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Classification Accuracy: A 
User Approach 

The importance of considering both the probability of incorrectly 
rejecting an acceptable map (producer's risk), as well as the 
probability of accepting an inaccurate map (consumer's risk) 
are emphasized. 

INTRODUCTION 

0 VER THE PAST DECADE remote sensing applica- 
tions have been developed which can meet a 

wide variety of mapping information needs. The 
user can generally choose from several remote 
sensing systems. One of the important criteria 
used in selecting a remote sensing system is the 
accuracy of the information it can provide. The 
accuracy is commonly assessed by selecting a 
sample of points from the map product and com- 
paring the map classification with some verifica- 
tion data. 

Alberta the accurate identification and avoidance 
of organic soils produces considerable savings in 
road construction costs. Thus, inaccurate mapping 
of these soils can be very costly. However, there 
are also real costs associated with rejecting as in- 
accurate a map which actually is of acceptable 
standard. These costs include field and office time 
for re-checking and costs to users for the delay in 
obtaining the information. Similarly in comparing 
the classification accuracy of remote sensing sys- 
tems, a suitable inexpensive system might be re- 
jected in favor of a more expensive method be- 
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ationally, unnecessarily re-checking a map and the delay in transmitting the 
information to the user can be costly. This cost can be considerably reduced by 
designing a sampling system which provides for both low consumeis and pro- 
ducer's risks. 

The objective of this paper is to review the 
theory and application of classification accuracy 
tests. It is addressed to both users and producers of 
what are termed "attribute maps," such as maps of 
land use, soils, and vegetation. Attention is focused 
on the user's need for an effective test to estimate 
the classification accuracy of specific map classes 
or remotely sensed image classes. 

The selection of a sampling design is of more 
than academic interest. As an example, in northern 
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cause the sampling design was not powerful 
enough to identify the system as ''sufficiently ac- 
curate." 

The criteria for judging any proposed sampling 
design have been summarized by Ginevan (1979) 
as follows: 

There should be a low probability of accepting a 
map of low accuracy, 
There should be a high probability of accepting a 
map of high accuracy, and 
A minimum number of ground data sample points 
should be required. 
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In order to decide whether a map is of accept- 
able accuracy, a sample of map points is checked 
against ground data and a probabilistic statement 
is made about the true accuracy of the map. This 
statement generally claims some minimum level 
of accuracy with some high level of confidence, 
e.g., a minimum of 85 percent accurate at the 95 
percent confidence level. The sampling problem, 
therefore, is one of determining the optimal 
number (N) of map samples to be compared with 
ground data, and an allowable number (X) of mis- 
classifications of these samples. After these values 
are determined, N map samples can be selected 
and their classifications compared against the true 
classification of the sample point (e.g., ground 
data). If X or fewer points are misclassified, then 
the map can be  accepted as accurate at the 
specified level of precision. 

Map or classification accuracy estimation can be 
viewed as a hypothesis test. The strategy of hy- 
pothesis testing is to state the problem in terms of 
two mutually exclusive choices, then to accept the 
conservative hypothesis (null hypothesis) unless 
there is a low probability of it being true. For map 
accuracy assessment the test may be stated as a 
null hypothesis (H,) and alternate hypothesis (HI) 
as follows: 

H,: The map is less accurate than required. 
HI: The map accuracy is equal to or greater than 

that required. 

(In the appendix, a more formal statement of the 
null hypothesis and an alternate formulation often 
found in the literature are given. The way in 
which the alternate formulation can give mis- 
leading results is also discussed.) 

This test can give two correct and two erroneous 
decisions. The L o  types of correct decisions are 
(1) to accept a sufficiently accurate map, and (2) to 
reject a substandard map. The two types of erro- 
neous decisions are (1) to accept a substandard 
map, termed the consumer's risk, and (2) to reject a 
sufficiently accurate map, termed the producer's 
risk. (Type I and I1 errors are discussed in the 
appendix.) 

