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The Use of Residual Images in 
Landsat Image Analysis 

The method consists of developing two images from a classification: 
A mean image in which the pixels in the class are assigned the class 
mean, and a residual image in which the pixels are assigned the 
difference between the raw data and the mean. 

W HEN CLASSIFICATIONS such as land use or land 
cover are produced from Landsat data, or 

produced independently and combined with 
Landsat data, there is a recurring problem of pre- 
cision (i.e., whether the classification is suffi- 
ciently fine) in the classified image (or map). For 
example, cross spectral plots of Band 7 against 
Band 5 and their histograms for each class may 
show class heterogeneity in the form of distinct 
sub-classes. This heterogeneity would usually in- 
dicate the need for further subdivision into spec- 

is the set of measures on the system together with 
noise and errors of measurement. A data (or 'spec- 
tral') class is a set of individual picture elements 
(pixels) which is statistically homogeneous in 
terms of the measurements, and might be loosely 
described in Landsat images as a set of pixels with 
similar color. Typically, spectral classes might be 
generated by unsupervised clustering. The struc- 
tural (or 'land-cover') classes, on the other hand, 
such as the forest, urban, open grassland, and 
other land-cover classes described later, are rarely 
spectrally homogeneous (Jupp et al., 1979), and as 
a consequence need careful definition, or separa- 

ABSTRACT: A method for interactively analyzing classified images and enhanc- 
ing patterns with low contrast is introduced. It consists of generating one image 
in which each pixel is assigned the class mean radiance (the 'mean' image) and 
another in which each pixel is assigned the difference between the raw data and 
the class mean (the 'residual' image). It is shown how these two images expand 
the scope of the post-classiLfication display and analysis and how residual im- 
ages can be used to enhance subtle patterns in a Landsat image. Examples of 
application to land-cover and spectral classification are given, and the applica- 
bility of the method beyond Landsat data are discussed. 

tral sub-classes. However, this type of analysis tion into spectral subclasses, if they are to h e  
does not show whether the effects arise from im- mapped from Landsat data (Haralick, 1976). 
portant (unmapped) spatial patterns and textures, An analysis of classification precision, which 
or from transient physical effects which are unique uses the capabilities of an interactive image dis- 
to the Landsat image, and does not locate the play and analysis system, can be obtained by 
heterogeneities for subsequent retraining of the generating two new images from any classification 
classifier. of Landsat data. These are 

The need to distinguish between important 
The 'mean' image, in which the radiance values land-cover classes and sub-classes accounting for for the four Landsat bands are replaced over the 

spectral heterogeneity in the image reflects the whole image by the means of the classes to which 
distinction between 'structural' classes and Land- the pixels belong; and 
sat 'data' classes. The structural model, in statis- The 'residual' image. in which each nixel is given 
tics, is the set of defining relations of the system 
being studied (Joreskog, i973) and the data model 
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the difference between the class mean and the 
actual radiance values. 
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The two images can be analyzed by any of the 
standard methods of pattern enhancement and 
picture processing, such as Karhunen-Loeve (or 
principal component) transformation of the re- 
sidual image, level slicing, ratioing, classification, 
and histogram equalization. 

Replacing the original image by a mean image 
and a residual image may be regarded as a form of 
data dependent, and non-stationary, low pass fil- 
tering. The residual image contains the high pass 
data. The mean image (which is equivalent to 
Abotteen's cluster image (Abotteen, 1979)), as a 
display of the classification, is a smoothed and 
cleaned (in that boundaries are sharpened) version 
of the original image. 

The mean image is a color-coded classification 
map, but differs from the usual color-coded prod- 
uct of classifiers, in which it is often not easy to 
relate the colors of the classes back to the original 
scene, and in which the color coding may bear no 
relation to the spectral similarity between classes. 
The color coding of the mean image can be partic- 
ularly useful when land-cover classes are being 
displayed, since the mean image can provide a vi- 
sual estimate of class similarity. However, it is im- 
portant to note that color similarity and statistical 
similarity are related in a complex fashion (Wys- 
zecki and Stiles, 1967). 

