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"Scale-Up" Estimators for 
Aerial surveys with 
Size-Dependent Detection 

The parametric size-dependent approach, though requiring 
considerable mathematical manipulation, has the ability to extract the 
maximum information from limited amounts of ground truth data. 

I N MANY AERIAL SURVEYS the population of items 
being studied varies considerably in size. This 

is true, for example, in agricultural crop surveys 
where the size of agricultural fields varies among 
farms (Podwysocki, 1976; Bauer et al., 1979), in 
forestry surveys designed to detect and measure 
human disturbances and insect infestation (Al- 
drich 1975; Ashley, 1979; Bernstein, 1974), and in 
wildlife management surveys to determine the 
number and size of ponds and lakes available to 
breeding waterfowl (Work and Gilmer, 1976; 

decreased from 1:63,000 to 1:31,600 to 1:15,800 
and, finally, to 1:10,600, the number of detected 
dead treeslblock increased, on average from 1.84 
to 2.66, 7.91, and 10.75, respectively. As a second 
example, data of Roswell (cited in Estes et al., 
1975) have shown that the detectability of lakes on 
radar images is "a complex function of the sys- 
tem(~), look angle, topography, and size of lake." 
However, detectability was primarily a function of 
size and secondarily of environment. In one series 
of experiments, detection probabilities were about 
0.25 for lakes ranging in size from 0 to 2 acres and 
0.80 or more for lakes larger than 30 acres. 

ABSTRACT: A general discussion of the problem of size-dependent detection in 
aerial surveys is presented. Three basic analytical approaches for creating mod- 
els of size-dependent detection are outlined together with their advantages and 
disadvantages. One of these approaches, using parametric population and de- 
tection models, is explored in some detail. Formulae are presented for a variety 
of population size distributions and alternative detection functions. In partic- 
ular, the inverse gaussian size distribution and extreme value detection function 
are proposed as being realistic,Jexible, and analytically tractable. Appropriate 
formulae are developed for this model and are illustrated with examples from 
the literature. 

Gilmer et al., 1978), to cite some specific exam- 
ples. If the smallest items in the population are 
beneath the detection capability of the camera/ 
filmlplatform being employed, then they cannot 
be observed or measured. Even items above this 
threshold may not be detected with certainty. For 
example, in the aerial survey conducted by 
Bernstein (1974) to identify individual trees in a 
reforestation project, photo interpreters (PIS) 
failed to detect between 50 percent to 75 percent 
of all trees in the test area, even at a scale of 
1:1000. In the study of spruce budworm damage 
(Ashley, 1979) it was noted that, as the scale was 
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Generally the detection probability increases 
with the size of the objects or with increased res- 
olution of the observation system. (At the opposite 
extreme, the largest members of the population 
might not be recognized if they exceeded the size 
of the image frame. Even if detected, they cannot 
be fully measured unless adjacent quadrats are 
also imaged. This problem is self evident and will 
not be discussed further.) If a significant number 
of items are missed due to size-dependent effects, 
statistical models need to be employed to produce 
accurate estimates. 

To avoid an excessively abstract presentation, 
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consider the specific case of a survey designed to 
estimate the hectareage of some crop under culti- 
vation in a given region. The resulting imagery- 
derived data require several adjustments. A 
"scale-UD" factor is needed to estimate total fields 
or hectaieage if the survey included only a sample 
rather than a complete census of the population. 
Additional adjustments may be required to correct 
for detection/misclassification errors as shown in 
Maxim et al. (1981a, 1981b, 1981~). In a broadly 
similar fashion, the bias introduced by size- 
dependent detection can be estimated and re- 
moved. Because it is assumed in this paper that 
smaller fields are more difficult to detect than 
those that are larger, the average size of the fields 
that are detected from the imagery is always 
greater than the true average field size. Further 
(assuming no false positives or misclassification 
errors), the number of fields detected in the imag- 
ery is always less than the true number present. 
However, depending on the nature of the size de- 
pendence, the total area of fields detected, while 
always less than the true amount, may be nearly 
correct. This is because this area is obtained as a 
product of the number of fields detected (an under- 
estimate) and the average field size of those de- 
tected (an overestimate). 

Three alternative approaches that illustrate the 
main concepts and requisite methodologies 
needed to analyze data from an aerial survey in the 
presence of size-dependent detection are pre- 
sented. (Landsat or similar imagery will require 
additional correction. For imagery of this type, not 
only are fields "missed" when they are too small (a 
Landsat pixel represents about 1.1 acres) but also 
the estimated size (i.e., number of pixels) of the 
fields detected is a discrete random variable. That 
is, even assuming perfect classification of the 
"pure" pixels, the true size can be under- or over- 
estimated simply due to the orientation of the 
platform with regard to the target. See the work of 
Cropper (1980) for useful background.) 

The results developed here assume that there 
are no significant misclassification errors or, if 
these errors do occur, that they are not functionally 
related to the size of the fields and thus can be 
accounted for separately (see Maxim et al. (1981~) 
for an exposition). If detection and classification 
are independent processes, then this assumption 
holds exactly. If the linkage between these pro- 
cesses is weak, then the results are approximately 
correct. In cases where the linkage is strong, as for 
example where size itself is one of the arguments 
in a discriminant analysis function, modifications 
need to be made to the models presented here. 
Though these modifications serve to complicate 
the analysis, the necessary theoretical develop- 
ment parallels that given in this paper. 