The terms "consumer's risk" and "producer's 
risk" are taken from a branch of statistics known as 
acceptance sampling. Used extensively in the 
manufacturing industry for quality control, accep- 
tance sampling theory considers problems essen- 
tially the same as the evaluation of map accuracy. 

To illustrate the statistical theory of classifica- 
tion accuracy testing, consider a map of some un- 
known accuracy. A sample of N points can be ran- 
domly selected and the "true" classification of 
each point determined. (It is assumed that mis- 

classification of a site can be unambiguously de- 
termined.) The proportion of correctly mapped 
points can then be calculated. If this process were 
repeated and another N points were selected from 
the same map, the proportion of correctly classi- 
fied points would probably be different. Repeat- 
ing this process a large number of times and tally- 
ing the frequency that each value of "proportion 
correct" occurs, would generate a sampling dis- 
tribution which could be graphed as the propor- 
tion correct or accuracy of the sample against 
frequency or probability of obtaining the value. In- 
stead of performing these iterations, a mathemat- 
ical model can be selected (such as the normal or 
binomial distribution) which is considered to best 
represent the distribution of sample proportions 
which would have been obtained if N points had 
been randomly selected from a map with accura- 
CY QL. 

This is illustrated in Figure 1. (The normal dis- 
tribution is used here for ease of illustration 
though, as discussed below, it is often not appro- 
priate for map accuracy estimation.) For a test at 
the 95 percent confidence level, QL is set at the 
minimum accuracy and H, will be accepted unless 
there is a 5 percent (0.05 probability) or less 
chance that the map's accuracy is less than QL. 
(Since the probability of exceeding a maximum 
level of accuracy is not generally of concern here, 
only one tail of the probability distribution is used 
for calculations.) The value QT is calculated such 
that the probability of obtaining a sample value as 
high or higher than Q, is 5 percent, assuming that 
the map has an accuracy of QL (see Figure 1). If the 
proportion of correct points in the sample is equal 
to or greater than QT, then the map's accuracy is 
considered to be equal to or greater than QL and 
the map is accepted. If the sample accuracy is less 
than Q,, the map is rejected because it is consid- 
ered that there is too great a probability that the 
actual accuracy of the map being tested is less than 
the accuracy required. 

To illustrate the determination of producer's 
risk consider, as example, the probability dis- 

ACCURACY IN  P E l C E N l  

FIG. 1. Consumer (A) and producer (B) risks with small 
sample size. 
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tribution, shown in Figure lB, of the same N test 
points randomly selected now from a map which 
actually has an accuracy Q,, where Q, is higher 
than Q,. The producer's risk B (shaded area) is the 
probability that the proportion of correct points is 
less than QT; in this case, B = 0.60 or 60 percent. 
This means that, in designing this sampling test 
with emphasis on ensuring that low accuracy maps 
are rejected, we have made i t  difficult for a map 
which actually meets these requirements (i.e., a 
map with a true accuracy QH) to pass the test and 
be accepted. In fact, there is a 60 percent chance 
that this map would be rejected. 

The producer's risk could be reduced by in- 
creasing the consumer's risk (i.e., reducing Q,) or 
by increasing the sample size. Fjgure 2 illustrates 
the effect of increased sample size which reduces 
the sample variance, thereby "narrowing" the 
sampling distribution. Note that the value of QT 
can now be lower and still maintain the same con- 
sumer's risk of 5 percent while giving a lower pro- 
ducer's risk, in this example, of 10 percent. 

Map accuracy assessment tests discussed in the 
literature have usually considered only the con- 
sumer's risk, generally set at 5 percent. However, 
for small sample sizes this may result in producer's 
risks on the order of 60 to 70 percent. Thus, while 
there is a low probability of accepting an inaccu- 
rate map, there is a high probability that an accu- 
rate map will fail the test and incur unnecessary 
costs such as re-checking and the delayed 
availability of information to users. 

Accuracy estimation methods presented in the 
literature differ primarily in the way they resolve 
two questions. The first is which mathematical 
model to use. The second involves how to deal 
with the fact that for a given map different classes 
will be mapped with different levels of accuracy. 