Murai (1975) recognized that the usual color 
coding to land-cover classes lost an appreciable 
amount of information. He associated the three 
primary colors with three 'primary' land covers 
(Vegetation (green), Water (blue), Non-organic 
matter (red)) and displayed classes as mixtures of 
these. The mean image does not attempt such a 
primary classification, but does result in a false 
color image which keys color and tone with class 
type and similarity. 

There are some disadvantages with the mean 
image. The first is that, as with any color-coded 
classification, it does not display within-class vari- 
ance, nor the existance of gradients. This is a good 
reason for always viewing the residual image. The 
second disadvantage is that similar classes can 
often be difficult to distinguish in the mean image. 
This second disadvantage can, however, be over- 
come by coding selected classes to distinct colors 
with the mean image as background. 

The question of how well the mean represents 
the spectral variation in the original image is best 
answered by an analysis of the residual image. 

When the pixels have been coded to land-cover 
classes, such as land covers mapped from aerial 
photographs and ground survey, some of the vari- 
ations in the residual image may arise from regis- 
tration errors and real changes in the area between 

the time of the Landsat overpass and the land- 
cover mapping. (Using the residual image for 
change detection is not pursued in this paper.) 
Despite these differences, the most significant re- 
siduals will be spectral heterogeneities in the form 
of distinct spectral sub-classes within and across 
the land-cover class boundaries. The advantage of 
the analysis proposed here is that the extent to 
which these variations arise from unmapped land 
covers, which are identifiable as structural units, 
can often be assessed using interactive analysis of 
the residual image. 

On the other hand, the classification of pixels to 
classes may have been accomplished by super- 
vised or unsupervised classifiers. Here, the classes 
are spectral classes, and the residual image can 
indicate whether classes should be further sub- 
divided into sub-classes or redefined to ade- 
quately map the spectral variations in the original 
image. 

A familiar example of a trade-off between these 
situations occurs when land-cover classes need to 
be subdivided into spectral sub-classes to improve 
trained classifier performance (Haralick, 1976) as 
in Example 1 below. Here, the spectral heteroge- 
neity of the land-cover class is being mollified by 
subdivision, and the residual image provides a 
means for locating training areas for the sub- 
classes. For example, in the image studied in 
Example 1 below, the major variation within the 
Forest Class is due to radiance variations across 
topography. 'Bright' and 'shaded' spectral sub- 
classes within Forest might therefore provide a 
means of improving forest recognition in trained 
classifiers. Subsequent residual images would be 
obtained by subtracting subclass means. 

A separate, and possibly very significant, use of 
the residual image is to detect non-hierarchical 
classes and patterns. For example, soil boundaries 
and human activity cannot be easily accomodated 
in a hierarchical scheme, since they overlap spa- 
tially with settlement boundaries dominating the 
Landsat recorded radiance. If generalized classes 
are chosen which adequately map the settlement 
patterns, then the residual image can enhance 
patterns which cut across these major class bound- 
aries by the local contrast reductions. 

A reference model which can be used to mea- 
sure departure in the residual image by statistical 
methods is the simple 'signature' model, in which 
each class is assumed to be characterized by a con- 
stant signature of radiance 
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in the four Landsat bands. The observed radiances 
of pixels in class k are assumed to show spatially 
stationary random variation of the form 

where ek is multivariate (possibly approximately 
normal) with zero mean and variance/covariance 
matrix S k .  It is assumed for this paper that a class is 
spectrally characterized by r k  and S k  (for approxi- 
mate normality), but some spatial information 
(such as an autocorrelation matrix) could be added 
without changing the method described here. 

