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The Accuracv Potential of the Modern 
Bundle  lock Adjustment 

I in Aerial Photogrammetry 

When the self-calibrating bundle adjustment is employed, accuracies of 
2.5 p m  in planimetry and 4.5 p m  in height can be achieved with a minimum 
of effort. 

INTRODUCTION 

T HE USE OF photogrammetric techniques for as- 
signing coordinates to ground stations (densi- 

fication of geodetic networks, cadastral surveying, 
engineering surveying, land problems, etc) has 
been a subject of continuous discussion during the 
last 20 years or so. Photogrammetric results have 
often not been accurate enough, and, unfortunately, 
accuracy standards for photogrammetric works 

a major result of this, a photogrammetric accuracy 
level is available and reproducible under varying 
circumstances, which does far beyond convention- 
al standards and demands a revision of unjusti- 
fiable attitudes concerning practical applications 
of photogrammetry to assigning coordinates to 
survey points. 

Compared with conventional surveying methods', 
photogrammetry has two essential advantages. 

ABSTRACT: The modern self-calibrating bundle block adjustment is a highly ac- 
curate and efficient technique for assigning coordinates to  ground points. A few 
requirements have to be met, however, if in each project precise and reliable re- 
sults are to be expected. The proper use of orthogonal bivariate polynomials as 
an additional parameter set and a sophisticated gross error detection strategy 
provide for results which are in accordance with theoretical expectations. This 
is shown by the processing of data of four different test field blocks, using three 
different camera systems. Therefore, these results can be regarded as realistic 
and repeatable modern photogrammet~-ic accuracy standards, carrying analytical 
photogrammetry into new fields of application, such as network densification, 
cadastral surveying, etc. 

have been based on such results. In retrospect, 
however, it must be stated that these results have 
for the most part been caused by inadequate treat- 
ment of analytical photogrammetry, mainly with 
respect to the use of approximate block adjustment 
methods, and partly due to improper flight plan- 
ning and performance. Nowadays, the availabil- 
ity of self-calibrating bundle adjustment programs, 
the recently gained knowledge about reliability 
problems, and following from that the deeper in- 
sight into network structure requirements, pro- 
vide the basis for exploiting completely the ac- 
curacy potential of modern aerial photographs. As 
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Aerial photographs contain a tremendous collec- 
tion of terrain information, so that they can be 
used for multipurpose evaluations. This feature 
cannot be overrated, considering the recent and 
future efforts in city planning and land manage- 
ment. Secondly, photogrammetry provides for re- 
petitive network arrangements, which enables a 
simple and inexpensive prediction of the average 
precision of final results, e.g., by using synthetic 
precision models for bundle adjustment, as de- 
rived by Ebner et al. (1977). 

Provided the specified accuracy requirements 
are achieved, the choice of a technical procedure 
should depend mainly on economic considera- 
tions. The recent increase and stabilization of 
photogrammetric accuracy in point determination 
leads to a reduction in the required effort. The 
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necessary accuracy level in object space coordi- 
nates can now be reached by using a smaller image 
scale and, thus, fewer photographs, which leads to 
less measurement time and reduced data sets to 
deal with and to analyze. 

It is the objective of this article to show the cur- 
rent accuracy potential of conventional aerial pho- 
tography with the aid of empirical data processing. 
With previous papers (Criin, 1978, 1980a) it was 
proven empirically from precision and reliability 
considerations that sophisticated self-calibration 
is superior to testfield calibration (the economic 
advantages of self-calibration have never been 
doubted). 

All results presented herein have been obtained 
under simulated economic pressure. No additional 
(and, as the results indicate, unnecessary) effort 
has been made to apply sophisticated a priori im- 
age coordinate refinement methods. Instead, only 
four fiducials were used, radial lens distortion was 
corrected according to the calibration certificate, 
and refraction was corrected using Bertram's modi- 
fied formula. 

Because a few terms with which the reader 
might not be familiar are used, a very brief intro- 
duction into the meaning and use of the terms 
accuracy, precision, and reliability is given first. 

The currently most sophisticated accuracy theory 
for geodetic networks was developed by Baarda 
(1967, 1968). He considers the accuracy of net- 
work adjustment results (coordinates; functions of 
coordinates such as angles. distances. and distance - ,  

ratios) as consisting of two parts: precision and 
reliability. Much mathematics and statistics are in- 
volved in either concept, as given in the theory of 
S-transformations and statistical interval estima- 
tion. A brief survey of Baarda's technique and an 
exposition of problems, together with his defini- 
tions of accuracy, precision, and reliability, are 
given in Baarda (1977) and Alberda (1980). Re- 
cently, photogrammetrists have adopted portions 
of this theory for application to photogrammetric 
networks. For the investigation of the reliability 
of bundle systems, see Forstner (1979, 1980) and 
Criin (1979, 1980b, 1980~). A first attempt to in- 
troduce the concept of S-transformations into pho- 
togrammetry was made by Molenaar (1980). 