T H E  MATHEMATICAL MODEL 

The binomial distribution is considered to be 
the appropriate model when sampling is con- 
ducted under the following conditions: 

Each trial or each item selected can be assigned 
to one of two categories (e.g., correct versus in- 
correct), 
The probability of obtaining a "correct" result is 
the same for each trial, 
Each trial is conducted independently of any 
other, and 
A fixed number of trials are performed 
(Guenther, 1977). 

In the field of acceptance sampling and in the 
recent literature on map accuracy estimation, the 
binomial distribution is considered the most ap- 
propriate mathematical model. Some researchers 
have calculated binomial probabilities from the 
binomial probability function itself, while others 
have used the normal approximation. 

Single sample plan based on the binomial. 
Ginevan (1979) has approached the problem of 
map accuracy estimation as a problem in accep- 
tance sampling and has calculated exact binomial 
probabilities by computer. The binomial proba- 
bility is calculated as follows: 

P(s) = 
N! 

Q s  (1 - Q)N-8 
(N - s)! s! 

(1) 

where P(s) = the probability of obtaining s cor- 
rect points in the sample, 

N = sample size, and 
Q = accuracy of the map, i.e., proportion 

of correctly classified ~o in t s .  
This formula can be more conveniently written 

to express the probability of a given number of 
misclassifications (X); thus, s = N - X and, by sub- 
stitution, 

P(X) = 
N! 

QN" (1 - Q)X. (2) 
X!(N - X)! 

To design the test, a minimum acceptable map 
accuracy (Q,), a sample size (N), and a consumer's 
risk (A) (usually 0.05) are selected. Then the larg- 
est number of allowable misclassifications (X') 
is found such that the cumulative probability of 
havingXt or fewer misclassifications is less than or 
equal to A. That is, find Xt such that 

X' 

A s  1 N! 
QLN-X (1 - QL)X. (3) 

x=, X!(N - X)! 

The producer's risk B, the probability that a map 
of some high accuracy QH will have more than X' 
misclassifications and thus be rejected, can be cal- 
culated as follows: 

N 

B =  1 N! 

,y=,y,+, X!(N - X)! 
QH~-'  (1 - QH)I. (4) 

ACCURACY IN  C E R C E N l  Because the binomial distribution is discrete, 
FIG. 2. Consumer (A) and producer (B) risks with large several values of N have the same value of X. In- 
sample size. creasing the sample size within the range that X 
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takes on a certain value. increases the ~roducer's 
risk while exceeding the required consumer's risk. 
Thus, given QL, QH, and the consumer's riskd, it is 
the lowest value ofN for a given X which will give 
the lowest producer's risk. 

Ginevan (1979) has produced tables which 
allow sample sizes and allowable number of mis- 
classifications to be conveniently evaluated for 
values of QL = 0.85, 0.90; QH = 0.90, 0.95, 0.99; 
and A = 0.01,0.05. (Note that consumer's and pro- 
ducer's risks are designatedA and B, respectively, 
in this paper and as B and a in Ginevan's (1979) 
paper.) 

Suppose a minimum acceptable accuracy of 75 
percent were chosen for Q,, and the same value 
were chosen for QH. Then a map accuracy test 
which gives a 5 percent chance of accepting an 
inaccurate map (e.g., a map slightly less than 75 
percent accurate) would give a 95 percent chance 
of rejecting a map with a true accuracy of 75 per- 
cent. When Q, is chosen equal to Q,, then the 
consumer's risk and producer's risk sum to 100 
percent. However, the chance of rejecting a map of 
85 percent accuracy (QH = 85 percent) might only 
be 60 percent. Thus, selection of the value QH de- 
termines the value of the producer's risk that will 
be calculated. 

The sample size N, or values of the other vari- 
ables, should be adjusted until a suitable design is 
obtained which reflects the costs of potential er- 
rors. If the consequences of a misclassification are 
not costly, then a higher consumer's risk or lower 
accuracy level might be acceptable. This would al- 
low fewer samples to be checked, thereby reducing 
the cost of the map accuracy test as well. It should 
be recognized that, as required accuracy levels 
become higher and as consumer and producer 
risks are specified lower, the cost of performing 
the test increases considerably faster than im- 
provements in the test parameter values. The extra 
bit of accuracy or risk improvement comes at a 
disproportionately high cost. Ultimately, a judge- 
ment must be made as to which parameters of the 
test are appropriate for the situation. 