If S k  is approximately the same for each (sub-) 
class, then the unmodified residual image is the 
most appropriate display. However, if S k  varies 
greatly from class to class, which is always the case 
for land-cover classes which have not been sub- 
divided into spectral sub-classes, then the residual 
should be standardized by dividing each channel 
residual by the square root of the appropriate 
diagonal element of S k  in each class. This new 
standardized (or 'Student's t') image removes vari- 
ations in the residuals due only to the different 
signature variance of different types of land cover, 
by displaying 'standard deviations' from the class 
mean rather than unmodified residuals. 

During the development of the method of re- 
sidual images, a number of alternative images, 
such as distance images (grey scale) and absolute 
value of residual images, were displayed. How- 
ever, the color coded residual image always pro- 
vided a more discriminating and useful product. 

Mathematically, many of the likelihood based 
methods of Landsat classification and analysis as- 
sume a signature model such as the above. The 
obvious break-downs of the model, such as class 
heterogeneity (i.e., unaccounted sub-classes) and 
non-normality can be assessed through spectral 
cross plots, histograms, and the residual image it- 
self. The adequacy of the level of precision of the 
classification can be measured in a variety of ways. 
In the Example 1 below, tests arising from the 
analysis of variance between sub-classes (Hope 
(1968) and the Appendix) are used to assess bene- 
fits gained from the retraining and subdivision of 
classes into spectral sub-classes. 

As well as signature (class mean) and class vari- 
ance and covariance, spatial autocorrelation is a 
significant source of class specific information in 
an image (Tubbs and Coberly, 1978). Since the 
eye can often detect textural and spatial patterns 
more easily than currently available statistics, the 
use of the (detrended) residual image to assess this 
source of information has great potential. How- 
ever, the methods of texture analysis described in 
Haralick (1979) can, and should, be applied to the 
residual image to statistically support such visual 
analysis. 

An example where the stationary signature 
model breaks down occurs when classes delineate 

arbitrary sections of an environmental, or spectral, 
gradient. The within-class trends and patterns are 
enhanced in the residual image by local contrast 
stretching, and are quickly picked up by the eye. 
Since the stationary signature model is not appro- 
priate for such gradients, extended classification 
methods involving within-class spatial trends for 
means should be investigated. An example illus- 
trating results which may come from such an ex- 
tension occurs in Warn (1978), where differences 
between water depths estimated independently 
from Bands 4 and 5 are displayed as an image. This 
image provides an enhancement of turbidity and 
bottom reflectance as well as an estimate of con- 
sistency of the depth map. 

The relationship between the perceived color 
differences in both the mean and residual images 
is related in a complex way to stochastic differ- 
ences measured in grey levels. Some thought 
could be given to using a uniform chromaticity 
scale (MacAdam (1971) or CIE proposal, Anon 
(1976)) to equate the two. 

For this paper a simple linear stretch of the ac- 
tual grey level range to the full brightness range 
was applied to the bands displayed. The zero re- 
sidual was shifted to grey level 63 in each band so 
that zero and near zero residuals generally appear 
as mid-grey, and negative residuals are low 
brightness. However, the color of zero varys with 
the stretch. 

In the light of this, a significant aid to interpret- 
ing mean and residual images would be a grey (or 
color) wedge to scale the differences and indicate 
the stretched mean values. 

Figure 1 depicts an eight-class land-cover map 
of a small area (30 kmz) near Batemans Bay on the 
southeast coast of Australia. 

The eight classes were aggregated fiom a 23- 
class map used to analyze land-cover separability 
in the area (Adomeit et al., 1979; Jupp et al., 1979). 
The 23-class map was produced from 1978, 
1:25,000-scale color photography and 1975 black- 
and-white photography, together with ground data 
collected in 1979. However, the precise state of 
the area at the time of the Landsat overpass (Oc- 
tober 1975) is not known. 

Changes in land cover between the time of the 
overpass and the acquisition of the aerial photog- 
raphy, as well as uncertainty about the state of the 
shoals in the bay on 13 October 1975, lead to the 
following attempt to construct an updated land- 
cover map from Landsat data using a Bayes clas- 
sifier. The land-cover map and the October 1975 
Landsat Ulladulla scene were registered (as de- 
scribed in Mayo and Jupp (1979)) and a subset of 
6640 (83 by 80) pixels from the scene coded to one 
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FIG. 1. Eight-class land-cover map of Batemans Bay. 