To analyze data in cases where detection is a 
function of size, two approaches are immediately 
evident. The first, and, from a reading of the liter- 
ature, the most common, is to reflect the size de- 
pendence only implicitly in an overall detection 
probability that is used for scaling-up results. This 
approach is valid if the ground truth sample is a 
random sample of the area imaged, and there is no 
relationship between field size and location 
within the stratum being sampled. Under these 
circumstances the estimated detection probability 
correctly reflects the size distribution of the 
population. But often a truly random ground truth 
sample is difficult or expensive to obtain. 
Moreover, as the observed detection probabilit, 
depends upon the size distribution of the fields, 
periodic recalibration is necessary to guard against 
shifts in the size distribution and, therefore, the 
resulting detection probability. An aerial survey of 
ponds as waterfowl habitat, for example, has to 
cope with population size shifts associated with 
both seasonal and cyclical rainfall patterns. 
Likewise, a study of agriculture in developing 
countries might encounter temporal size trends 
reflecting the introduction of new agricultural 
methods, land reform and redistribution, and other 
factors. Table 1 contains hypothetical data from an 
imagery experiment that illustrates the above 
points. The first four columns show illustrative 
size ranges, the number of fields in the ground 
truth sample of the population, the true (but un- 
known) detection probability for fields in each of 
the size ranges, and the expected number of these 
fields that would be discovered in a matched 
ground truth and imagery experiment. According 
to these data for Case A, of a total of 1000 fields in 
the ground truth sample, the expected numbel 
detected would be 520 or 52 percent, i.e., the 
overall field detection probability is 0.52. Given 
the approach under discussion, 0.52 would be 
used for scaling-up observed quadrat field counts; 
e.g., if 250 fields were observed in other quadrats 
in the survey then 25010.52 or 481 fields would be 
estimated. See Maxim et al. (1981~) for additional 
details. Note also that the fraction of the total area 
detected (using the mid-point of the size range in 
each category as representative of the size of all 
fields in that category, a slight inaccuracy) for case 
A is 0.608. In general this quantity will exceed the 
fraction of fields detected whenever the detection 
probability increases with size. 

But now suppose that the ground truth sample is 
not representative of the population or alterna- 
tively that, over time, the population shifts to that 
shown as case B of table 1. The true overall detec- 
tion probability for this case is 0.395, not 0.52 as 
before, and the resulting scale-up factor is 
likewise altered. This example shows the impor- 
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Field Size 
x, Arbitrary 

Units 

Case A: 
1 s x < 2  
2 s x < 3  
3 s x t 4  
4 s x < 5  

All 

Case B: 
1 s x < 2  
2 = s x < 3  
3 s x < 4  
4 s x < 5  

Total 

TABLE 1. HYPOTHETICAL DATA FROM AN IMAGERY EXPERIMENT 

True Detection 
Number of Fields of Probability for Expected Approximate Average Expected 
this Size in Ground Fields of Number Field Size in this Area 

Truth Sample this Size Detected Class Detected 

0.3 120 1.5 180 
0.5 150 2.5 375 
0.8 160 3.5 560 
0.9 90 4.5 405 
N/A 520 Total Area 2500 1520 

Fraction Total Fields 0.520 Fraction Total Area 0.608 

0.3 210 1.5 315 
0.5 100 2.5 250 
0.8 40 3.5 140 
0.9 ' 45 4.5 202.5 
NIA 395 Total Area 1950 907.5 

Fraction Total Fields 0.395 Fraction Total Area 0.465 

tance of a random sample and a constant popula- 
tion if this method is being employed. The work of 
Gilmer et al. (1980) represents an interesting vari- 
ant on this idea using a regression estimate. How- 
ever, space constraints do not permit discussion of 
this paper here. 

An alternative to simple scaling is to stratify the 
population into several size categories, such that 
the detection probability within each stratum is 
approximately constant, much as was done in 
Table 1. A detection probability can then be esti- 
mated for each size stratum. Scale-up methods 
(described later) are then used to correct for the 
observed size dependence. The advantage of this 
technique is that the ground truth sample need not 
be a random sample of the field size population 
but can be gathered at whatever locations are con- 
venient, provided that the fields surveyed span 
the entire size range and are otherwise represen- 
tative with respect to identificationtdetection. The 
disadvantage of this stratified procedure is that the 
required size of the ground truth sample is much 
larger than if the simple scale-up approach were 
used. However, because separate scale-up factors 
are developed for each size range, shifts in the 
population size distribution do not result in biased 
estimates of population totals. Returning to the 
data given in Table 1, for example, note that this 
second approach would measure the detection 
probabilities in each size range, i.e., the quantities 
shown in column 3. The scale-up rules are applied 
for fields in each size range rather than on an ag- 
gregated basis. Thus, if 210 fields of size 1 s x < 
2 are discovered in the sample, then the estimated 
number of fields in this size range is 21010.3 or 
700, etc., and the estimated total number of fields 
is the sum of the estimated number of fields in 
each size range. No assumption of randomness (of 

size) of ground truth fields is required and the pro- 
cedure is robust to population shifts. But, because 
many more detection probabilities need to be es- 
timated, the size of the calibration sample is larger 
than for the first approach. These two meth- 
odologies are summarized in Table 2 .  