Curtailed sampling with the binomial. Having 
selected a sampling design to test classification 
accuracy and randomly selected all the points to 
be checked, it is usually not necessary to check 
each point. As soon as too many misclassified 
points are identified, the classification has failed 

TABLE 1. COMPARISON OF AVERAGE SAMPLE 
NUMBER (ASN) VALUES 

the test and no further points need be checked. 
Similarly, if the number of points remaining to be 
checked is less than the remaining number of al- 
lowable errors, the classification has passed. When 
these "stopping rules" are used the sampling 
method is termed "curtailed." Curtailed sampling 
does not change consumer or producer risks; how- 
ever, the sample size N becomes a random vari- 
able. The average sample size (ASN), using a 
binomial accuracy test for a map of accuracy Q, is 
calculated as follows (where p = 1 - Q: 

X + l  
ASN = - 

II 
E(X + 2; N + 1, p) 

r 

(5) - 
(1 - E(X + 1; N + 1, p)) +- 

1 - P 

N! 
where E(s; N,p) = 

rq r!(N - r)! 
pr (1 - pIN-'., (6) 

r = number of misclassifications, and 
p = proportion of misclassified points. 

(after Guenther, 1977) 

Average sample number tends to be reduced as 
the actual classification accuracy of the maps 
being tested is reduced and as the required accu- 
racy increases. Table 1 compares average sample 
sizes for a test of 90 percent minimum accuracy 
using a sample size N of 46 and allowable errors X 
of 1. Consumer's risk for this test is 5 percent. 

The selection of a sampling design should con- 
sider the consumer's and producer's risks, the ac- 
curacy required, and cost of performing the test. 
Where verification of each sample point is costly, 
the average sample number will be an important 
factor in the selection of a sample design. How- 
ever, to estimate the average sample size, some 
prior knowledge of the accuracy of the maps to be 
tested is required. 

The normal approximation to the binomial. 
Under certain conditions the normal distribution 
can be used to approximate the binomial distribu- 
tion. Rosenfield and Melley (1980) have discussed 
their use of this approximation in map accuracy 
assessment. The approximation provides a con- 
venient way of determining a cumulative binomial 
probability. The confidence interval for this ap- 
proximation is given by Snedecor and Cochran 
(1967) as follows: 

Actual where z is the normal deviate of the standard nor- 
Accuracv ASN mal distribution and other terms are as previously 

defined. For a one tailed test this equation can be 
0.80 10 

13 
written as 

0.85 
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(where Pr means 'probability of'). The producer's van's convenient tabulations, it would seem more 
risk can be calculated as follows: convenient to use the exact values of the binomial 

I than the approximations. Another advantage of 
pr [(IQ' - Q H ~  ) - 'Iw) < z = B 

(9) Ginevan's tables is that the designs have been op- 
V Q H ( ~  - QHVN timized to give the lowest producer's risk for a 

given number of allowable errors and a given con- The value 1/2N is a continuity correction which sumerps risk. (For a given number ofallowable er- 
some authors (e.g., Hard and Brooner, rors, the smallest sample size that gives an accept- 
choose not to use in order to simplify calculations. able risk will minimize the producerss 
The equation better approximates the binomial as risk.) the proportion approaches 0.5 and as sample size 
increases. Proportions at the extremes (e:g., 0.9) ASSESSING ACCURACY FOR INDIVIDUAL CLASSES 
have highly skewed binomial distributions, 
whereas the distribution is symmetrical. The Sampling designs discussed above give an 
Cochran (1977, p. 58) has suggested the following estimate accuracy but differ- 
minimum sample sizes for using the normal ap- entiate between errors ofomission and commission, 
proximation with correction: for a pro- nor do they take into account the distribution of 
portion of errors of 0.1 (e.g., to test for a map accu- these errors. This distinction may be important, as 
racy of 90 percent) the minimum size is for example when it is important to accurately 
600; and for P = 0.05 the minimum sample size is identify only one or two classes. This type of in- 
1400. Sample sizes this large are generally consid- formation can be obtained from an error matrix- 