Class (1) Open water 
Number in class = 1246 

Mean 12.13 8.34 2.87 
Covariance matrix 

1.58 1.45 .83 
1.45 2.38 1.14 
0.83 1.14 1.76 
0.05 0.08 0.09 

Trace = 5.76 
Class (2) Tidal mudflats and shoals 

Number in class = 305 
Mean 14.12 14.41 11.42 

Covariance matrix 
7.48 8.78 
8.78 12.49 
7.54 13.23 
2.20 4.64 

Trace = 61.68 
Class (3) Beaches 

Number in class = 209 
Mean 24.96 31.84 35.05 

Covariance matrix 
32.90 53.02 61.56 
53.02 95.56 118.19 
61.56 118.19 172.82 
25.56 53.18 82.33 

Trace = 342.55 
Class (4) Wetlands 

Number in class = 723 
Mean 12.44 13.46 22.89 

Covariance matrix 
2.24 3.00 2.06 
3.00 6.10 3.91 
2.06 3.91 10.70 
0.49 1.02 4.62 

Trace = 22.08 
Class (5) Forests 

Number in class = 2774 
Mean 11.26 11.61 29.94 

Covariance matrix 
1.03 1.14 1.71 
1.14 2.55 2.88 
1.71 2.88 13.54 
0.87 1.41 7.60 

Trace = 22.48 
Class (6) Suburban and roads 

Number in class = 664 
Mean 16.42 20.20 35.62 

Covariance matrix 
7.04 11.31 6.27 

11.31 21.68 10.89 
6.27 10.89 13.87 
1.80 3.12 5.46 

Trace = 45.92 
Class (7) Urban 

Number in class = 336 
Mean 22.50 27.19 46.40 

Covariance matrix 
8.99 11.97 4.05 

11.97 20.18 6.40 
4.05 6.40 16.62 

-0.77 -1.03 8.16 
Trace = 52.31 
Class (8) Grassland 

Number in class = 383 
Mean 16.01 17.33 47.25 

Covariance matrix 
3.94 4.75 9.80 
4.75 7.88 10.45 
9.80 10.45 58.78 
4.42 4.29 31.76 

Trace = 89.51 
Pooled within class covariance matrix 

3.73 5.15 4.77 
5.15 9.39 8.17 
4.77 8.17 19.69 
1.75 3.10 9.78 

Trace = 38.84 
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of the eight classes. The Bayes classifier was 
trained on the spectral data (Duda and Hart, 1973) 
for the eight classes, and used to reclassify all of 
the pixels back into the 'same' eight classes by 
using maximum likelihobd based on means and 
covariance matrices extracted from a training 
population from the original eight classes. 
Twenty-two percent of the pixels were reclassified 
and the resulting modified map accepted as a final 
product. As a test, the Bayes classifier was trained 
on the modified classes, and achieved 95 percent 
reallocation, but the correction was not reiterated. 

Table 1 lists the spectral means and covariance 
matrices for the reallocated eight classes. As 
shown by the Trace (sum of diagonal elements, or 
channel variances), there is considerable differ- 
ence between class covariance matrices. This dif- 
ference accounts for the change which occurs 
when the residual image is standardized. Despite 
these variations, useful measures of classification 
precision can be obtained from an analysis of vari- 
ance into between-class and pooled within-class 
components. The Appendix describes the mea- 
sures used here and Table 2 lists them for the two 
eight-class maps and the 37-class (see below) map. 
Each measure shows that the increase in class 
separation due to the above iteration is quite sig- 
nificant. 