It is not the intention of this paper to present or 
to elaborate upon Baarda's accuracy theory. How- 
ever, a few basic comments regarding the terms 
precision, accuracy, and reliability as they are ap- 
plied here need to be made in order to understand 
the meaning of the accuracy and precision esti- 
mators used later in the section on Empirical Ac- 
curacy Studies. 

PRECISION 

Let the linear statistical model of bundle ad- 
justment be 

E(l) = Ax; E(e) = 0 

where 
x is the vector of conventional bundle param- 

eters (object point coordinates, exterior 
orientation elements), 

e is the vector of true observation errors, and 
P is the weight matrix of the observation vec- 

tor 1. 
Using the terminology of modern linear estima- 

tion theory for interval estimation, this model set- 
up can be formulated as a null-hypothesis Ho 
(compare Graybill (1961) and Baarda (1968)): 

(i.e., 1 has a multidimensional normal distribution 
with the expectation E(l) = Ax and the dispersion 
D(l) = oo2P-'; uo2 is the variance factor to be esti- 
mated). 

Suppose a minimum variance unbiased estima- 
tion of x and uo2 is performed with 

% = (ATPA)-'ATPl (34 
1 

irO2 = F (M - l)TP(Ax - I), (3b) 
r = n - u (redundancy) 

and the residuals are denoted by 

Under Ho the distributions of % and v are 

- N (x,Kxx), Kxx = g o 2  Qxx 

v - N (O,K,,), K, = u,2 Q,, 
with the weight coefficient matrices 

Q,, = (ATPA)-', Q,, = P-' - AQ,,AT. (6) 

The term precision is defined by the statistical 
features of the estimated parameters f ,  if the a 
priori assumptions (functional and stochastical re- 
lations) of the adjustment model (Equation 1) are 
considered to be true. 

Hence, the covariance matrix K,, contains all 
information concerning the precision of the solu- 
tion 2. 

For the sake of completeness it should be men- 
tioned that Baarda's precision measure is not the 
actual covariance matrix K,,, but an artificial "cri- 
terion matrix," or the deviation of K,, therefrom, 
respectively. 

The covariance matrices K,,, K,, can also be 
formulated by using the dispersion operator D. 
For K,, we get 

K,, = D(%) = E((% - E(%))(% - E(f))T) (7) 
Under Ho we obtain 

E(%) = x, 
and thus 

K,, = D(f) = E((% - x)(f - x ) ~ )  
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ACCURACY a formula. which contains the combined effect of 

A~~~~~ the model (Equation 1) to be a false both random errors and nondetectable model er- 

model. Then we get rors on x (leading to his so-called "boundary val- 
ues" V*, which are scalar measures). 

E(l) $ Ax, (10) 

and the least squares estimator 

is no longer unbiased, so that 

E(%) = x + Vx x, (12) 

in which Vx is the bias, caused by model errors 
The precision of % can again be derived by ap- 

plying the dispersion operator 

D(%) = E((% - E(%))(% - E(%))T) = 
= E((% - (x + Vx))(t - (x + V X ) ) ~ )  = (13) 
= E((k - x)(% - x ) ~ )  = K,,. 

Hence, we obtain for the true and the false 
model identical precision measures (note: the true 
value uo2 for the variance factor is used in both 
models!). In either case the precision describes 
the deviation of the estimated % (or jr) from its ex- 
pectation associated with the corresponding 
model. 

For the discussion of the effects of a possibly 
wrong model, the term accuracy becomes impor- 
tant. In order to derive a multidimensional ac- 
curacy measure, the second moment of k about x 
(which is no longer a dispersion) is formulated as 

A(%) defines the extent of the deviation of the 
estimated vector % from the true vector x. A further 
development of Equation 14 leads to 

A similar derivation of Equation 13 gives 

D(%) = E(%kT) - 2E(%) (x + V X ) ~  
+ (x + Vx) (x + Vx)T = 

= A(%) - 2E(%)VxT 
+ 2xVxT + VxVxT = 

RELIABILITY AND DATA-SNOOPING 

The term reliability defines the quality of the 
adjustment model with respect to the detection of 
model errors. Those errors can be blunders, sys- 
tematic errors (errors in the functional assump- 
tions), and weight errors (errors in the stochastical 
assumptions). It was Baarda (1967, 1968) who de- 
veloped a rather complete reliability theory which 
was in use for geodetic network adjustments in the 
Netherlands for a couple of years and which re- 
cently has also been adopted by photogrammetrists 
to investigate the reliability of photogrammetric 
network structures. 