ere,j prohibitively expensive for map accuracy Error matrices. An error matrix is a tabulation of 

testing. accuracy test results which shows the number of 
Comparison of models, T~ illustrate the differ- points correctly and incorrectly identified. Commis- 

ences between the various models, Table 2 corn- sion errors (erroneousl~ including a point from a 
pares the consumer risks  of^ or fewer misclassifi- class) and omission errors (erroneously excluding 
cations for a sample size N as calculated by the a point from a class) are clearly ~resented. For 
cumulative binomial (Equation 3), the ap- 

example, in the error matrix shown in   able 3, for 
proximation with continuity correction  ti^^ class A, 26 points were correctly classified, and 
7), and the normal approximation without con- there were two commission errors and seven 

tinuity correction. omission errors. A test to estimate the classifica- 
l-he normal approx~mat~on without continuity tion accuracy of a single class can be done using 

correction underestimates the consumer's risk as the same methods described above for all classes 

calculated by the binomial, thereby overestimat- of a map by randomly selecting points from a 

ing the classification accuracy. The normal ap- sing1e 

proximation with continuity correction overesti- Error matrices clearly show accuracy test re- 

mates the binomial, underestimating the accuracy sults; however, when a single measure of quality 
level. The same biases apply to calculations of is needed, as for example when two remote sens- 
producer's risks. The errors introduced by the ing system products are to be compared, it is con- 

approximations vary from about 25 to 50 venient to have a value to represent the informa- 
percent of the values for the binomial. AS a result, tion of the entire matrix. One approach to this 
sampling designs based on the normal approxima- problem is that of Congalton et al. (1981) who have 
tion with continuity correction will require larger used multivariate analysis techniques to analyse 
sample sizes for a given number of allowable er- and compare error matrices. A second approach is 
rors, thereby increasing the producer's risk un- the use of analysis of variance as discussed in RO- 
necessarily. senfield and Melley (1980) and Rosenfield (1981). 

With the availability of computers and cine- comparison of classification 1-esults. Congalton 
et al. (1981) used multivariate analysis techniques 
to generate a normalized error matrix and to mea- 

TABLE 2. COMPARISON OF CONSUMER'S RISK sure the agreement between two error matrices. 
CALCULATIONS FOR MINIMUM ACCURACY OF 85 PERCENT They are continuing the development of these 

methods, and the limited space only allows for a 
Normal Normal brief description here. 

N X Binomial* with cc** without cc** A normalized matrix has each row and each col- 

30 1 0.0480 0.0618 0.0367 umn sum to one. This allows different elements in 

35 1 0.0243 0.0375 0.0222 an error matrix or in different matrices to be di- 
40 2 0.0486 0.0606 0.0384 rectly compared despite differences in the way an 
46 2 0.0234 0.0344 0.0217 accuracy test sample has been distributed among 
50 3 0.0460 0.0571 0.0375 the classification categories. The theory of nor- 

malizing a matrix is presented in Biship et al. 
* taken From Ginevan (1979) 

** cc, continuity correction (1975, p. 85). By normalizing the error matrices 
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TABLE 3. A MAP ACCURACY ERROR MATRIX 

CLASSES 

VERIFIED 

A B C D E Total % Correct % Commission 

a A 26 1 0 0 r B 1 5 0 0 
5 c 2 o 43 1 

g D 4 1 2 76 
E 0 0 2 1 

Total 33 7 47 78 
% Omission 2 1 29 9 3 

generated by testing each of two remote sensing 
systems, corresponding values for each cell in the 
matrix can be directly compared. However, this 
also tends to hide the data on sample size, which is 
important because a sample accuracy of four out of 
five points correct has less confidence than 40 out 
of 50 correct. 

