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Techniques for Combining Landsat 
and Ancillary Data for Digital 
Classification improvement 
The advantages and disadvantages of preclassification scene 
stratification, postclassification class sorting, and classification 
modification are discussed. 

INTRODUCTION ences, we are able to recognize objects by their 

A LANDSAT scene of the Earth's surface is com- unique set of sensible attributes (size, color, 
posed of a two-dimensional array of cells or shape, feel, smell, sound, surroundings). Digital 

picture elements (pixels). Associated with each classification of Landsat data seeks to recognize 
pixel are observations of Earth surface radiance as Earth objects using four observations of one 
measured in four relatively narrow bands of the attribute--color. The argument made for digital 
electromagnetic spectrum. Digital classification of multispectral classification is that, when consid- 

ABSTRACT: Digital classification of Landsat data for use in natural resource 
inventory has produced mixed results. In attempts to improve classification, 
ancillary data, such as digitized maps and terrain (elevation) data, have been 
combined wi th  Landsat data in  various ways. These data have been used in (1)  
preclassification scene stratification; (2) postclassification class sorting; and (3) 
classification modification through increasing the number of observation chan- 
nels, modifying prior probabilities, or adding a second stage to the classifica- 
tion. Preclassification stratification and postclassification sorting are found to 
be efficient, but  lacking in  sophistication due to their reliance on deterministic 
decision rules. Classification modification through the simple addition of ob- 
servations does not appear to improve classification results reliably; however, 
stratification of the sample used for training by  the ancillary data does improve 
accuracy. Classification modification by  altering prior probabilities or by  in- 
corporating distribution models increases accuracy, but requires considerable 
additional sampling. 

these data requires that representative samples of 
object classes on the Earth's surface (e.g., types of 
vegetation, soils, geology, land use) be carefully 
selected and described so that the remaining 
pixels in the scene can be examined and accu- 
rately classified. 

The assumption that each of the objects of inter- 
est has a unique set of attributes is implicit in the 
process of classification. Drawing on past experi- 
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ering the spectrum as a whole, different objects 
have different patterns of reflection and emission. 
Further, it is assumed that these spectral patterns 
are sufficiently unique to make objects consis- 
tently distinguishable from one another using 
statistical classification techniques. However, 
even within a single multispectral c~assification, 
accuracy is highly variable [see, for example, Todd 
et al. (1980)l. 

0099-1 112!82!4801-0123$02.25/0 
9 1982 American Society of Photogrammetry 



PHOTOGRAMMETRIC ENGINEE 

Aside from the development of new classifica- 
tion algorithms, any number of methods might be 
used to improve classification accuracy. One obvi- 
ous approach would be to increase the number of 
spectral observations used in classification. How- 
ever, the addition of spectral observations does not 
necessarily add more usable information to the 
classification exercise (Ready et al., 1971). 

Another obvious method for improving classifi- 
cation would be to consider a greater number of 
object attributes. This might include consideration 
of conventional image attributes, such as size, 
shape, pattern, and association of objects, and re- 
sult in a process similar to that performed by a 
photo-interpreter (see Colwell, 1960). However, 
many of these attributes are not easily derived 
from the digital image. A more immediate method 
would be to incorporate information about object 
attributes derived from ancillary data sources. 

Ancillary data used to improve digital Landsat 
classification are primarily map-based. Examples 
are maps of geology, soils, vegetation, or topog- 
raphy. These data are readily available and are 
widely understood. However, they present sever- 
al problems when used with digital Landsat data 
in an automated classification. 

The most significant difficulty in using maps for 
digital classification improvement derives from 
the nominal nature of the data they usually con- 
tain. Techniques exist for combining continuous 
and nominal or categorical data (Strahler et al., 
1980). However, it is difficult to deal with the vari- 
ation contained in categories. For example, on a 
choroplethic m a p s u c h  as a soil or vegetation 
map-each polygon is discrete. Each point con- 
tained within the polygon, by definition, must be 
of special value (Duecker, 1979). Spatial variation 
of factors within the mapping unit, such as vegeta- 
tion cover, percent rock outcrop, or soil color, can 
be described within the legend but cannot be ex- 
pressed on the map itself. Obviously, these spatial 
variations will have an effect on the spectral re- 
sponse of a class of objects, but there is no conve- 
nient way to accommodate them when comparing 
or combining Landsat and map data. 