Shown also in Table 2 is a third approach, de- 
noted parametric size-dependent detection. Fig- 
ure 1 gives additional details. Here it is assumed 
that the size of fields within the region of interest 
(stratified if necessary) varies according to some 
explicit distribution, denoted f(xlO), and termed 
the 'parent distribution.' Practical choices for a 
parent distribution include the log-normal, gamma 
(including the exponential and chi square), in- 
verse gaussian, Weibull, and the Pareto distribu- 
tions. The Pareto, for example, is often used to 
model the size of craters on the moon and other 
planets (Hartman, 1977). More generally, any dis- 
tribution that does not assign probability to nega- 
tive sizes is admissible; though, of course, it must 
fit the population data to be useful. 

In addition to the parent distribution, a detec- 
tion function, denoted D(xli,h), is required to 
specify the dependence of detection probability 
upon field size, x. It is assumed here that this 
function is monotone non-decreasing between 0 
and 1. That is, the larger the field, the greater the 
probability of detection and, further, very large 
fields are virtually certain to be detected. This 
latter assumption is easily relaxed by multiplying 
the detection function by a quantity, y, 0 < y s 1.0 
to accommodate the non size-dependent portion of 
the detection process. (Detection probabilities are 
likely to be a function of many factors in addition 
to size, e.g., platform, film, season, terrain, location 
of objects, etc. These effects are subsumed in the 
term y.) Likewise, functions having values greater 



"Simple 

Model Description Advantages Disadvantages Remarks - 
Scale Up" A detection probability is Uncomplicated analysis The ground truth sample 

calculated without regard and modest sample size is needs  to b e  a random 
to size using a ground needed for ground truth. sample from the total area 
truth sample to determine to b e  surveyed;  a re-  
fraction of fieldslarea qu i r emen t  sometimes 
missed. Alternatively, difficult, costly, or impos- 
capture-recapture meth- sible to satisfy. 
ods can be employed. 

For a one time survey, 
this is an effective and in- 
expensive approach. The 
scale up factor, however, 
needs to be re-estimated 
whenever the population 
or detection methodology 
changes. 

Discrete Size Dependent Fields are divided into Reasonably straightfor- This procedure needs a If a significant fraction of 
Detection (a non-para- several size categories. ward analysis. Requires large ground truth Sam- the population is below 
metric approach) Within each size class, no distributional assump- ple, increasing with the the resolution of the sys- 

the detection probability tions about population, number of categories de- tem, the "Simple Scale 
is assumed constant. This nor is a randomness as- fined. Up" methodology may be 
probability is estimated s u m p t i o n  n e e d e d  fo r  required for this stratum. 
using ground truth data. ground truth sample. This would reduce the 

usefulness of the model. 

Parametric Size Depen- Both the population dis- 
dent Detection tribution of field sizes and 

the size dependent de- 
tection mechanism are 
modeled. Either or both 
may have to be estimated 
from a ground truth Sam- 
ple or survey data. 

Ground truth require-  
ments are more flexible 
and varied and in certain 
circumstances are not re- 
quired at all. Several vari- 
ables, in addition to field 
size, can be easily incor- 
porated into the detection 
model. 

Mathematically, the anal- T h i s  m o d e l  r e l a x e s  
ysis can sometimes be  ground t ru th  requi re -  
extremely complicated, ments at the expense of 
requiring a computer to mathematical sophistica- 
solve. The resulting esti- tion. 
mates may have large un- 
certainties, depending 
upon the quality of the 
ground truth. 
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than 1.0 can be allowed with some adjustments to 
interpretation as an artifice to model false posi- 
tives. With these conventions, all detection func- 
tions are distribution functions. A special case of 
practical interest is the so-called "cookie cutter" 
detection function. The cookie cutter assumes that 
all fields below a threshold size value, denoted by 
the symbol c, are not detected, whereas those 
above c are always detected. 

Taken together, the parent population and the 
detection function define the distribution of those 
fields that are discovered in the imagery. In par- 
ticular, the density function of the size of discov- 
ered fields is given by the expression, 

i 
where P(D) is the overall fraction of fields de- 

2 tected and is equal to 

.z Figure 2 shows an example where both the par- 
8 ent density and detection functions are exponen- 

tial distributions. Note that the size distribution of 
* fields observed in the imagery is very different 
2 from that assumed for the parent; both the shape of 

the distribution and the various moments differ. 
$ This case is considered in greater detail in a later 
4 section. 

As is implied by Figure 1, it may be possible to 
4 estimate the unknown parameters e and $ without 

the benefit of a ground truth sample. This is done 
8 by varying the assumed parameters of the parent 7 population and detection function until a close 
.: match is obtained between the observed field size 
% distribution (i.e., that determined from imagery) 
x and that calculated from the model. However, de- 

pending upon the distribution and the detection ." 2 functions, one or more parameters may not be es- 
timable (see discussion of the inverse gaussian 

c model). And even if all parameters can be esti- 

4 mated uniquely, they may have large uncertainty. 
Thus, some form of ground truth is often required, 6 

i; if only to validate the model. 
Ground truth requirements for the parametric 

size-dependent detection model, however, are 
typically more flexible than those needed for the 
other procedures shown in Table 2. The simplest 
approach is to estimate the detection function di- 
rectly; imagery from an area of known ground 
truth is interpreted and the correspondence be- 
tween detection and size is noted. The detection 
function can be fitted and tested from these data 
(see Cox (1970) or Maxim (1973) for a rbsume of 
appropriate procedures). This same experiment 
can be used to measure the non size-dependent 
component of the detection probability. Altema- 
tively, a ground truth sample can be designed to 
estimate the parent population function f(xl0). 
Given knowledge of either the parent population 
or the detection function, the remaining parame- 
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KEY 