It can be seen from Plate l b  that the use of 
spectral data has broadened some of the original 
classes. For example, highly reflective soils in 
areas cleared several days before the overpass are 
grouped with beach sand (I), and some of the dark 
gullies in the forest classified as wetlands (J). 
Nevertheless, the mean image represents a clear 
land-cover map of the area which is readily related 
to the raw data image (Plate la)  through the color 
coding. However, tvyo major differences are ap- 
parent: 

(1) the color of the Suburban, Roads, and Cleared 
class is generally disimilar to the corresponding 
patches in the original image, and 

(2) the original image is blurred near boundaries 
with high contrast, as opposed to the sharpness 
of the mean image. The possible reasons for (2) 
above, are: 
(a) atmospheric scattering of light from adjacent 

pixels into the field of view (Ueno et al. ,  
1978), 

Degrees 
Map Max. A TrW-'B X2 of freedom 

(1) 8 class 6.5 8.5 22271. 28 
(2) 8 class 

iterated 11.5 15.7 30861. 28 
(3) 37 class 57.4 71.4 50594. 148 

(b) slight band to band misregistration in the 
raw data, and most importantly 

(c) the removal of mixed pixels at the bound- 
aries of (and on gradients between) classes 
in the mean image. 

Since the mean image is very sharp, it is appar- 
ent that the mean image acts as a low pass filter, 
but also sharpens edges with strong spectral con- 
trast. -. - 

Plates l c  and Id show, respectively, the residual 
image and a standardized residual image after the 
eight land covers have been extracted, and it can 
be seen that, despite the generally satisfactory 
agreement between the mean image and the raw 
data, the eight classes are spectrally quite hetero- 
geneous. 

In  practice, it is important to keep in mind that 
similar colors in the residual image do not repre- 
sent similar land covers, but rather just similar 
shifts from the class mean. It might be useful in 
some cases to overlay the class boundaries on the 
residual image, although it is generally sufficient 
to be able to view the raw data, and mean and 
residual images, successively. 

Detailed examination of the residual images re- 
sulted in the following interpretation of the spec- 
tral data: 

There exist strong slope and aspect related 
variations in irradiance in the northwest forest (D) in 
both residual images. 

The forest type on the northwest of the image 
(D) is different from the other forest areas, e.g. (H). 
Soils, geology, and vegetation changes are known to 
be  associated with this separation (Austin and 
Cocks, 1978) although it is not easily seen in aerial 
photographs. Although interpretable in the residual 
image (Plate lc) the distinction is most clear from 
the Band 7 (red) residual in the standardized re- 
sidual image (Plate Id). At least three sub-classes of 
forest (Class 5) are needed to account for these ef- 
fects. 

There exist strong differences between the golf 
course (A) and other grassland areas (B, C) in the 
unstandardized residual). At least two sub-classes 
are therefore needed for the Grassland class (Class 8). 

In the Suburban Roads and Cleared class 
(Class 6) there is a need to separate suburban from 
cleared areas, that is, to map more land-cover 
classes. This is clear in both residual images. 

There exist several sub-classes of beach. The 
different sub-classes probably account for variations 
in brightness due to different slopes and aspect to 
the sun. 

The estuarine channel (E) is strongly distin- 
guished in the standardized residual image from the 
submerged sand bar (F) and the shallow open es- 
tuarine areas (G). 

Using this analysis as a guide for training set 
selection, the image was further subdivided to 37 
(sub-) classes. Table 2 demonstrates the significant 
increase in discrimination (and therefore preci- 
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PLATE 1. (a) Batemans Bay image, raw data Bands 4, 5, and 7. (b) Eight-class map coded to Landsat pixels. (c) 
Residual image from eight-class map. (d) Standardized residual image. 
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PLATE 2. (a) Ayr scene, raw Landsat data Bands 4,5, and 7. (b) Ayr scene, mean image. (c) Ayr scene, residual image 
(not standardized). 

sion) achieved in this way. The residual image lost 
much of its structure and the mean image became 
only marginally different from the raw data. These 
sub-classes may be grouped into an eight-class 
system in a way to be reported separately. How- 
ever, the important point for this paper is that the 
residual image provided systematic interactive lo- 
cation of new training sites for the 37 sub-class 
classification. 

