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Free Net Analysis in 
Close-Range Photog rammetry 

The basic principles are developed and an example is given. 

C LOSE-RANGE PHOTOGRAMMETRY is similar to 
classical topographic photogrammetry in 

many respects, in particular when the solution is 
carried out analytically. Aerial triangulation by 
mono- or stereocomparator measurements and 
subsequent bundle adjustment calls for much the 
same treatment as in a large number of engineer- 
ing problems treated by close-range photogram- 
metry. 

An important and fundamental difference be- 
tween the two photogrammetries is in the defini- 
tion and realization of datum. In topographic 
photogrammetry the datum is realized through the 

variably a need in close-range photogrammetry 
to "complete" the datum by assigning, more or 
less arbitrarily, weights to a number of points or 
to exterior orientation elements. If the number of 
those complementary datum point coordinates or 
orientation elements is kept to a minimum (mini- 
mum constraints), the adjustment is acceptable 
and no distortions are introduced into the esti- 
mated parameters, although their covariance matrix 
depends on the particular choice of the datum 
quantities. If the constraints are not minimal, the 
solution is overconstrained, the sum-of-squares of 
the residuals is invariably larger, and there are 
definite distortions introduced by the adjustment 
process into the adjusted quantities. The measure- 
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superior, in accuracy, geodetic control points 
which are kept fixed or are heavily weighted in 
the solution. In engineering close-range photo- 
grammetry, control is provided usually by precise 
measurements which are of a distinctly differen- 
tial nature. Distances and elevation differences 
are measured by precise surveying methods be- 
tween points which appear on the photographs. 
Occasionally, differences between linear exterior 
orientation elements of the camera stations are 
measured as partial control. There are cases where 
some of the angular exterior orientation elements 
can also be determined. 

If the end result of the adjustment is the co- 
ordinates of points in object space, there is in- 
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ments, which are weighted by the inverse of their 
variances, have to accommodate to the more or less 
arbitrarily chosen datum hard points. 

Our conclusion is that, as far as datum is con- 
cerned, close-range photogrammetry has a built-in 
deficiency as compared to topographic photo- 
grammetry. It can't rely for datum and for correc- 
tion of systematic residual errors on geodetic 
control. 

Another characteristic which has to be con- 
sidered is that in close-range photogrammetry we 
are usually interested in relative positions of 
points, i.e., we can be satisfied with a partial 
datum which includes scale and sometimes also 
the direction of the vertical. However, as we may 
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As is well known (see Grafarend and SchaErin 
(1976) and Welsch (1979)), an unbiased estimate 
of parameters in an adjustment process is possible 
only if the A matrix of the observation equations 
is of full rank, i.e., d = 0. If d # 0, an unbiased 
solution can be obtained only for r = m - d param- 
eters. The above can be achieved by transforming 
the original observation equations through the in- 
troduction of a linear relationship between XI and 
X, as, for example, 

Xz = GT.Xl (2) 

be interested in using adjustment procedures 
(and computer programs) which solve for point 
coordinates rather than for their differences, there 
is a straight-forward solution to the datum problem 
in close-range photogrammetry; that is, applying 
free net adjustment principles together with what- 
ever differential control measurements have been 
made. 

In this paper we p resent the ideas, mathematics, 
and adjustment procedure developed for the soh-  
tion of typical close-range photogrammetry prob- 
lems by free net adjustment. At present we are 
applying the above method for the calibration of 
cylindrical storage tanks by stereophotogram- 
metry. The same approach could, and in our 
opinion should, be applied to other close-range 
photogrammetry problems. Thus, the built-in 
datum problem of close-range photogrammetry 
can be turned to its advantage by providing a 
superior means for filtering out measurement 
errors and for obtaining a more realistic covariance 
matrix of the estimated quantities. 

which is equivalent to 

We substitute Equation 3 into Equation 1' and 
obtain - - 

written also as 
The basic property of a free net adjustment is 

that the trace of the covariance matrix of the esti- 
mated parameters is a minimum. There are two 
approaches for the solution of a free net: The first 
is based on generalized matrix algebra (Bjerham- 
mar, 1973; Meissl, 1969; Mittermayer, 1972) while 
the second approach is based on classical adjust- 
ment methods as in (Koch, 1978; Wolf, 1972). The 
method presented in this section and applied 
by us for the solution of our close-range photo- 
grammetry problem belongs to the second group 
and has been published in Perelmuter (1978, 
1979, 1980) as the free net constraint elimination 
method. 

The linearized observation equations for the 
solution of point coordinates in three-dimensional 
space are 

where 

and 

- a full rank 

It should be pointed out that Equation 1' together 
with Equation 2 form in effect a case of observa- 
tion equations with conditions between the un- 
knowns. As shown by Mittermayer (1972), the 
condition of minimum trace of the covariance 
matrix of X is equivalent to the condition of 
XT.X = min. One way of obtaining a minimum 
for XTX is by defining the matrix GT as shown 
in Perelmuter (1978); i.e., 

GT = (A:. A,). (AT. A,)-' (6) 
Denoting the rank of A by R(A), we write 

from which we have also 

where d is the rank defect of A. In our case d re- 
presents the number of datum quantities needed 
to define the network in three-dimensional space. 