0 - 0.8 

Y = 1.5 

e - 0.5 

FIELD SIZE (UNITS) 

FIG. 2. The density function for an aerial survey sample having size- 
dependent detection. 

ters in the model can be efficiently estimated from 
the aerial survey data. Note that a random ground 
truth sample is not required to estimate D(xl+), but 
is required to estimate f(xl6). But estimation of 
D(xI+) ordinarily requires both ground and imag- 
ery acquisition and interpretation of matching 
ground truth fields, typically a time consuming 
process. (One of the reviewers suggested an in- 
triguing alternative: acquire, on the same sortie, 
imagery at two or more scales, one of which may 
be satisfactory as "ground truth.") Other types of 
ground truth collection can also be utilized to re- 
flect the particular circumstances of an aerial sur- 
vey. It may be possible to establish the parent 
density function from a totally different source, for 
example, from statistics kept by a local, state, or 
federal government agency. This approach is il- 
lustrated in an example given in the next-to-last 
section. Such exogenous information can reduce 
the cost of the survey substantially. 

The balance of this paper is devoted to an explo- 
ration of parametric size-dependent detection 
models. Beginning with the simple case of an ex- 
ponential parentlcookie cutter detection model, 
the discussion covers successively more general 
models for analysis. 

One of the simplest cases that can be considered 
is where the parent distribution is exponential, 
i.e., given by 

and the detection function is simply a cookie cut- 

ter with a threshold equal to c. For this case it can 
be shown that the density function of the size of 
those fields detected in the aerial survey is also 
exponential, but shifted to the right by an amount 
equal to the threshold. That is, 

Figure 3 summarizes the pertinent analytical re- 
sults for this case. 

In particular, the detection probability is 

P(D) = e-OC, (5) 

and the average size of those fields detected is 116 
+ c; i.e., the average field size of the parent dis- 
tribution shifted to the right by c. To illustrate, sup- 
pose the mean field size were 0.05 hectares (ha) 
and that the detection threshold were 0.03 ha. (i.e., 
6 = 110.05 and c = 0.03). The detection probability 
calculated from Equation 5 is 0.549, and the aver- 
age size of fields detected in the imagery would be 
0.08 ha. If the size dependence had either been 
ignored or remained unrecognized, then the true 
number, N, of fields in the imagery would have 
been underestimated as 

number of fields detected = N . P(D) 
=Ne", (6) 

or only about 55 percent of the true n-imber in this 
example, while the total area of the fields detected 
would have been calculated as 

total area detected = N -P(D). (ave. field size) 
= Ne"(ll0 + c), (7) 
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FIG. 3. Summary of analytical results for a simple example: exponential field size and "cookie cutter" detec- 
tion. 

or about 88 percent of the true area. It is easily 
shown that this value is always less than NIB, the 
actual total area in the imagery. Table 3 shows cal- 
culations of the bias for a range of values of the 
product 8c.  Note that, when the value of 0c is 0.25 
or less, the area underestimate can be quite small 
even though as many as 20 percent of the fields 
are not detected. These are circumstances where 
modeling size-dependent detection produces only 
a small benefit in terms of increased accuracy. 

If no ground truth is available, the maximum 
likelihood estimates of c and are 

PAFZ3T FIELD FUPULCLTION 

Density Function 
f o r  Field Size f (x) = &-OX 

Mean Field Size = $ 
variance = 

$ 

i? = min (x,, x,, . . ., x,), 

Detection 

no 

+ 
MARAmSTICS OF UNDEI'ECED FIELDS 

variance = [+I ' [I-e-ec(Ztc2o2-e-oc] 
o (l-e-" 

DEECTION CHAFAmSTICS 

Detection Function: 

0 i f  yzc 
D(x) = 

1 i f  y ~ c  

Detection Probability: 

P(D) = e-Oc 

Fraction of 
Area Detected = e-Oc[l+c~] 

I) 

6 = l / ( f  - i?), where f = C%ln. (9) 

CHARACPERISPICS OF 
, DFPECPEDFIELCG 

Detection 
yes 

1 variance = $ 

Other estimators are given in Johnson and Kotz 
(1970), depending upon what additional assump- 
tions can be made about c and 8 .  Table 4 shows 
results for other parent distributions assuming 
cookie cutter detection. 

This case is graphically illustrated in Figure 2. 
The detection function for this model is 

This detection function is analytically quite 
simple; it often provides a useful approximation in 
practice. For example, with minor modification to 
account for non size-dependent effects, this model 
provides an excellent fit to the aforementioned 
Roswell data (cited in Estes et al. (1975)) for de- 
tection of lakes from radar imagery. As with the 
cookie cutter model, it has the characteristic that 
below a threshold value, c, no fields are detected. 
However, above the detection threshold, the 
probability of detection increases only gradually 
with size, as given in Equation 10. As + gets large, 
this detection function approaches a cookie cutter. 