Currently the term reliability is mainly used 
with respect to blunder detection and location. 
This is correct, if a sophisticated self-calibrating 
program provides for the compensation of system- 
atic errors, and because the problem of weight 
improvement should be treated separately by 
weight estimation. 

Definitions are available for 

Internal reliability: It gives the amount of a gross 
error in an observation, which is just non-detect- 
able at a certain probability level. 
External reliability: It indicates the effect of this 
non-detectable gross error on the estimated quan- 
tities (of special interest: object space coordinates 
of ground points). For details concerning the 
internal and external reliability of bundle sys- 
tems see Fijrstner (1979, 1980) and Griin (1979, 
1980b, 1980~). 
Data-snooping technique: A test procedure for 
blunder detection. 

As the true errors (e) of the adjustment system 
(Equation 1) are not available, a blunder detection 
test procedure must be restricted to x and/or v. 

So the null-hypotheses 

= A(%) - VxVxT. could be used for testing. 
The expectations xi for the solution vector are 

Hence, it follows that usually not known: exceptions are control and 
A(%) = K,, + VxVxT. (17) check point coordinates. 

In the case of check point coordinates the tests 
Equation 17 could be used as a measure for would Iead to the test criteria accuracy, comprising both the effects of precision 

and reliability (model errors). jri - xi t .  =- Under H, we get , with b,, = bo 
bx 

(19) 

Vx = 0, in which q,,,, is the iih diagonal element of Q,, 
and the accuracy A(%) equals the precision D(%). and if&" has to be used instead ofthe expectation uw 

~h~ bias Vx is usually unknown, except that Under Hx,, the test criterion t, is distributed as 

external information is available which is not being Student's with degrees of freedom 
used in the estimation model (Equation l) ,  as fo; t i  - t(r). (20) 
instance check point coordinates. Baarda has over- 
come this problem by replacing Equation 17 through In practical projects check point coordinates are 
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usually not available. If the objective of a photo- 
grammetric test project is to prove the power of 
the applied technique and if recommendations for 
the profession are derived from that, the test cri- 
teria (Equation 19) should not be applied in the 
test projects, because then the so-gained results 
would not be in accordance with practical require- 
ments. So the results presented in this paper were 
not subject to the test of Equation 19, i.e., the 
photogrammetric check point coordinates have 
not been cleaned by a direct a posteriori rejec- 
tion procedure. 

If control point coordinates are introduced as 
stochastic quantities (compare Griin, 1978) test 
criteria similar to Equation 19 can be constructed 
to test the deviation of the photogrammetrically 
determined coordinates from their geodetic val- 
ues, as 

where c stands for "control point." 
t: has the character of a standardized residual 

and is no longer Student distributed, since vie is 
dependent on k0 and as such on 6,:. For the proof 
of this statement examine theorem 4.21 in Graybill 
(1961, p. 88). 

The correct distribution of tci is the T-distribu- 
tion (compare the application of T in Pope (1975) 
for blunder detection) 

with 

The testing of the image coordinate observa- 
tions, based on Equation 18b, could be performed 
by using Baarda's data-snooping technique. Again 
for photogrammetric blocks the estimated ko has 
mostly to be used instead of the expectation ao. 
Then the test criteria are resulting in 

- 
wi= 3 , with k,,, = ko 

U i  

in which q,,,, is the ith diagonal element of Q,,. If 
Ht i  is true, wi is T-distributed for the same reason 
mentioned above: i.e., 

The T-distribution is not much investigated so 
far; there are still specific problems with respect 
to the distribution of w, under alternative hypothe- 
ses to be solved. Fortunately, the redundancy in 
photogrammetric blocks is rather large, so that T 

can be replaced by the Student distribution 

which is far easier to handle. 
The test criteria wi are of considerable practical 

importance for the cleaning of data sets. They pro- 
vide for a rather sensitive blunder detection pro- 
cedure, since they include via kVi (qUi,,) the net- 
work structure. For large systems, as they usually 
appear in aerial triangulation, the strict computa- 
tion of the complete Q,,-matrix or even of its diag- 
onal elements q,,,, only becomes very costly. Con- 
sidering in addition the uncertainty in the assump- 
tion of the weight matrix P, the idea of applying a 
modified data-snooping technique has been brought 
up by Griin (1979, 1980~) .  Based on the use of ap- 
proximate quo- values derived from internal relia- 
bility models, the image coordinates of the test- 
fields Jiimijarvi and Willunga, which are referred 
to later in the section on Empirical Accuracy Stud- 
ies have been checked by this method. 