Locational accuracy is a major consideration if 
two spatial data sets (maps) are to be merged. Two 
factors make the locational accuracy of ancillary 
data highly variable. First, many attribute maps 
are not subject to rigid accuracy standards. For 
example, many older soil surveys published by the 
U.S. Soil conservation Service are still in use, but 
were based on uncontrolled photomosaics. Sec- 
ond, the precise location of boundaries between 
mapping units of any attribute is always uncertain. 
For example, in vegetation mapping, Kuchler 
(1967) has pointed out that boundaries between 
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vegetation types may or may not exist on the 
ground. In soil mapping, Bie and Beckett (1973) 
showed dramatically the extreme variation in dif- 
ferent mappers' perception of the same landscape 
and the same sample data. 

Most maps are not in digital form and must be 
digitized. Although this may not be a significant 
technical problem, it does require considerable 
effort in addition to specialized digitizing 
hardware and supporting software. 

Digital terrain (elevation) data, available from 
the USGS National Cartographic Information 
Center (NCIC), have a number of advantages for 
use in improving Landsat classification. These 
data are (1) available for all of the United States, 
(2) inexpensive, (3) in a grid cell format more or 
less compatible with Landsat or other digital im- 
age data, and (4) essentially continuous rather than 
nominal in nature. 

Classification improvement with ancillary data 
has followed one of three paths: incorporating 
those data either before, during, or after classifica- 
tion, through stratification, classifier operations, or 
postclassification sorting. 

STRATIFICATION 

Use of ancillary data prior to classification in- 
volves a division of the study scene into smaller 
areas or strata based on some criterion or rule, so 
that each stratum may be processed indepen- 
dently. Statistically, the purpose of stratification is 
to increase the homogeneity of the data sets to be 
classified. Because of its simplicity, stratification 
is a widely used technique. From a practical 
standpoint, stratification is employed for classifi- 
cation improvement either to divide a large study 
area into smaller homogeneous units, or to separ- 
ate different things which are spectrally similar. 

There are two advantages to dividing il large 
study area into smaller subareas. First is the sim- 
ple convenience of dealing with smaller data sets 
at each stage of analysis. This, in fact, may be an 
overriding practical consideration in especially 
large studies (Bryant et al., 1979). The second ad- 
vantage is a reduction of variation within strata. 
This is the statistical basis for stratification 
(Snedecor and Cochran, 1967). The spectral char- 
acteristics of any set of objects, such as specific soil 
or vegetation types, are likely to vary over dis- 
tance. As variance increases, the likelihood of 
confusion between spectrally similar objects also 
increases. Criteria selected for stratification 
should be significant in describing the variation of 
the objects of interest within the study area. For 
example, a regional study of soils might be 
stratified by rock type, or a vegetation study might 
be stratified by elevation. 
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A more specific and pragmatic application of 
stratification is its use in separating different ob- 
jects that cannot be distinguished spectrally. For 
example, obviously different things, such as older 
residential areas and rural woodlands, may be 
spectrally identical. To avoid confusion, urban and 
non-urban areas may be separated by manual 
photo-interpretation or by using a general land- 
use map. Training and classification then can pro- 
ceed independently on each stratum and finally 
the two may be merged in a final product. Confu- 
sion is thus avoided and accuracy improved (see 
Gaydos and Newland, 1978). 

Stratification is a conceptually simple tool and, 
carefully used, can be effective in improving 
classification accuracy. However, it is not sensi- 
tive to subtle distinctions. Differences between 
strata are absolute and the lines between them are 
abrupt; there are no gradations or fuzzy bound- 
aries between mapped classes. Thus, considerable 
care should be taken when (1) deciding to stratify, 
or not and (2) selecting stratification criteria. 