TABLE 3. THE BIAS AND DETECTION PROBABILITY FOR EXPONENTIAL PARENT AND COOKIE CUTTER DETECTION 

The Value of Oc 

0.0625 0.125 0.25 0.5 0.6 1 2 4 8 16 
- 

Bias (fraction of area 
detected) 0.998 0.993 0.974 0.910 0.878 0.736 0.406 0.091 0.003 l.9x1OF6 

Probabilitv of 
detectio; (fraction 
of fields detected) 0.939 0.882 0.779 0.607 0.549' 0.368 0.135 0.018 0.0003 1.1 x lo-' 

' Example in text. 
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TABLE 4. Continued 

Mean Size of Fraction of Fraction of Area 
Detected Fields, U* Fields Detected P(D) detected P(D) p*Ip 

1/0 + c c - o ~  e-OC [ l  + OC] 

QC 
a > l  

a - l  

P m  FIELD POPUMTION I 
I Density Function for Field Size f (XI@) = 0epm 

I M e a n  Field Size = Q k I variance = $ I 

DrnCrION ~ ~ S T I C S  

Detection Function: 

D(X~Y,C) = l-e-'(x-c) 

Density Function for Detected 
Field Sizes: 

g(xl~,~,c) = ~e-~(l-e-~(~-~))/~(D) 

Detection Probability: 

P(D) = e-* & 

CWWUSPERISTICS OF 

Detection 

Expected Fraction of Area Detected: 

e-OC(l-(&)2 + c ( s ) )  

M e a n  Size = 118 - P(D) (c t &)]jj-P(D)] I I [  
The variance is complicated. I 

FIG. 4. Summary of analytical results: exponential field size with exponential detection. 
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to negative estimates. In fact, in order for e to be 
positive and real, it is necessary that 

is satisfied by the data. Thus, the estimates given 
by Equations 12 and 13 above may not be applica- 
ble in all cases, and, further, may require a sub- 
stantial amount of data in order to estimate the 
parameters with any precision. 

If ground truth and matching imagery are col- 
lected to determine which fields are missed in the 
aerial survey, then this information can be used to 
estimate L!J and c. the ~arameters associated with 
the detection function: D(xI+,c). Maximum likeli- 
hood estimates of these parameters can be ob- 
tained analytically or numerically. An alternative 
approach is given below. 

The fields in a ground truth sample are stratified 
into N size categories with mid points, xi, such that 
the detection probability is essentially constant 
within each stratum. Denote Pi as the observed 
fraction of fields detected in the ith stratum and ni 
the associated sample size. Reorganizing Equation 
10 yields the predicted detection probability for 
the ith stratum, Pi, as 

That is, the unknown parameters $ and c are linear 
in In (1 - Pi) and can be  estimated by least- 
squares procedures. An improvement (q.v., 
Berkson, (1955)) is the use of weighted least 
squares, where the weights are proportional to the 
inverse of the variance of In (1 -Pi). For large 
samples this variance is equal to PI(1 - P)n, and so 
$ and c are estimated by minimizing the expres- 
sion 

or equivalently, by obtaining the weighted least- 
squares regression estimates for + and c. Berkson 
shows, in a similar situation, that the above esti- 
mates have the same large sample properties as 
the maximum likelihood estimates and can actu- 
ally be better (smaller mean squared error) in 
small samples. The principal limitation to the 
above approach is that, with a small total sample 
size, it is not possible to define strata with essen- 
tially a uniform detection probability and also 
have a large enough sample size, n,, to estimate Pi 
with precision. In practice, then, it may be neces- 
sary to combine neighboring strata so as to in- 
crease this sample size even though the resulting 
estimates will now be biased. For small sample 
sizes, a maximum likelihood treatment such as il- 
lustrated in the appendix may offer a better es- 
timator than the regression model advanced 
above. 

The ease of computation associated with the ex- 
ponential parent, as demonstrated in the previous 
sections, is an attractive attribute of this model. 
Unfortunately, for many potential applications, the 
appropriate parent distribution is better described 
by a log-normal, gamma, or Poisson distribution. 
For these distributions, numerical methods are 
required to analyze data having size dependent 
detection. The inverse gaussian distribution, given 
below, is an important exception to this rule; i.e., 

Since this distribution is not well known, this 
section will present some of its important prop- 
erties. For additional details see Tweedie (1957a, 
1957b) or Johnson and Kotz (1970). Table 4 pro- 
vides a useful resume of formulae for this dis- 
tribution. The important point to be made here is 
that the distribution is flexible (able to aproximate 
many real world size distributions) and is analyt- 
ically tractable. Figure 5 gives representative 
curves from this distribution for various values of A 
= and unit expectation. Note that as A becomes 
large, the inverse gaussian approaches the normal 
distribution, whereas for smaller values of h the 
distribution is more skewed and resembles a log- 
normal or Weibull. 

Because, for small values of x, the density func- 
tion Equation 17 is dominated by the term p412x 
in the exponential, while for large values of x, it is 
dominated by the 4xIp term, both the right and left 
tails of an empirical distribution can often be fitted 
well by an inverse gaussian. The applicability of 
this model to the size distribution of agricultural 
fields is illustrated in a later section. 