For the assessment of block adjustment results, 
it is crucial to use test criteria which can provide 
for an answer to the question "is the applied esti- 
mation model correct or not?'Kxx has been de- 
fined as a measure of precision for the solution 
? (or %). The complete matrix K,, however, al- 
though of utmost information density, is usually a 
very complicated precision measure, and so scalar 
precision measures are mostly preferred. In photo- 
grammetric testblock investigations, the means of 
the variances of the adjusted ground point coordi- 
nates are used as theoretical precision measures 
(here the symbols X, Y, Z refer to the vectors of 
ground point coordinates, i.e., to subsets of the 
vector x in Equation 1: 

in which Kz,, K:,, K:, are corresponding parts 
of K,, for X, Y, Z; and n ,,,, n, are the numbers of 
X, Y, and Z coordinates. The values (Equations 
26a and 26b) are of special practical interest, as 
they are closely related to quadratic forms of the 
vectors of estimated coordinate differences at 
check points, as it is shown in the following. 

The difference between photogrammetrically 
estimated coordinates and independently deter- 
mined coordinates (assumed to be free of errors 
compared with the expected photogrammetric ac- 
curacy) are 

in which (XT,YT,ZT)T is the vector of "true" coordi- 
nates and (AT, YT, 2T)T is the vector of photogram- 
metric coordinates. Since the true values X, Y, Z 
are included in A*, AY, A 2  estimators for the ac- 
curacy can be defined as 
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AftTA% 
&,Z = - AVAY pus = - are defining two confidence-hyperellipsoids with 

n x,u nx,u 
(28a) the centers in (XT,PT)T and 2. 

Thus, 1 - a is the probability that under HjCdU 

&:,, = 
&x2 + 81' 

Cz2 - AgTA2 . (28b) and H$, respectively, the true values (XT,YT)T, Z 
2 '  n, fall into their corresponding hyperellipsoid. 

Under the null-hypotheses The estimators PX,, P$ can be checked by using 
the critical values c,,,, c, from the Fisher tables as 

H(: A 2  - N (0, K',) (29b) I?(&: s C, = &02F(1 - a, n*, r)/H$) = 1 - a. 

the estimators &:,, and fi: are unbiased estima- (35b) 
tors for the theoretical precision measures a:,,, In contrastto this procedure the interval estima- 
a: tion for (XT,yT)T, Z by means of Equation 28b is 

(30~)  much more expensive. 
Approximations for the distributions of &:,,, 

(30b) &: under H%", Hf are given by Molenaar (1978) 
Hence the "traced statistics" p,2,, and pZ2 (termi- with 
nology after Bjerhammar (1960), as E(&,Z,,) = 
tr(K:$') /2nX,,, E (pZ2)  = tr(Kf,)ln,) are well- &:.. - (+$ 

tr(Q2') 
F(K,,,, m), 

suited as accuracy predictors in practical project 2nx.v 

planning and are also useful in empirical accuracy 
investigations, as presented in this paper. 

tr(Q'x) F(K,, m). p: - uo2 - 
n, 

However, if 68, AT, ~2 have to be tested on 
normal distribution (or on their deviation there- this it can be deduced that 1 from), the Maximum.~ikelihood estimators 

are the better estimators (see Griin, 1980a; Mole- 
naar, 1978). 

It is an interesting statistical characteristic that 
under HIdU and H(, the estimators g., and fizz 
are unbiased estimators for the variance factor: 

E(ji:,,) = uz ,  E(jlZ2) = uz.  (32) 

Both PX,/602 and ji,2/602 follow (under HSdU, 
H() Fisher distributions: 

If the matrices and Q$,-' are available, 
which are the "partly reduced normal equations" 
for X, Y, and Z, interval estimation for X, Y, and Z 
using the estimators (Equations 31a and 31b) can 
easily be performed. 