Congalton et a2. (1981) also defined a measure of 
agreement termed KHAT, a statistic calculated for 
each error matrix. Confidence limits can be calcu- 
lated, allowing the significance of the difference 
between KHAT values for two matrices to be evalu- 
ated. 

One advantage of this method over an analysis 
of variance (ANOVA) is that it does not assume that 
the accuracy levels (factor levels) observed in each 
category are independent (as is necessary in order 
to use an ANOVA test (Neter and Wasserman, 

1 ' 1974)). If one class is consistently confused with 
one other class (as commonly occurs), the propor- 
tion correct for those classes will not be indepen- 
dent. Rosenfield and Melley (1980) and Rosen- 
field (1981) have addressed these problems and 
illustrate the use of ANOVA for comparison of error 
matrices. 

It is important to note that, in using error matri- 
ces to compare remote sensing systems, it is the 
entire system from image acquisition through 
image interpretation to map compilation which is 
being compared. A valid comparison requires that 
all these variables be controlled; otherwise, dif- 
ferences in map compilation, for. example, could 
com~letelv mask the differences between the in- 
terp;etabiiity of the image products. 

The comparative analysis of error matrices may 
provide better methods of comparing land-use 
classification mapping methods than a simple 
comparison of overall estimated map accuracy. 
However, a user faced with a specific application 
may find that any single measure of quality does 
not provide the information he needs in order to 
understand the relative advantages of the two 
systems. In these cases an error matrix can be 
more valuable by allowing class by class compari- 
sons. It clearly shows the actual number of sam- 
ples drawn from each class, allowing the user to 
select a suitable test to judge the confidence of 
conclusions drawn from the data. 

This paper has reviewed the theory of map accu- 
racy estimation. It has been shown that the null 
hypothesis can be stated in two ways. Though 
both statements will give the same estimates for 
consumer and producer risks, the calculations 
must be done differently. The design of an accu- 
racy test should consider both types of risk be- 
cause there are significant costs associated with 
delays in receiving information caused by un- 
necessarily rechecking maps, as well as costs in 
accepting substandard products. It appears that 
the method described by Ginevan (1979) is statis- 
tically valid, easy to use, and considers both the 
consumer's and producer's risks. 

More detailed analysis of error matrices using 
measures of agreement or analysis of variance may 
be valuable for comparing remotely sensed data 
acquisition systems. As use of the tests are better 
documented, they may be more commonly used. 

The current interest in map accuracy estimation 
will probably lead to the development of more or 
less standard test methods. Such a test is needed 
as remote sensing systems are compared for 
selecting the "best" one for a specific operational 
application. As the need for better management of 
diminishing natural resources becomes increas- 
ingly more important, so will the need for infor- 
mation which meets a certain minimum accuracy 
level. Accurate estimation of map accuracy then 
becomes essential. 
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I FORMAL STATEMENT OF THE NULL HYPOTHESIS 

Statement 1 .  The classical statement of the null 
hypothesis for a one tailed test would take the 
form 

H,: Q Q,  (i.e., the map is of acceptable accuracy) 
and 

HI: Q < Q,  (i.e., the map is not of acceptable accu- 
racy) 

where Q is the inferred accuracy of the map being 
tested and Q, is the minimum required accuracy. rw 
is defined as the probability of incorrectly reject- 
ing H,, which in this case means the probability of 
incorrectly considering the map to be inaccurate. p 
is defined as the probability of incorrectly reject- 
ing HI, which in this case means the probability of 
incorrectly considering the map to be sufficiently 
accurate. Using this statement of the null hypothe- 
sis, the consumer's risk (the probability of accept- 
ing an unsuitable product) is P and the producer's 
risk is a. 

Statement 2. An alternative statement of the null 
hypothesis could take the form 

H,: Q G Q, (ie the map is not of acceptable accuracy) 
and 

H,: Q > Q, (ie the map is of acceptable accuracy) 

where Q is the inferred accuracy of the map being 
tested and Q, is the highest accuracy level that 
would be r e j e c t e d .  (Ginevan (1979) uses a 
maximum rejected accuracy for his calculations.) 