A detection function that analytically comple- 
ments the inverse gaussian parent is the so-called 
extreme value distribution. It is given by 

(This function can be easily modified to account 
for threshold effects. This is omitted in the interest 
of computational simplicity in what follows). The 
appendix shows how maximum likelihood esti- 
mates of the parameter $ can be computed from 
observed detection results, while Figure 6 illus- 
trates this function graphically for various values 
of +. The appendix also provides the equations for 
maximum likelihood estimates of this model if a 
non size-dependent term is included. 



"SCALE-UP" ESTIMATORS FOR AERIAL SURVEYS 

TABLE 5. A RESUME OF USEFUL FORMULAE FOR THE INVERSE GAUSSIAN DISTRIBUTION 

Item Formula 

Density Function 

Distribution Function 

Mean 

Variance 

Mode 

Maximum Likelihood 
Estimates 
(where A = p4) 

Skewness 

Kurtosis 

F (x) = @ ((: - I)($) ") 

where @ = standard normal integral available from tables 

fi = f = 2 xtln 

i = (1 (1/xt)/n - l ~ ) - l  

a = 3 a  (= 0 for normal distribution) 

P 2  = 3 + 15 f i lA  (=3 for normal distribution) 

The analytical convenience and simplicity of 4* = (4(2$ + C L ~ ) I C L ) ~ ~ ~ ,  (20) 
this detection function arises fiom the property 
that if the parent is inverse gaussian, then so, too, and the fraction of fields detected is given by 
is the theoretical distribution of detected fields 
from the aerial survey. (The proof of this assertion P(D) = (~~4 / (2$  + ~ 4 ) ) " ~  exp (4 
is straightforward and is omitted). Analytical re- - (+@$ + c~4)lCL)"~). (21) 
sults are summarized in Figure 7. 

The parameters of the distribution of discovered 
fields denoted by p* and 4* are directly calculable 
from the parameters of the parent distribution and 
the detection function as 

CL* = (CL(21cr + CL4)14)112 (19) 
and 

2.0 

2 1.5 
i - 
x w 

a 
1 .o 

0.5 

0 
0.5 1.0 1.5 2.0 2.5 3 . 0 %  

4 X )  

FIG. 5. Inverse gaussian distributions all having E(x) 
= 1.0 (=I* . )  where h = ~4 (taken from Tweedie 
(1975a)). 
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KG. 6. An illustration of the extreme value de- 
tection model as a function of $. 
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g(xlp,+,r) = ~ ( x ~ I I * $ * )  

Detection Frobability 

FIG. 7. Summary of analytical result: inverse gaussian field size with "extreme valued distribution" detection. 

Note also that it is not possible to estimate all three 
parameters from the aerial survey data alone. 
Some additional ground truth data are needed. 
This is because the maximum likelihood estimates 
solve the two equations, 

and 

((1 llxi)ln - 11%) = (2$ + ~ 4 ) - ' .  (23) 

Only two of the three parameters can be estimated 
uniquely, although the ratio p/+ can always be 
determined. That is, by multiplying Equation 23 
by 22, the result is 

This result can be better understood by noting that 
the density function (Equation 17), for larger 
fields, is dominated by the term 4 x 1 ~ .  Since large 
fields are almost always detected, the aerial survey 
data should reflect this ratio directly, as Equation 
24 above indicates. 

For the case of cookie cutter detection and an 
inverse gaussian population, the reader is directed 
to the work of Patel (1965). With minor adjust- 
ments to interpretation, these results are directly 
applicable to size dependent detection. 

AN EXAMPLE USING THE INVERSE GAUSSIAN 
DISTRIBUTION 

Data from a study by Podwysocki (1976) will be 
analyzed to illustrate the foregoing models. In this 

study, the distribution of field sizes for various 
major grain producing countries were empirically 
estimated from fields detected on Landsat imag- 
ery. Nearly all these distributions were highly 
peaked and skewed toward small sizes. Pod- 
wysocki used Poisson and log-normal distribu- 
tions to estimate the number of fields with sizes 
below or approaching present Landsat resolution 
limits. However, in his analysis the bias intro- 
duced by the undetected smaller fields was not 
discussed, perhaps because it was considered 
small. 

Figure 8 presents the empirical distribution of 
the areas of 147 grain fields detected on Landsat 
imagery in one sample region in Kansas. The 
mean size of these fields was calculated to be 
13.78 ha with a standard deviation of 10.77. This 
study actually gives conflicting values for the 
above estimates (q.v., its Figure 5a with its Table 
2), but this does not affect the results to follow. 
The log-normal distribution was found to fit this 
data extremely well (,y2 = 3.28 with 16 degrees of 
freedom). But, as can be observed in Figure 8, the 
inverse gaussian fits the data nearly as well (x2 = 
5.32 with 10 degrees of freedom) with parameter 
estimates 

The mode of this distribution is calculated, from 
the equation in Table 5, to be 6.078 hectares. 

Landsat imagery is of limited resolution and 
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FIG. 8. Distribution of detected Kansas agricultural fields. 

consequently small fields, if present, will not be 
detected. In order to ascertain the extent of this 
problem some form of ground truth is needed. In a 
paper by Pitts and Badhuer (1980), sizes of ag- 
ricultural fields were measured in a ground truth 
survey from 10 midwestern states. Because this 
survey included various crops from several re- 
gions within the United States, comparability with 
the survey conducted by Podwysocki is not exact. 
However, as this example is designed simply to be 
illustrative, it will be assumed (initially) that the 
ground truth distribution for all fields from this 
report approximates the parent distribution un- 
derlying Podwysocki's survey. Pitts and Badhuer 
do not give the mean and variance of this distribu- 
tion, but they do indicate that the mode is equal to 
2.5 ha. This ground truth is sufficient to permit all 
three parameters of the model to be estimated 
uniquely. 