Substituting Equation 6' into Equation 5, we ob- 
tain finally 

The vector X can be partitioned into XI and X, 
1x1 dx1 

in a way such that X, is a set of parameters of size 
d which complements the datum definition of the 
net. It should be pointed out that the partitioning 
XI X, is not unique, i.e., there are many Xz sets in 
X which could fulfill the datum definition. Equa- 
tion 1 can be written now as follows: 

where 

The unbiased estimate of Xl and its weight coef- 
ficients matrix are obtained from 
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According to Equation 2, X2 and its weight matrix 
are obtained following the solution of Xl and Q,,  
from 

Xz = GT.Xl 
Qzz = GT.QiI.Gl 

The problem treated above is a particular case of 
a more general situation where we seek a mini- 
mum for only a part of the XT,X sum. That would 
mean partitioning XI into XI, and XI, so that the 
minimum condition applies to the following sum: 

Xlz.XT2 + Xa.X2 = min 

The new form of the observation and condition 
equations would be (see also Papo and Perel- 
muter (1981)): 

The GT matrix is treated in the following subsec- 
tion. Considerations which could guide us in the 
partitioning of Xl are discussed in the section on 
Applications to Close-Range Photogrammetry as 
well as in Wolf (1977) and in Papo and Perel- 
muter (1981). 

Equation 6 can be regarded as a general method 
for computing GT. 

In cases where the parameters X are corrections 
to point coordinates in three-dimensional space, 
there is anoiher approach for the evaluation of 
GT or rather GT which is geometrically meaningful 
(see also Koch (1978), Mittermayer (1972), and 
Perelmuter (1978)). 

According to Meissl (1969) a free network can 
be obtained from a given arbitrary network by a 
Helmert transformation, consisting of three trans- 
lations, three rotations, and a scale change which 
are all differentially small. The Helmert trans- 
formation matrix for a network of u points and all 
seven degrees of freedom is as follows: 

equations (Equation l ) ,  results in the following 
adjustment system: 

The number of rows taken from the full CT 
matrix (Equation 11) is equal to the defect d of 
Equation 1 and their identity is determined by the 
particular degrees of freedom of the network. We 
note also that CT is partitioned into C1;, which is 
set to zero, CT2 and CT related to X12 and X,, respec- 
tively. C$ is square and nonsingular. Its columns 
are chosen so that they can remove the rank defect 
of the original observation equations. The second 
row of equations in Equation 12 can be multiplied 
from the left by the negative inverse of CT, the 
result being identical to Equation 10, where * 

GT = - (C:)-'. CT (13) 

As shown in the next sectiop, we have chosen 
this approach for forming our GT matrix. The free 
net constraints elimination method can be charac- 
terized by its flexibility in allowing us the choice 
of leaving out part of the XT,.X = min condition, 
by the ease of forming the GT matrix and finally 
by the reduction in the overall size of the normal 
matrix to be inverted: i.e., (m - d )  x (m - d )  instead 
of (m + d) x (m + d). 

Let us consider a typical close-range photo- 
grammetry situation composed of p camera sta- 
tions, u points in object space, and a number of 
control measurements (distances and leveling) in- 
volving k out of the u points. 

As indicated in the previous section and also in 
Meissl (1969), a network in three-dimensional 
space has seven degrees of freedom. If the above 
control measurements are incorporated in the ad- 
justment system as observations with certain 

The first three rows are associated with transla- weights corresponding to their variances, we can 
tions along the x, y, z axes, respectively; the next easily see that part of the quantities needed to 
three to rotations around the x, y, z axes, respec- define the datum are provided by the control 
tively; and the last row to scale change. According measurements, namely: 
to Meissl (1969) a free net adjustment in all seven Scale is defined by  the distances measured; 
degrees of freedom satisfies the condition C T . X  = orientation in space of the z (vertical axis) is 
0 which, when added to the original observation defined by  the leveling measurements. 
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Thus, the balance of datum quantities, a, still 
needed to define completely the network in space 
is as follows: 

three quantities for defining the datum origin; 
one quantity for defining the orientation of the 
x,y axes (a rotation around z). 

According to the above we can easily select the 
relevant four rows from the Helmert transforma- 
tion matrix CT, i.e., rows 1, 2, 3, and 6. We apply 
the free net condition (XT.X = min) to the k points 
only, mainly from practical considerations as- 
sociated with computer programming. 

Due to the control measurements between the 
k points, the portion of the normal matrix pertain- 

tion of the system from biased into an unbiased 
(full rank) system as follows: 

where 

and 

Next, the normal equations are formed 

ing to their coordinates is a full matrix and so the 
folding-in technique employed for the rest of the 
(u - k) points (see Papo and Perelmuter (1980)) 
cannot be applied. By limiting the application of 
free net constraints to the same k points, the size 
of the matrix to be inverted (3k x 3k) does not 
increase but rather is reduced in size down to 
(3k - d) x (3k - d). 