Assume a type I error size 1 - a (a is the prob- 
ability to reject a true null-hypothesis), then the 
equations 

Ts,, = F(1 - a, 2nx,,, r), 
T, = F( l  - a, n,, r )  

&: - eoz - tr(Q'x) F(K,, r). 
n, 

(37b) 

If the eigenvalues of Q2: , Q$, are denoted by 
(i = 1, . . . , 2n,,,), hf(j = 1, . . . , n,), then the 

degrees of freedom K,,,, K, are to be computed as 

K, = int 

in which int is the integer conversion operator. 
The estimators &:,,, &$ can be checked by 

using the critical values Ex,,, 1, as 

- 
tr(Q'z) F ( l  - a, K,, r)lHf) P(&$ s c, = so2 - 

n, 



and 

a:., - bo2 F(2nx,u, r). 

For Pi ,  we obtain 

- - 
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The more Q$iU, Q:, tend towards multiples of several years. These studies were mostly based on 
the unity matrix, which is certainly more likely geodetic control of insufficient accuracy, and, to a 
with dense rather than with sparse control, the minor extent on approximation methods for data 
more the estimators a:,,, 9: correspond with processing. So the actual photogrammetric ac- 
/ X u ,  Em curacy level could never be proved. Recently, 

Suppose however, startling results have been reported by 

Q$: =fI. Roberts (1976) and Slama (1978), both using reseau 
(40) camera systems and investing considerable effort 

in a priori calibration and systematic error compen- 
in whichf is a scalar factor and I is the unity matrix. sation works. Although the data processing proce- 

Then dures suggested by both authors cannot be recom- 
mended as efficient for any project, their investi- 

(41) gations showed up the accuracy potential inherent 
in photogrammetry. 

(42) High accuracy applications need some basic re- 
quirements: 

use of targeted points; 
flights with at least fourfold photo coverage, 
either with 60 percent sidelap or with 20 percent 
sidelap and cross flights; 
relatively dense perimeter control in planimetry 

(44) and a relatively dense grid of height control 
points; 
measurement of image coordinates and applica- 

and finally tion of rigorous bundle block adjustment; in- 
- z cluding a method for systematic error compensa- ips = k - 
f 

koZF(2n,,,, r). (45) tion (self-calibration is recommended); and 
sophisticated gross error detection strategy, SUE- 

For f = 1, the distributions for P:,, and p:,, are ciently strict in a statistical sense, thereby not 

identical. A similar derivation can readily be per- wasting computing time. 

formed for the Z-coordinate. The application of the self-calibration technique 
For more details, see Koch (1975), Molenaar and related results achieved are described in sev- 

(1978), and Grun (1980a). The computation of the eral publications (see Brown (1976), Ebner (1976), 
estimators fix,, and i.~, was not possible for these Grun (1978, 1980a), and other authors). A strategy 
investigations, since, for the blocks used, the for gross error detection in bundle adjustment is 
Q Z - ' ,  Q&'-matrices were not available. suggested by Grun (1979). 

Since the estimators F-:,,, P: comprise both In the following sections, the results of several 
precision and reliability features, they can be re- testblock investigations carried out at different 
garded as accuracy estimators and as such be used testfields, with different cameras and image 
to review test block adjustment results as it is scales, but based on the aforementioned require- 
done in the section on Empirical Accuracy Studies. ments, will be presented. 

Table 1 shows the project parameters of the 
EMPIRICAL ACCURACY STUDIES testfields Jamijarvi (Finland), and Willunga and 

Empirical photogrammetric accuracy studies Kapunda (both Australia). This article presents 
using testblocks have been executed for the past only the results obtained with simultaneous self- 

TABLE 1. TESTBLOCK SPECIFICATIONS 

Camera 

RMK A2 
WA 

M RB 
WA 

RMK AR 
WA 

RMK AR 
WA 

' Area of coordinated points. 

Size' 
(km2) 

2 x 2  

2 x 2  

5.8 x 5.8 

24 x 24 

Area 

Jamijarvi 

Jamijarvi 

Willunga 

Kapunda 

Overlap 
Ds 

60160 

60160 

60160 

60160 

No. of 
photos 

51 

51 

48 

81 

Image 
Scale 

1: 4,000 

1: 4,000 

1: 12,700 

1:50,000 

Control 
Precision (mm) 

Plan Height 

5 0.6Ikm 

5 0.61km 

25 30 

? ? 
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calibration; comparisons of testfield calibration 
and self-calibration are to be found in Griin (1978, 
1980a). The additional parameter sets used were 
the orthogonal ones developed by Ebner (1976) 
and Grun (1978). The image coordinates were 
measured with Zeiss PSK stereocomparators ofthe 
Department of Lands (Adelaide, Australia), the In- 
stitute of Photogrammetry of the Helsinki Univer- 
sity of Technology (Helsinki, Finland), and the 
Chair for Photogrammetry of the Technical Uni- 
versity Munich (Munich, West Germany). Results 
obtained with analytical plotter measurements 
(Zeiss Planicomp C 100) are reported in Ebner 
(1979) and Eder and Grun (1980). 

