation of the object space coordinate 
system, but its magnitude is dependent on the 
adopted minimal constraint configuration. As a 
general rule the distance standard error udij will 
approach a minimum as a. is minimized. 

Table 2 lists the computed distance standard er- 

space coordinates. 
As regards the efficiency of computing N+ ver- TABLE 2. COMPUTED MAGNITUDES OF DISTANCE 

sus "bordering" the normal equation matrix, the STANDARD ERRORS U~~~(UNITS ARE p ~ )  

latter approach seems to be superior in that both Distance 13- 17 4-8 
significantly less computation time and less stor- Serial (99.9 cm) (73.1 cm) 
age are required. 

Inner Constraint Condition 11$l( = Minimum. 2 64 79 
From the results obtained in Serials 14a and 15a, 5 66 81 
the tentative conclusion can be drawn that if Cc is 7 102 112 

to be minimized then the mechanisms of project- 14a 325 231 

ive compensation between the additional param- 15a 260 179 

eters and the exterior orientation elements must 
16 50 77 
17 50 70 

be allowed to act freely in the self-calibration ad- 
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rors udij obtained from seven minimal constraint 
configurations for two distances, 13-17 and 4-8 
(see, for example, Fraser (1981) for appropriate 
formulae). The optimum estimates for ud13,17 and 
ud4,* are obtained by imposing the inner constraint 
condition 11&..11 = minimum. However, the respec- 
tive magnitudes of 50 and 70 p m  are not substan- 
tially smaller than the corresponding values for 
Serial 2 (seven parameters "fixed") and Serial 16 
( I l & l (  = minimum). In  this case, for the added com- 
putational expense of the free network adjust- 
ments, reductions of only 14 and 9 p m  resulted in 
the distance standard errors when compared to the 
values obtained in the adjustment with an "op- 
timum" minimal control point pattern. This result 
tends to emphasize a well-known property of 
inner constraint adjustments: the trace of the pa- 
rameter variance-covariance matrix is minimized 
at the expense of higher correlation between the 
parameters. 

When expressed in terms of the ratio ludijl 1 du 
the values of ud,,,,, and ud4,, obtained for Serial 17 
represent relative measures of precision of 1 : 
20,000 and 1 : 10,400, respectively. 

The results obtained in this investigation again 
support the contention that close-range photo- 
grammetry is i ndeed  a measuring technique 
which can yield high precision three-dimensional 
coordinates of target points situated on a structure, 
human body, etc. However, invariably the infor- 
mation sought by the user of photogrammetry is 
obtained by considering one or more functions of 
the coordinates. For example, in a deformation 
survey coordinate difference andlor displacement 
vector determinations are required. Other appli- 
cations may require the computation of areas, vol- 
umes, distances, or displacements of points on a 
structure from their design surface positions. 

Rather than seeking to optimize the mean posi- 
tional accuracy of object target points with respect 
to the arbitrarily assigned datum, it may be  more 
appropriate to consider the precision of the math- 
ematical function of the X,Y,Z coordinates which 
is of interest; e.g., the standard error of a distance, 
as detailed in the previous section. For a particular 
linear function 9 = F(X), the precision of Y is 
given according to the law of propagation of vari- 
ances 8; = F FT. From this investigation it may 
be concluded that, for the majority of functions F 
which are commonly utilized by photogrammet- 
rists, an optimum B; will only be  obtained when 
the trace of a selected submatrix of 8; is a mini- 
mum, i.e., when either @, or is minimized. 

In  order to obtain this optimum precision, close 
attention must be  paid to the selection of the type 
and configuration of the minimal constraint. The 
choice between "fixing seven parameters" and 
turning to free network methods is perhaps most 

dependent on the nature of the desired function F 
of the X,Y,Z coordinates. For those who consider 
that the free network methds produce a less than 
fully meaningful variance-covariance matrix of the 
parameters (note that N+ is meaningful for many 
linear combinations of X), the choice of a minimal 
constraint configuration boils down to which 
seven object space parameters are to be  held 
"fixed." Here it has been demonstrated that this 
choice can greatly influence the overall precision 
of the minimally constrained close-range photo- 
grammetric network adjustment. 
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