Imprudent selection of stratification criteria can 
have far-reaching implications in classification. 
Differences in training set selection for individual 
strata andlor the vagaries of clustering algorithms, 
if used, may produce markedly different spectral 
classes on either side of strata boundaries. Merg- 
ing strata for a final product with class boundary 
offsets or missing classes is difficult, at best. 

CLASSIFIER OPERATIONS 

Use of ancillary data during classification has 
followed several approaches. The first, and most 
obvious, is to increase the number of attributes or 
channels of information used in the classification 
process. Thus, instead of four bands of spectral 
data, n bands of spectral and ancillary data are 
combined and used for classification. This tech- 
nique had been called the "logical channel" ap- 
proach (Strahler et al., 1978). The hoped-for im- 
provements have generally not materialized 
(Anuta et al., 1976). It appears that the "simple 
addition" of new non-spectral observations or 
channels without modifying conventional spectral 
sampling routines adds little to classification accu- 
racy and can create new problems in developing 
class statistics. 

Another approach involves the modification of 
the maximum likelihood decision rule. In most 
classifications, prior probabilities are ignored or 
are assumed to be equal for all classes. However, 
the classifier can be modified by developing prior 
probabilities before classification based either on 
the estimated areal composition of the known ob- 
ject classes in the study area or on the known as- 
sociation between object classes and the ancillary 
data. The "modified priors" concept was demon- 

strated by Strahler et al. (1978) and has been de- 
scribed more fully in Strahler (1980). 

Several difficulties exist in the use of prior prob- 
abilities for classification improvement. First, 
maximum likelihood classifiers assume Gaussian 
distributions for the data classes, an assumption 
that is commonly not valid for ancillary data. Sec- 
ond, it is also assumed tha't new observations 
should improve classification. However, new ob- 
servations require new samples to describe not 
only their signatures for the object classes, but also 
their association (covariance) with all other obser- 
vations. Strahler et al. (1978) emphasized the diffi- 
culty of ensuring that the full range of elevations 
associated with a particular tree species could be 
sampled. In their study, a single set of 93 samples 
from a 220 sq km study area was used to describe 
both the spectral and topographic characteristics 
of forest cover types. To ensure that this sample 
was sufficient, elevation and aspect data were re- 
duced to categories. classification accuracies were 
improved, but it was necessary to adjust class 
mean elevation values to obtain best results. 

Fleming and Hoffer (1979) developed two tech- 
niques for mapping forest cover type in Colorado 
that used topographic data but avoided some of the 
sampling difficulties discussed above. To describe 
the relationship between cover types and topogra- 
phy, a topographic stratified random sample (TSRS) 

of 4,550 points was drawn from a 3,750 sq km 
study area. (Only 3,379 sample points were suitable 
for training.) The strata were defined by classes of 
elevation, slope, and aspect. Cover type for each 
point was determined by photointerpretation. 

One classification improvement technique was 
a variation of the logical channel approach. It used 
the TSRS to derive both spectral and topographic 
training statistics for use in a conventional "single 
stage" supervised application. The use of addi- 
tional channels produced a more accurate classifi- 
cation than spectral data alone. By using the ancil- 
lary data to stratify the sample, all significant vari- 
ation in the ancillary data was represented. 

The other technique developed by Fleming and 
Hoffer makes more sophisticated use of the TSRS in 
a "layered" approach to classification. Based on 
the sample data, a "topographic distribution 
model" was developed to determine the probabil- 
ity of each forest cover type occurring at any given 
elevation, slope, and aspect. In parallel, spectral 
training statistics were developed independently 
using the "modified clustering" technique. In a 
two stage, or layered, approach the spectral statis- 
tics were used to classify major cover types (e.g., 
coniferous forest, deciduous forest), and the topo- 
graphic statistics were used to further subdivide 
cover types to the species level. Accuracies of the 
layered and single stage approach were not sig- 
nificantly different in terms of computer time. 
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However, the layered approach was over four 
times faster than the single stage. 