For economic reasons, only the absolutely nec- 
essary measurements and computations have been 
carried out. So the refinements of the image coor- 
dinates were restricted to 

1 afine transformation (six parameters) using four 
fiducials (although Willunga and Kapunda are re- 
seau materials, and the MRB-Jamijarvi photos 
have an "edge reseau", only the four midpoints of 
the sides were selected as fiducials while the 
others were ignored); 
comection of radial distortion according to the 
calibration report; and 
correction of refraction using Bertram's modified 
formula. 

For the bundle adjustment the refined image 
coordinates have been regarded as uncorrelated 
and of equal weights (=I ) ,  while the geodetic 
control coordinates were introduced with infinite 
weights (free of errors). 

In each case secant plane control coordinates 
were used, thus making image coordinate correc- 
tion for Earth curvature unnecessary. 

The additional parameters have been treated as 
free unknowns (nonstochastic values). After the 
first iteration step of the bundle adjustment, the 
significant additional parameters were deter- 
mined with Student's t-test (a-level : 0.05). For the 
second iteration step the non-significant addi- 
tional parameters were excluded from further 
computations. 

Both Jamijarvi and Willunga image coordinates 
have been subject to an approximate data- 
snooping procedure, providing for blunder detec- 
tion and elimination (compare Grun (1979, 
1980~)). Two different control versions as shown 
in Figure 1 were used in each project. The adjust- 
ment results are shown in Table 2. To be inde- 
pendent of the photo scale, the accuracy es- 
timators jl,,,, jl. of this table are given in pm. 

As the results show, self-calibration was very 
successful. Accuracy improvements up to a factor 
of 2.7 were achieved. According to theoretical ex- 
pectation and practical experience, the improve- 
ment is larger with sparse control (see also the 
previous experiments in Ebner (1976) and Griin 
(1978), a very nice feature of self-calibration. The 

:RN BUNDLE BLOCK ADJUSTMENT 

r combined planimetric and height control point 
o height control point 

FIG. 1. Control distributions for the Jamijarvi, Willunga, 
and Kapunda testblock computations. 

application of the 44 additional-parameter set was 
only feasible with Jamijarvi data (5 by 5 image 
point distribution); here the results in height 
turned out to be better (improvement factors 1.2 to 
1.6) than the corresponding results obtained with 
the 12 additional parameter set (improvement 
factors 1.1). The results in planimetry, however, 
are of equal accuracy. 

It is surprising that even within the extended set 
of 44 additional parameters the correlation coeffi- 
cients remained less than ( r  1 = 0.5 (mutual corre- 
lations of additional parameters and between 
additional parameters and exterior orientation ele- 
ments). Due to those small correlations, the statis- 
tical testing on significance of additional parame- 
ters, based on the one-dimensional Student test, 
was admissible. 

It may seem somewhat peculiar at a first glance 
that in two cases out of 20 the results obtained 
with sparse control are better than the corre- 
sponding results with dense control (planimetry of 
Jamijarvi MRB and height of Kapunda RMK). This 
is explained by the fact that the estimators &., 
pZ2 are themselves not true values, but stochastic 
quantities with a certain expectation and a speci- 
fied range of variation (interval, based on probabil- 
ity assumptions). 

It is well known that the precision measures 
(Equation 26b) reach almost their minimum with 
the control bridging distance i = 2b. A further de- 
crease of i will not cause a significant improve- 
ment in X, Y, and Z (improvement < 15 percent). 

Hence, if the estimator p2 for sparse control is 
denoted by jiqs, and the one for dense control by 

we get for our control distributions (i = b, i = 
2.5b) the approximation 

for both planimetry and height. 
In addition, it is to be expected that the interval 

for j12 increases as the amount of control decreases. 
So the fact that in our examples the empirical ac- 
curacy estimators obtained with sparse control can 
be smaller than those obtained with dense control 
is not surprising any more. Unfortunately, the cor- 
rect interval estimation for ji&,, j i z z  becomes fairly 
costly as it has been shown in the previous chap- 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1982 

Accuracy estimators-block adjustment number of I 

checkpoints 
Block Calibration ao ~ X . Y  F z  

version version [pm] [pm] factor1 [pm] factor1 plan. height 

JAl RMK 0 4.3 2.8 - 5.0 - 
(dense) 12APs 3.7 2.3 1.2 4.5 1.1 100 84 

I 
2.2 1.3 4.2 1.2 .---------------- ,~,~,A,PI~----~-~,G ................................................... - ----- -- 

JA2 RMK 0 4.3 3.3 - 7.2 - 
(sparse) 12APs 3.7 2.5 1.3 6.5 1.1 112 111 

44APs 3.6 2.5 1.3 5.0 1.4 

I 
IAl MRB 0 4.3 3.5 - 6.5 - I 

(dense) 12APs 4.1 2.6 1.4 5.8 1.1 100 
44APs 3.8 2.8 1.2 5.0 1.3 -----------------------------------------------------------------------------------------. 