Briefly, the mean image and residual image to- 
gether show the major land covers and provide a 
visual estimate of precision of the land-cover 
image as measured by Landsat spectral data. In 
this example, the residual image is dominated by 
the high variance of the residuals in the beach and 

cleared and suburban classes and the standardized 
residual is needed to bring out the more subtle 
sub-class structure of the other classes. 

As a means of spectral class mapping for pattern 
enhancement, an adaptation of the STANSORT clas- 
sifier (Honey et al., 1974) has been used together 
with the meanlresidual images. The classifier is a 
one-pass parallelipiped algorithm, and the 'mean' 
image is obtained by giving each pixel the mid- 
value of the defining parallelipiped of its class. 
This very simple algorithm was chosen since, in 
this context, the mean and residual images are 
constructed as image enhancements in 'real time.' 
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Either the mean or residual image can be dis- 
played as it is computed, and the process halted if 
the parallelipiped definition seems inadequate. 

The method has been applied in two ways. 
Firstly, the spectral tolerances (or parallelipiped 
size) can be reduced until the residual is spatially 
'random,' and the mean image used as a filtered 
image. Secondly, the tolerances can be kept very 
broad, in which case the residual image is the in- 
teresting image as an enhancement of background 
patterns dominated by the spectral differences 
between major 'classes' in the raw data. 

An example of the use of a residual image to 
enhance subtle patterns in this way has been con- 
structed in a coastal saltmarsh area near Ayr on the 
northeast coast of Australia. The raw data image is 
shown in Plate 2a and consists of a subset of 256 
lines by 512 pixels from the Ayr scene. For dis- 
play, the lines are repeated, so that Plate 2a repre- 
sents a full 512 by 512 screen of data, or approxi- 
mately 1:80,000 scale. 

The mean image (Plate 2b) is the result of using 
a broad parallelipiped size, and consists of 21 
spectral classes. The major classes are associated 
with the saltmarshes, and especially the margins 
of bright sand (A). The vegetation beyond the 
saltmarsh is lumped into a single category at this 
level, and little of the information in the sea is 
differentiated. The residual image is shown in 
Plate 2c, where the mangroves (M), the cane farms 
(C), and the coastal vegetation (V) clearly separate. 
The spectral variations in the water near to the 
coast are also strongly enhanced. 

As an analysis of the classification as such, the 
residual image betrays both the lack of training 
and the simplicity of the classifier. However, as an 
enhancement, the residual portrays a number of 
patterns not easily visible in the raw data which 
can be located as training sets for a more refined 
classification method. 

The method described consists of developing 
two images from a classification. These are 

A mean image in which the pixels in the class are 
assigned the class mean, and 
A residual image in which the pixels are assigned 
the difference between the raw data and the 
mean. 

The images have a wide variety of uses and offer 
the possibility of using the standard methods of 
image analysis to assess the classification. The 
method can be used to evaluate the precision of a 
classification, so that inadequate training and 
overly coarse classification can be refined, or to 
provide an enhancement of the data which be- 
haves as a non-stationary high-pass filter. The 
method is recommended as standard practice. 

Although applied here to Landsat data, the 
method is quite general, and may be applied in 
any spatial data, such as gridded geographical data 
and digitized photography, which may be  
analyzed using image display. 

The authors would like to express their thanks to 
Drs. D. J. Carpenter and J. F. O'Callaghan for 
their helpful suggestions and criticisms. Also, the 
referees improved the original draft of the paper 
with their constructive criticisms. Dr. P. F. Crap- 
per provided the final version of Figure 1. 
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A l .  ANALYSIS OF VARIANCE 

Let  x, be  the vector of k channel values for the 
jth of the ni pixels making up  class i out of q classes, 
and let 

be the total number of pixels classified. 
The  total sum of squares and cross products 

matrix about the grand mean radiance (x..) for all 
pixels can be  decomposed into 'between' and 
'within' class covariance matrices as follows: 

This analysis of variance and covariance is alge- 
braically valid whatever assumptions are made 
about xii. However, if the xij are normally dis- 
tributed (N(p i ,  X)) with each class having the 
same covariance matrix, 8, then the class mean 
xi. and the pooled dispersion matrix 

are efficient estimates for pi and X, and hypothesis 
tests may b e  developed which are useful mea- 
sures of the separation of the classes. 