The use of ancillary data directly in the classifi- 
cation process improves accuracy but also in- 
creases cost. Simple addition of new observations 
that accompany the spectral sample can improve 
accuracy, but the results are unpredictable. Addi- 
tion of topographic observations derived from a 
TSRS as logical channels improves accuracy but re- 
quires both intensive sampling and an increase in 
computer time. Both the layered and modified 
priors approaches offer improvements in accuracy 
but require a level of added sampling that is con- 
siderably beyond conventional spectral classifica- 
tion. 

POSTCLASSIFICATION SORTING 

The use of ancillary data after multispectral 
classification is based on the observation that a 
single class of objects seldom can be represented 
by a single spectral class. To accommodate this, a 
large number of spectral classes commonly is 
created. Spectral classes may then be merged into 
groups which represent object classes. The prob- 
lem, as has been discussed, is that one spectral 
class may often represent subsets of more than one 
object class. In postclassification sorting, these 
problem spectral classes are treated as separate 
special cases. Based on a sorting rule, individual 
pixels of the problem spectral class are assigned to 
the appropriate object class using ancillary data. 
The  approach and techniques used in post- 
classification sorting are derived from methods for 
overlay analysis found in grid-based geographic 
information systems (Tomlinson et al., 1975). 

EXAMPLE OF POSTCLASSIFICATION SORTING 

An example of a spectral classification of Land- 
sat data for a desert area in California is shown in 
Plate la. In a subjective evaluation of the classifi- 
cation, results were compared visually with the 
original unclassified scene. A number of cases of 
confusion between proposed classes was found. 
For example, there was confusion between the 
bright surfaces of a dry lake bed (playa) and the 
steep sunny slopes of large sand dunes. It was felt 
that, by using slope data derived from digital ter- 
rain data, it would be possible to separate the 
steep sunny sand dunes from the flat playa surface. 
Other areas of confusion in the scene were found 
to exist among dark classes, such as shadow, 
basalt, and surfaces with desert varnish. If infor- 
mation describing slope and aspect were used in a 
postclassification operation, it would be possible 
to distinguish steep north or northwest facing 
slopes (shadows) from other dark surfaces. These 
dark surfaces might also be further subdivided on 
the basis of slope to recognize different types of 
alluvial fans. 

Decision rules were developed, based on the 
arguments suggested above, to distinguish be- 
tween the types of terrain that appeared to be 
confused most commonly (Table 1). Using these 
rules, the class assignment of each pixel was ex- 
amined and was either assigned a new class or left 
unchanged. 

The first refinement of the spectral classification 
using these decision rules was unsatisfactory. The 
elevation data from which s l o ~ e  values were de- 
rived contain systematic errors in the estimates of 
the elevations of cells between contours (Figure 
1). Erroneous slope values therefore resulted be- 
tween contours in the elevation data. This caused 
a banding of classes across the relatively low gra- 
dient alluvial fans and erroneously created areas of 
the dry lake class in the region of sand dunes. 
Similar problems of accuracy in these terrain data 
have been reported by others (Fleming and Hof- 
fer, 1979; Stow and Estes, 1981). However, it is 
hoped that the reformatted terrain data now made 
available by NCIC are improved. 

In an attempt to eliminate the errors in this par- 
ticular data set, a 25 by 25 pixel averaging filter 
was applied to the slope calculations. A classifica- 
tion refinement was again performed using the 
smoothed slope data and the decision rules 
suggested above. Plate l b  shows the results. Dry 
lake areas again are erroneously inserted in the re- 
gion of dunes. Also, a part of the dissected cobbly 
alluvial fan class (red) has been reassigned to the 
low gradient undissected basalt alluvial fan class 
(lavender). Both errors appear to be a product of 
the smoothing process which created low esti- 
mates of slope on some fan surfaces. 