IA2 MRB 0 4.1 4.2 - 12.0 - 

" I 
(sparse) 12APs 4.0 2.8 1.5 10.5 1.1 112 111 

44APs 3.8 2.6 1.6 7.5 1.6 
WI1 0 5.0 3.7 - 5.6 - 73 59 I 

(sparse) 12APs 3.3 2.8 1.8 6.6 2.2 
KA1 0 5.4 4.8 - 6.1 - 21 42 

I 
12APs 3.7 3.0 1.6 4.6 1.3 

(sparse) 12APs 3.7 3.0 2.7 4.4 1.8 

JA RhIK . . . JPmijPrvi (RMK A2) 
JA MRB . . . JLmijPrvi (MRB) 
WI . . . Willunga 

I 
KA . . . Kapunda 
' Factor of accuracy improvement 
0 . . . zero version (conventional bundle adjustment without additional parameters) 
lWPs . . . 12 orthogonal additional parameters (Ebner, 1976) 
44APs . . . 4 4  orthogonal additional parameters (Grtin, 1978) 

ter, so that it could not be performed for this in- 
vestigation. 

The total accuracy level is exceptionally high 
and very consistent. Averaging the results of all 
projects, we get as empirical accuracy measures: 

Bx.u = 2'6 pm with dense control j i z  = 4.5 pm 

Bx*u = 2.7 pm with sparse control pZ = 5.9 pm 

Using an average bo = 3.6 pm (see Table 2), we get 
for the dense control version 

at image Jamijarvi Willunga Kapunda 
scale 1:4,000 1: 12,700 1:50,000 
Ipml [cml [cml [em1 

which is in sufficient agreement with the theoreti- 
cal precision expectations presented in Ebner et 
al. (1977). 

Of course the terms "dense" (i = 1 b) and "sparse" 
(i = 2.5 b) are of relative character and related to 
control distributions, usually found in cadastre, 
land consolidation, and network densification 
projects in Europe. If in extended areas even 
sparser distributions have to be used, then one 
has to consider a somewhat reduced accuracy 
level. Suitable precision predictors for practical 
projects can be derived from synthetic precision 
models (Ebner et al., 1977). 

Transferring the average accuracy values for 
planimetry fiom the image system into the ground 
system of each individual project, the heavy de- 
mands to be made on an adequate geodetic plani- 
metric control accuracy can be demonstrated (see 
Table 3). The average height accuracy of ji, = 4.5 
pm corresponds to 0.03Oh of the flying height, a 
very remarkable level too. The residuals at check 
points, shown in Figures 2 and 3 for Jamijarvi 
(RMK) and Willunga testfields, look sufficiently 
random, which indicates the proper work of block- 
invariant additional parameters. 



ACCURACY POTENTIAL OF MODERN BUNDLE BLOCK ADJUSTMENT 
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FIG. 2. (a) Residuals at planimetric check points of the 
Jamijarvi testfield (control version JAl (RMK), additional 
parameters: 44 orthogonal); (b) Residuals at height check 
points of the Jamijarvi testfield (control version JAl 
(RMK), additional parameters: 44 orthogonal). 

I t  has been proved empirically that the ac- 
curacies of photogrammetric coordinates of j i , ,  = 
2.5 pm for planimetry and ,%, = 4.5 pm for height 
(= 0.03°/~ of flying height) can be achieved. This 
was obtained with a minimum of effort and costs 
by self-calibrating bundle adjustment. The use of 
relatively dense control (i = 2b)  and 60160 percent 
overlap, together with a sophisticated additional 
parameter set is indispensable to arrive continu- 
ously at such a high accuracy level. 

These accuracy levels are in agreement with the 
theoretical precision expectations and, therefore, 
are not surprisingly high. They carry analytical 
photogrammetry into new fields of application, 
such as network densification, cadastral surveying, 
and many other subjects dealing with the provi- 
sion of coordinates to ground points in rural and 
urban areas. 