In this case a, the probability of incorrectly re- 

jecting H,, becomes the probability of incorrectly 
considering the map to be accurate. Similarly 8, in 
this case, becomes the probability of incorrectly 
considering the map to-be inaccurate. Here the 
consumer's risk is a and the producer's risk is R, . . 
the reverse of the situation in-statement 1. 

Choice of null hypothesis.  It does not matter 
which statement of the null hypothesis is used as 
long as consumer and producer risks are appropri- 
ately defined as above. The reason for this is that 
Q,. and Qm are points on a continuum and thus, for 
purposes of calculation, "greater than or equal to 
Qm" is the same as "greater than Q,." For example, 
consider the calculation of the maximum number 
of misclassifications in a sample of size N to give a 
consumer's risk of 5 percent that a map is 85 per- 
cent accurate. Using the first statement of the null 
hypothesis, the maximum number of allowable 
misclassifications X would be determined by 
finding the maximum value of X such that the 
cumulative probability of X or fewer misclassifi- 
cations in a sample of size N is less than or equal to 
5 percent (in this case is being set at 5 percent). 
The value for Qm used in this calculation would be 
85 percent. 

Similarly for the second statement of the null 
hypothesis, suppose that Q,, the highest accuracy 
level to be rejected, is set some small amount E 

less than 85 percent, i.e., (85-E) percent. Then the 
maximum number of allowable misclassifications 
for a consumer risk of 5 percent would be deter- 
mined by finding the maximum value of X such 
that the cumulative probability of X or few mis- 
classifications for a sample size N is less than or 
equal to 5 percent (in this case a is set equal to 5 
percent.) Since E is taken to be very small, the limit 
as E approaches zero is for Q, to approach 85 per- 
cent. Thus, because the values of Q, and Qm are 
essentially two points on a continuum of accuracy 
values, the cumulative probability up to and in- 
cluding that point is the same as the cumulative 
probability up to but not including the point. 
Thus, it does not matter which statement of the 
null hypothesis is used. The confusion arises in 
deciding whether a or P should be set to the con- 
sumer's risk. 

If an accuracy test is to be designed so that 95 
percent of the time a map which is accepted in fact 
meets the accuracy criterion, then the consumer 
risk is 5 percent. Using the first statement of the 
null hypothesis, this means that P = 5 percent and 
1- p = 95 percent. Technically, this means setting 
the risk of a type I1 error 8 at 5 percent and the 
power of the test (1- P) at 95 percent. However, in 
popular parlance the test might also be regarded as 
one at the "95 percent confidence level," when 
technically speaking it is at the 95 percent power 
level. Confidence level is defined as being equal 
to 1 - a and a in this case is the producer's risk. If 
the second statement is used, then the reverse is 
true. That is, to achieve the same 5 percent con- 
sumer's risk a must be set to 5 percent and 1- a = 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1982 

95 percent. Technically this test would be consid- 
ered at the 95 ~ e r c e n t  confidence level but the 5 
percent consumer risk is now the probability of a 
Type I error. 

In using the terms consumer and producer risk 
throughout this paper, the author has attempted to 
avoid this confusion. Also, by choosing to use the 
second formulation of the null hypothesis, the 
confusion of saying 95 percent confidence and 
meaning 95 percent power is avoided. 

A NUMERICAL EXAMPLE 

The following numerical example will be used 
to illustrate the effect on calculations in using the 

two formulations discussed above. The example 
considers designing an accuracy test involving the 
selection of ten points from a map (a sample of ten 
is used for ease of illustration; normally, a larger 
sample would be used). The allowable number of 
misclassifications X is to be found such that, if the 
sample has X or fewer rnisclassifications, it can be 
inferred with 90 percent confidence that the map 
has an accuracy of at least 70 percent. 

Calculation using statement 1 .  Using statement 
1, the test strategy is to accept the null hypothesis, 
in this case "the map is at least 70 percent accu- 
rate," unless the test results indicate there to be 
less than a 10 percent chance of this being true. 
Because the binomial distribution is discrete 
(number of rnisclassifications must be an integer), 
the largest number of misclassifications giving a 
cumulative probability in the left hand tail less 
than or equal to 10 percent is 6 (shaded area in 
Figure A-1B). Thus if five or fewer misclassifica- 
tions occur in the sample of ten points, the map 
will be accepted. 