For this paper, the term 'increased precision' is 
taken to mean a finer classification in which the 
classes are still well separated, and although the 
ideal assumptions for the tests often d o  not hold, 
they can be  used to make decisions such as when 
to stop subdividing into sub-classes. 

A2. TESTS FOR SEPARATION A N D  PRECISION 

The canonical variates (Hope, 1968) for the anal- 
ysis are the coefficients (v) of the linear combina- 
tions of the original channels which maximize the 
ratio of between to within class variance 

subject to some constraint, such as v '  W v = 1. I t  
may be  shown that the canonical variates, and 
values of the ratio are solutions of the generalized 
eigen problem 

Further, the A's are also eigenvalues of the prod- 
uct W-'B, and measure the discriminating power 
provided by the associated canonical variate. 

The three tests based on this analysis are 

I W I  
(i)Wilks A (Hope, 1968) L = - = 

(ii) Maximum h 

and 

k 

(iii) Trace (W-'B) Tr(W-'B) = 1 Ai .  
i = l  

Distributional properties for (ii) and (iii) for nor- 
mally distributed x, can be  found in Roy et al. 
(1971). For (i), assuming that the x, are normally 
distributed, and that the class covariance matrices 
are equal, then 
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would be distributed as x2 with k(q  - 1) degrees and represents no loss in precision if the de- 
of freedom. This value is recorded in Table 2, and crease in x2 is not significant relative to the de- 
has been used as follows: crease in degrees of freedom. 

(a) If the number of classes is increased (by splitting ~ h ,  importance of the work reported in this 
classes or adding new training sets), the change 
is acceptable and mly represents an increase in 

paper for this process is that increasing the num- 

pmision if the increase in X2 is significant rela- ber of (sub-)classes by adding new training sets 
tive to the increase in degrees of freedom. delineated in the residual image is usually far 

(b) If the number of classes is reduced (by removing more satisfactory than computer subdivision of 
or aggregating classes) the change is acceptable existing spectral classes. 

ISPRS Inter-Congress Symposia 

Midway between its quadrennial Congresses, each of the technical commissions of the International 
Society for Photogrammetry and Remote Sensing holds a symposium. Those symposia scheduled for 
1982 are listed below. 

Commission I* 
Advances in the Quality of Image Data 
Canberra, Australia 
14-16 April 1982 

Commission 11* 
Advances in Instrumentation for Processing and 

Analysis of Photogrammetric and Remote 
Sensing Data 

Ottawa, Canada 
30 August-4 September 1982 

Commission 111* 
Mathematical Models, Accuracy Aspects, and 

Quality Control 
Helsinki, Finland 
7-11 June 1982 

Commission IV 
Computer Assisted Photogrammetry and Car- 

tography 
Washington, D.C., U.S.A. 
23-27 August 1982 

Commission V* 
Precision and Speed in Close-Range Photo- 

grammetry 
York, England 
5-11 September 1982 

Commission VI* 
Facing the Future of Scientific Communication, 

Education, and Professional Aspects, Includ- 
ing Research and Development 

Mainz, Rathaus, Fed. Rep. of Germany 
22-25 September 1982 

Commission VII 
Operational Utilization and Interpretation of 

Remote Sensor Data 
Toulouse, France 
13-18 September 1982 

* Calls for papers have been published in Photogrammetric Engineering and Remote Sensing for these Commis- 
sion Symposia as follows: 

Commission I, September 1981, page 1372 
Commission 11, September 1981, page 1342 
Commission 111, September 1981, page 1325 
Commission V, March 1981, page 364 
Commission VI, April 1982, page 643 
Commission VII, December 1981, page 1754 