The observation and condition equations of our 
problem are written following partitioning of the 
unknowns as suggested in the previous section. 

where 

row 1 represents the observation equations of the 
comparator measurements to which a weight 
matrix P, is assigned; 

row 2 represents the control measurement observa- 
tion equations with Pp weight matrix; 

row 3 represents the free net conditions as applied 
to X, and X, only; 

XI are corrections to the 6p exterior orientation 
elements of the p camera stations; 

X, are the 3(u - k)  corrections to point coor- 
dinates; 

X,, X, are the 3k corrections to the coordinates of 
the points on which the XT.X = minimum 
condition is applied; 

X, are the d preselected datum definition quan- 
tities; and 

n,, n ,  are the respective numbers of comparator and 
control measurements. 

The first step in the solution is the transforma- 

The normal equations can be written now as 
follows: 

where N1,, N3,, N2,, N31 are in general full matrices 
and NZz is a block diagonal matrix with 3 x 3 
blocks and quite large overall dimensions. 

The system of normal equations is solved by a 
double fold-in operation as shown in Papo and 
Shmutter (1978). The results are the XI, X,, X,, 
X4 adjusted unknowns and their respective vari- 
ance-covariance matrices. We note that the parti- 
cular pattern of the normal matrices, where NZ2 is 
block diagonal (as is usual in a bundle adjustment), 
has not been disturbed by the introduction of the 
free net constraints. 

As a demonstration of the above procedure, we 
simulated the following simple situation: 

A horizontal level area of 2.5 by 2.5 m was 
photographed by a terestrial metric camera, which 
resulted in two normal photographs with 60 per- 
cent overlap. Principal distance of the camera was 
taken to be 100 mm. Six points marked on the 
ground were numbered according to Figure 1. 
Points 1 and 2 were chosen so as to lie on the 
verticals passing through the two exposure centers. 
The vertical distance from the exposure centers 
to the ground was 1.1 m. 

Ground control measurements were performed 
as follows: 

horizontal distances were measured between 
the points 1-2, 2-3, and 2-5; and 

leveling was performed between the points 1-2, 
1-3, and 2-5. 
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z Y 
FIG. 1. Test area 

The  standard deviations of the  simulated 
measurements were as follows: 

comparator 
distances 
leveling 

u, = uy = 10 pm 
u, = 0.1 mm. 
uh = 0.01 mm. 

The variance of unit weight, taken as 100, was 
used to calculate the respective weights. 

The observation equations, formed according to 
Equation 14, have dimensions evaluated from the 
following: 

Sum of X 3 ,  X 4  variances: 
Free Net Solution: 335.16 

Hard Point Solution: 838.49 

Photo 1 Photo 2 
FN HP FN HP 

p = 2; u = 6; k = 4; n, = 12; n,  = 6; d = 4. 2 19.18 158.9 24.36 55.2 0.375 0.999 
X3 5 89.79 195.1 15.61 230.2 0.874 1.995 

The free net constraints are applied to points 1, 3 89.79 195.1 0.875 0.999 
2, 3, and 5. The da tuq  definition quantities are 3 15.61 0.0 
X I ,  Y I ,  ~ 1 ,  and ~ 3 .  The G; matrix is evaluated ac- 1 53.45 0.0 24.87 0.0 0.374 0.0 
cording to Equation 13 resulting in 

The normal matrices were formed and solved 
by APL on an IBM 3701168 computer using the 
double fold-in technique. 

A second minimum constraints solution was 
~erformed. based on the same measurements. In- ~ ~ 

stead of free net constraints, the datum was defined 
by fixing (hard points) the x , ,  y l ,  z , ,  and y 3  co- 
ordinates. 

Table 1 shows the covariance matrix diagonal 
elements (variances) of the X I ,  X 2 ,  X3 ,  and X 4  un- 
knowns. As expected, according to Meissl (1969), 
the free net solution has a covariance matrix of 
X3 and X4 with a significantly smaller trace. 

Variances in the table are in 
mm2 x for x o , y o , z o , x i , y i , z i  and 
radians squared x lo-' for K ,  4, W. 

We have demonstrated theoretically and also by 
the above numerical example that close-range 
photogrammetry combined with precise survey- 
ing measurements and processed by free net ad- 
justment techniques is an extremely powerful tool 
which can and should be applied to a wide range 
of engineering problems. 

The residuals of a free net adjustment can best 
disclose the existence of certain unmodeled sys- 
tematic effects. Additional studies should be con- 
ducted on the application of free net principles 
for the solution of photogrammetric systems 
which include self-calibration parameters. It ap- 
pears that high correlations between parameters 
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or their combinations could be effectively treated 
by free net adjustment principles. 

of Storage Tank Calibration. Proceedings of the 14th 
Congress of I S P  in Hamburg. 

-, 1981. Datum Definition by Free Net Adjustment. 
Bulletin Geodesique, No. 5513. 
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Digital representation and modeling of remotely sensed scenes. 
Extraction of information from digital remotely sensed and ancillary data related to Earth resources. 
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Needs, and, (11) Issues and Perspectives in Earth Observation and Resource Information Systems. 
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