Suppose that the map actually has an unac- 
ceptably low accuracy of 60 percent. The proba- 
bility of this substandard map passing the test is 
the cumulative probability of a sample of ten 
points from such a map having five or fewer mis- 
classifications, shown as the shaded area in Figure 
A-1C. The cumulative probability is the sum of the 
individual probabilities shown as shaded bars, the 
value in this case is 0.84. Thus, the probability of 
accepting this substandard map (the consumer 
risk) is 84 percent. The 10 percept chance of incor- 
rectly accepting the null hypothesis is in this case 
the producer's risk1 Using statement 1 of the null 
hypothesis is misleading in that the "90 percent 
confidence" does not indicate a 10 percent con- 
sumer's risk but a 10 percent producer's risk. 

Calculation using statement 2. Using statement 
2, the test strategy is to accept the null hypothesis, 
in this case "the map is less than 70 percent accu- 
rate," unless the test results indicate there to be 
less than a 10 percent chance of this being true. To 
reject Ho at the 90 percent level of confidence, the 
highest number of misclassifications X is found 
such that the cumulative probability of X or fewer 
rnisclassifications is 10 percent or less, in this case 
the cross hatched area of Figure A-1B. Thus, zero 
misclassifications are permitted in the sample of 
ten points and consumer's risk is at most 10 per- 
cent. The exact consumer's risk in this case is 0.03 
or 3 percent. Had a larger sample size been used, 
this value could have been closer to the required 

FIG. A-1. Binomial sampling distribution in bar graph 
10 percent. 

form for a sample size of ten and true map accuracies of Suppose that the map is 80 percent tor- 

80 percent, 70 percent, and 60 percent. The probability rect. The probability that it would be rejected by 
represented by each bar is shown above the bar. See such a test (i.e., the producer's risk) is the cumula- 
text for explanation of shading. tive probability of having one or more misclassifi- 
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cations in a sample of ten points for Q = 80 per- 
cent. From Figure A-lA, this is seen to be 0.89 or 
89 percent (the cross hatched area). In this case, 
the producer's risk is very high, but the assertion 
that the map is at least 70 percent accurate at the 
90 percent confidence level is true in the sense 
that consumer's risk has indeed been reduced to 
10 percent or less. To reduce the producer's risk 
while maintaining the same consumer's risk, a 
larger sample size could be used. 

CONCLUSION 

Either of the two statements of the null hypoth- 
esis, as presented here, will give the same result as 
long as the appropriate calculation of consumer 
and producer risks is used. Confusion occurs be- 
cause the consumer's risk could be either a Type I 
or Type I1 error, depending on the way the null 
hypothesis is formulated. By using the terms con- 
sumer's risk and producer's risk, this confusion is 
eliminated. 

Thermosense V 

An International Conference on Thermal Infrared Sensing Diagnostics 

Cadillac Hotel, Detroit, Michigan 
25-27 October 1982 

Sponsored by the International Society for Optical Engineering (SPIE) in cooperation with The 
Department of EnergyIOak Ridge National Laboratory and the American Society of Photogrammetry, 
Thermosense V, the fifth in an annual series of conferences on applications of thermal infrared sensing 
diagnostics to buildings and industrial uses, will provide the opportunity to present and exchange 
technical information on all aspects of infrared thermography and thermal sensing. As applied to 
buildings, thermography has come of age as a tool for preventive maintenance and for energy use 
analysis, and the time is right for more standardized approaches. 

At the same time, infrared thermal sensing is finding increased application in industry as a solution to 
problems involving preventive maintenance and process control in which noncontact temperature 
measurement is required. In recognition of this latter interest, Thermosense V will highlight analysis 
and application of thermography in industrial processing. 

For further information please contact 
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P.O. Box 10 
Bellingham, WA 98227-0010 
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