Assuming the probability of detecting a field on 
Landsat imagery is given by the extreme value 
distribution (Equation 18), then this detection 
function must shift the mode from 2.5 ha to 6.07 
ha. Substituting this value into the equation for the 
mode on Table 5 enables calculation of the param- 
eter 4 after rearrangement. From the relation p14 
= p*/4*, p can be calculated. Finally, rearranging 
Equation 19 enables the value of + to be calcu- 
lated from p*, p, and 4. This sequence of steps 
results in values of 7.190 for the detection param- 
eter JI and p = 8.327 and 4 = 0.9899 for the parent 
distribution parameters. The "best fit" detection 
function is also shown in Figure 8. 

From Equation 21, the percentage of fields ac- 
tually detected on the Landsat imagery is esti- 
mated to be 31.5 percent. From the equation given 
in Figure 7, 52.2 percent of the total area is esti- 
mated to have been detected. From the best fit 

detection model (i.e., $ = 7.190), fields about 10 ha 
in size have a 50 percent chance of being discov- 
ered and identified while fields need to be over 50 
ha in size to have at least a 90 percent chance of 
being detected. Though perhaps not impossible, 
these values seem to be somewhat low. They de- 
pend, inter alia, upon the assumed mode of the 
parent distribution. The percentage of fields de- 
tected would be greater than indicated above if 
the mode obtained from ground truth was larger 
than the assumed 2.5 ha. Figure 9 shows how 
these percentages vary with the assumed mode of 
the parent for values between 1 and 6, and indi- 
cates the sensitivity of the field and area detection 
probabilities to this quantity. If the mode of the 
ground truth distribution were 5 ha, for example, 
then Landsat imagery would permit detection of 
about 70 percent of the fields and 85 percent of the 
area. From the graphs presented in Pitts and 
Badhuer (1980) 5 ha appears closer to the mode of 
the distribution of spring wheat including strip 
fallow fields, perhaps a better match for Pod- 
wysocki's "grain fields." If so, probabilities com- 
puted on this assumption are more accurate and, in 
any event, are more plausible. Figure 10 shows 
the changes in the estimated parent distribution 
for various assumed values of the mode. Were this 
an actual analysis rather than merely an illustra- 
tion, the ground truth data would have been more 
carefully analyzed, 

to test the fit of the inverse gaussian to the size 
distribution of fields in the ground truth sample; 
to compute other summary statistics, e.g., p and 
4, of the parent population rather than the mode 
alone; 
to estimate the parameter(s) and test the ade- 
quacy of the extreme value detection function; 
and, finally, 
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FIG. 9. Percent fields detected and total area as a function of the mode 
of the parent distribution. 

to estimate the non size-dependent portion of the 
detection probability. 

Nonetheless, the example shows how even lim- 
ited exogenous ground truth can be used by the 
methodology for estimation purposes. 

The analytical results obtained for the exponen- 
tial parent/exponential detection model can be 
replicated for the gamma parent/exponential de- 

FIG. 10. Parent inverse gauss- 
ian distribution for agricultural 
field sizes for various assumed 
values of the mode. 

tection model if the threshold parameter, c, in the 
detection function is zero. I fc  is greater than zero, 
then a closed form solution for the detection prob- 
ability, Equation 2, does not generally exist, and 
numerical methods must be employed. With ac- 
cess to a computer and programs that can deter- 
mine constrained maximum likelihood estimates, 
almost any parent distributionldetection function 
combination can be utilized to model aerial survey 
data. 

It is important to emphasize that, if an aerial 
survey is analyzed with such models without the 
guidance of a ground truth sample, then the results 
must be examined very carefully, a point under- 
scored by the Landsat example. It  is our experi- 
ence that several different parent distribution1 
detection function combinations may fit the aerial 
survey data well, but unfortunately the estimated 
detection probability, P(D), can vary appreciably 
among these alternatives. Moreover, ground truth 
data are important to a study of the non size- 
dependent portion of the detection probability. It 
is possible to have a perfect fit to the distribution 
of discovered fields and still err by this scalar. A 
ground truth sample which permits discrimination 
between possible parent distributions, detection 
functions, and non size-dependent effects is es- 
sential to reduce the uncertainty associated with 
this scale up factor. 

In a broader context, models developed here 
can also be employed to analyze data where de- 
tection may be a monotonic function of variables 
other than size. For example, in some surveys, the 
objects of interest may be detectable for only a 
short period of time. Those objects that remain in 
this state the longest will have a greater likelihood 



"SCALE-UP" ESTIMATORS FOR AERIAL SURVEYS 

of being imaged, depending, of course, on the im- 
aging schedule. Such circumstances might be 
termed time-dependent detection. Other pos- 
sibilities are easily imagined. 

Three basic approaches for dealing with size- 
dependent detection have been outlined and il- 
lustrated here. Of these, the parametric size- 
dependent approach has been explored in the 
most detail, partly because of its novelty but 
largely because of its power and versatility. 
Though considerable mathematical manipulation 
(probably requiring computer use) is required, the 
approach offers several advantages. Chief among 
these is the ability to extract the maximum infor- 
mation from limited amounts of ground truth data. 
As well, this approach is robust to shifts in the 
parameters of the parent population, changes that 
could invalidate or alter the calibration between 
imagery interpretation and ground truth. 