Another prominent feature of the refined clas- 
sification is the abruptness of the boundaries 
created on the major alluvial surfaces (coded red). 
These are a product of the deterministic nature of 
the techniques used to refine the classification: 
decisions made at any point are "eitherlor," and 
thus, while the data used for sorting are essentially 
continuous, the rules employed use interval classes 
with discrete differences. 

In summary, the postclassification technique is 
crude in its deterministic sorting approach to clas- 
sification improvement. However, it offers several 
advantages. First, it is simple, quick, and easily 
implemented. Second, it is efficient because it 
deals only with "problem" classes. Third, it is rel- 
atively simple to include several types of ancillary 
data in developing decision rules. Finally, be- 
cause it is performed after classification, errors 
made in rule selection can be corrected easily as 
opposed to those made prior to classification using 
scene stratification. The sample presented, 
though, would suggest two guidelines for using 
the technique. First, the ancillary data used for 
im~rovement must be reliable. and second. the 
decision rules must model the natural situation. 
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PLATE 1. (a) Multispectral classification of a portion of Landsat scene 1700-17422,28 June 1974, corresponding to 
Flynn, California 15' quadrangle. (b) Refinement of classes displayed in (a), through postclassification sorting, using 
slope and aspect data (see Table 1 for explanation). The edge around the refined classification marks the limit of the 
terrain data. 
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Initial Assignment 
(Class) 

Final Assignment 
(Class) 

Active sand dunes (1) If slope is less than 1% .............................. dry lake (lo)* 
otherwise ..................................................... active sand dunes (1) 

Stabilized sand (2) If slope is less than 1% ............................. dry lake (lo)* 
If slope is greater than 1%, but less than 

15% ........................................................... stabilized sand (2) 
otherwise ..................................................... active sand dunes (1) 

Low gradient undissected sandy 
alluvial fans and washes (3) If slope is less than 1% .............................. dry lake (lo)* 

..................................................... otherwise low gradient undissected sandy 
alluvial fans and washes (3) 

Low gradient cobbly alluvial 
.............................. fans (4) If slope is less than 8% low gradient cobbly alluvial 

fans (4) 
If slope is greater than 8%, but less than 

........................................................... 15% dissected cobbly alluvial fans (5) 
otherwise ..................................................... mountain scrub (8) 

.............................. Dissected cobbly alluvial fans (5) If slope is less than 3% low gradient undissected basalt 
alluvial fans (14)* 

If slope is greater than 3%, but less than 
........................................................... 15% dissected cobbly alluvial fans (5) 

otherwise ..................................................... mountain scrub (8) 

Mountain scrub (8) If slope is greater than 15% ....................... mountain scrub (8) 
..................................................... otherwise highly dissected alluvial Eans 

(15)* 

Shadow and basalt (9) If slope aspect is north or northwest ........ shadow (9) 
If slope is less than 3% .............................. highly dissected alluvial 

fans (14)* 
If slope is greater than 3%, but less than 

............................................................. 8% slightly dissected basalt alluvial 
Eans (13)* 

If slope is greater than 8%, but less than 
........................................................... 15% dissected basalt alluvial fans 

(12)* 
otherwise ................................... .... ............. basalt mountains (11)* 

* Derived classes. 
** Slope d u e s  of 3 percent, 8 percent, and 15 percent were found to be useful for separating different degrees of alluvial fpn dissection in a 

reconnaissance soil survey of the region (Desert Plan Staff, 1976). 

Improvement in digital classification of Landsat 
data can be achieved through the incorporation of 
ancillary data. These data may be  choroplethic 
maps of various land attributes or digital terrain 
(elevation) data. T h e  incorporation of ancillary 
data i n  t h e  classification process can b e  ap- 
proached in several ways. The  general character- 
istics of these approaches are summarized below. 