The authors would like to thank Ms. Mary Ken- 
nedy and Ms. Nancy David for helpful discussions 
and Dr. Paul Saunders for computational assis- 
tance. As usual, the reviewers offered useful 
suggestions to lend clarity and otherwise improve 
the manuscript. 
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The data for this problem consist of pairs of 
values, xi and ui, from a matched ground truth and 
imagery interpretation experiment. For each of n 
fields, subscripted i = 1, . . . , n, the size, xi, and the 
imagery observation, ui, are assumed known. ui is 
bivalent; it is defined as 1.0 if the ith field was 
detected and 0 otherwise. For a fixed value of Y, 
the probability that u, = 1.0, given a field of size 
xi, is exp[-Ylx,]. Following the same logic as 
Langlie (1962) or Golub and Grubbs (1956) for 
the normal distribution or Maxim (1973) for the 
exponential distribution, the probability, pi, of an 
outcome, ui, given a field size, xi, is given by 

The likelihood, L, of the outcome U = u ,  i = 1, 
. . . , n, is given by the product of the probabilities, 
pi, or equivalently In L is the sum In pi. Leaving 
aside degenerate cases, ui = 0 for all i or ui = 1.0 
for all i, and assuming all xi > 0, 

recalling that ui can only assume the value 0 or 1. 
Now, 

but 

alnp, -ui + (1 - ~ , ) e - * ~ ~ ~  - = -  
a Y xi x,(l - e-Wxi) ' 

(A-4) 

From Equations A-3 and A-4, setting the deriva- 
tive of Equation A-3 with respect to Y equal to 
zero leads to the transcendental equation, 

Observe that, for a fixed set of fields (xi) and out- 
comes (u,), the LHS of Equation A-5 is monotonic 
decreasing in Y. Denoting the value of the LHS by 
S(Y), Equation A-5 implies a functional relation- 
ship between s(*) and * as shown in Figure A-1. 
Highly efficient numerical root finding algorithms 
have been devised. In particular, a binary search 
technique termed Bolzano's Method (Wilde, 1963) 
can be employed. In essence, Bolzano's Method 
operates by evaluating the function at midpoints 
(Y,) of successive intervals of uncertainty (Yt, 
q,,). If the value of the function is positive (nega- 
tive), the new left (right) endpoint is set equal to 
the midpoint of the previous interval. The pro- 
cedure can terminate whenever one of a number 
of alternative stopping criteria are satisfied. The 
most common stopping criteria are 

FIG. A-1. The functional relationship 
between S($) and $ as implied from 
Equation A-5. 

(i) S(Y) < E, or 
(ii) Yh - Vt < E' 

where E is an arbitrarily small convergence bound. 

Example 
Table A-1 shows results of an imagery and 

ground truth experiment. 
The results of Bolzano search assuming Y is 

between 0.5 and 1 5  are shown in Table A-2. In 
this example the maximum likelihood value of 
Y is 4.58. 

For the case where the detection probability is 
given by ye-'+'", i.e., the term y is used to model 
the non size-dependent portion of the detection 
process, the maximum likelihood estimates \f 
and 9 can be obtained by solving the pair of 
equations, 

and 

DETERMINING AN OPTIMAL GROUND TRUTH 

COLLECTION SAMPLE 

The asymptotic variance of the maximum like- 
lihood estimate, just determined numerically, can 
be calculated using the well known result, 

Field Size Detection 
(arbitrary units, q) Outcome, u, 

10 1 
2 0 

10 0 
2 0 
8 1 

14 1 
1 0 
7 1 
6 0 
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TABLE A-2. RESULTS OF A BOLZANO SEARCH ASSUMING 
9 1s BETWEEN 0.5 and 15. 

JI Assumed s($) 

One criterion for determining an optimal ground 
truth sample is to choose field sizes which mini- 
mize this asymptotic variance. For the extreme 
value distribution, the above expression can be 
evaluated by differentiating Equation A-4 a sec- 
ond time and then summing over i, or 

Now. 

tion A-9 can be maximized with respect to each 
xi, because the denominator is always nonnega- 
tive. Differentiating this reciprocal, the result is 

a(Var If.)-' 
axi 

e-V/Xi - YeV'lXi - zxi(l - e-*lXi) + Y e - ~ I ~ i  - - 
xi4(1 - e-wlx i )Z 

Setting this to zero then gives the equation, 

Y - 2xi(1 - e-"'lxi ) = 0, 

This equation has solutions at xi equal to in- 
finity and 

It can be shown that the value of xi given in Equa- 
tion A-11 minimizes Var(SI) with respect to xi. 
Thus, the optimal ground truth sample would be 
to select fields each of size 411.594. Note that 
fields of this size have a detection probability of 

The optimal sampling plan cannot be applied ex- 
,-w /Xi 

= [ t  2 =  xi2(1 - e-wlxi 1-l. (A-9) actly because it requires knowledge of the un- 
) - known $. Given even a rough estimate of Y, 

however, the above results offer useful insight 
To determine those field sizes, xi, that minimize as to how the ground truth sample ought to be 
this asymptotic variance, the reciprocal of Equa- collected. 
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