The use of ancillary data for scene stratification 
has been widely used in many different types of 
applications. Stratification is statistically sound, 
easily implemented, effective, and inexpensive 
in computer time. However, it is deterministic 

and thus cannot accommodate gradations be- 
tween strata. In addition, because it is performed 
before classification, incorrect stratification cri- 
teria can invalidate the entire classification. 
Use of ancillary data as another logical channel to 
be considered during classification has been ex- 
amined frequently. Although easily implemented 
and conceptually straightforward, the simple ad- 
dition of new observations increases computer 
time considerably and does not appear to im- 
prove classification accuracy with any consis- 
tency. The careful selection of samples alleviates 
some of this difficulty, but requires considerable 
additional sampling. 
The modified priors and layered approaches to 
the use of ancillary data during classification rep- 
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FIG. 1. Perspective plot of digital terrain data for Flynn quadrangle viewed from the north- 
west; "steps" seen on slopes are present in the raw data. 

resent a new and sophisticated development. 
They are probabilistic and thus may have the 
greatest potential for improving accuracy and 
making efficient use of ancillary data. However, 
because they are based on statistical parameters, 
many samples must be drawn to characterize ob- 
ject relationships with both ancillary and spectral 
data. Thus, they require a level of sampling in- 
tensity that is somewhat beyond that which is 
conducted in normal spectral classifications. 
Postclassification sorting is a new application of a 
technique that has been used in geographic in- 
formation systems. It, like stratification, is con- 
ceptually simple and easily implemented, but it 
is also deterministic. However, it does offer some 
advantages: it deals only with problem classes 
rather than all classes and, unlike stratification, 
errors made in the selection of sorting rules are 
easily corrected and do not require that the clas- 
sification be redone. 

Each of the techniques for classification im- 
provement has advantages that will recommend its 
use in particular situations. Thus, it is not useful or 
proper to offer a judgment as to what the "best" 
technique might be. However, it is appropriate to 
make some general observations. Because of their 
simplicity, stratification and postclassification 
sorting will likely continue to be used in spite of 
their limitations. Both techniques are most effec- 
tive when the confused objects are relatively dis- 
crete in their distribution, as is the case in many 
urban applications. 

The simple addition logical channels is difficult 
to recommend because results cannot be consis- 
tently predicted. However, with careful prelimi- 
nary work it can prove useful for specific applica- 
tions, as demonstrated in the use of the topo- 
graphic stratified random sample. 

For natural resource applications, both the 
modified priors and layered approaches hold 
much promise. They would be reasonable to use 
on problems where objects were not always dis- 
crete in their distribution, such as vegetation or 
soils, and where a number of ancillary data sources 
were being used. 

All techniques for classification improvement, 
with the possible exception of the simple addition 
logical channels, require that the analyst have a 
detailed understanding of the objects of interest 
and their relationship with ancillary data before 
attempting to improve the classification. Further, 
the more sophisticated the technique, the better 
the analyst must understand these relationships. 
However, in large-area, natural resource applica- 
tions, these relationships are not likely to be 
well-known until after the classification or inven- 
tory is completed. Thus, significant improvement 
in large-area classification may not always be pos- 
sible by the means described above, and errors 
must either be tolerated, explained in the legend, 
or corrected through more conventional means as 
the inventory proceeds. 

This work was funded by the EROS Data Cen- 
ter, U.S. Geological Survey; I am also indebted to 
David Greenlee, Technicolor Graphic Services, 
for the contributions he made to this paper. 
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16th International Symposium on Remote Sensing of Environment 

Buenos Aires, Argentina 
2-9 June 1982 

The Symposium, organized and conducted jointly by the Environmental Research Institute of Michi- 
gan (ERIM) and the Argentine National Commission on Space Research (CNIE), is intended to stimu- 
late communication and information exchange through the presentation of reports on work planned, in 
progress, or completed; and to encourage international cooperation in the development and application 
of remote sensing technology. Both conventional sessions and poster sessions will b e  designed to in- 
clude presentations on the  utilization of remote sensing techniques for applications in agriculture, 
climatology, environmental quality, geography, geology, hydrology, meteorology, and oceanography, as 
well as monitoring, assessment, and management of water, soil, vegetation, cultural, mineral, and ma- 
rine resources. 
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