The present values are to be regarded as realis- 

- 
10 cm (8 microns a t  the photo sca le )  

Y ' Y  
1 : .  0 I t .  1 O 

I l l  ' I  

- 10 cm (A microns a t  the photo sca le )  

FIG. 3. (a) Residuals at planimetric check points of the 
Willunga testfield (control version WI 1, additional param- 
eters: 12 orthogonal); (b) Residuals at height check 
points of the Willunga testfield (control version WI 1, ad- 
ditional parameters: 12 orthogonal). 

tic and repeatable photogrammetric accuracy 
standards, and it is up to responsible institutions, 
authorities and private companies to utilize this 
accuracy potential to obtain more economic tools 
for point determinations purposes. 

Alberda, J. E., 1980. A review of analysis techniques for 
engineering survey control schemes. Proceedings of 
the Industrial and Engineering Survey Conference, 
London, Sept. 2-4. 

Baarda, W., 1967. Statistical concepts in Geodesy. 
Netherlands Geodetic Commission, Vol. 2, No. 4, 
Delft 

-, 1968. A testing procedure for use in geodetic 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1982 

networks. Netherlands Geodetic Commission, Vol. 
2, No. 5, Delft 
, 1977. Measures for the accuracy of geodetic net- 

works. Proceedings of the Symposium on Optimi- 
zation of Design and Computation of Control Net- 
works, Sopron, July 4-10 

Bjerhammar, A., 1960. A general formula for an unbiased 
estimate of the standard deviation of a triangulation 
network. Communications from the Royal Institute 
of Technology, Stockholm 

Brown, D. C., 1976. The bundle adjustment-progress 
and prospects. Invited paper to the XIIIth Congress 
of the ISP, Commission 111, Helsinki 

Ebner, H., 1976. Self calibrating block adjustment. In- 
vited paper to the XIIIth Congress of the ISP, Com- 
mission 111, Helsinki 

, 1979. The accuracy potential of the analytical 
plotter ZEISS-PLANICOMP C 100 in bundle trian- 
gulation with simultaneous self-calibration. Papers 
written in honor of the 70th birthday of Prof. L. 
Solaini, Politecnico di Milano, Institute di Topo- 
grafia, Fotogrammetria e Geofisica 

Ebner, H., K. Krack, and E. Schubert, 1977. Accuracy 
models for bundle block triangulation. In German. 
Bildmessung und Luftbildwesen 45 

Eder, K., and A. Griin, 1980. Compensation of systematic 
image errors with bundle block adjustment using 
ZEISS-PLANICOMP C 100 data. In Contributions 
to the ISP WG I1113 Seminar, Aalborg, Denmark, 
May 17-18,1979. Helsinki University of Technology 

Forstner, W., 1979. On internal and external reliability 
of photogrammetric coordinates. Paper presented 
to the ACSM-ASP Meeting, Washington, D.C., 
March 1979 
, 1980. The theoretical reliability of photogram- 

metric coordinates. Paper presented to the XIVh 
Congress of the ISP, Commission 111, Hamburg 

Graybill, A. G., 1961. An introduction to linear statisti- 
cal models, Volume I. McGraw Hill, New York, To- 
ronto, London 

Griin, A., 1978. Experiences with self-calibrating bundle 
adjustment. Paper presented to the ACSM-ASP 

Convention, Washington, D.C., FebruaryIMarch, 
1978 

-, 1979. Gross error detection in bundle adjust- 
ment. Paper presented to the Aerial Triangulation 
Symposium in Brisbane, Australia, Oct. 1517, 1979 

-, 1980a. Self-calibration versus testfield calibra- 
tion (results from Jamijarvi, Willunga and Kapunda 
testfields). In: Contributions to the I S P  WG 11113 
Seminar, Aalborg, Denmark, May 17-18, 1979. Hel- 
sinki University of Technology 
, 1980b. Precision and reliability of close-range 

photogrammetry. Invited paper to the XIVth Con- 
gress of the ISP, Commission V, Hamburg 

, 1980c. On the internal reliability of aerial triutr- 
gulation bundle systems. Presented paper to the 
XIVth Congress of the ISP, Commission 111, Ham- 
burg 

Koch, K. R., 1975. Distributions of probabilities for 
statistical reviews of adjustment results. In German. 
Mitteilungen aus dem Institut fur Theoretische 
Geodasie der Uniuersitat Bonn, Nr. 38 

Molenaar, M., 1978. Essay on empirical accuracy studies 
in aerial triangulation. ITC Journal, 1978-1, pp. 
81-103 
, 1980. S-transformations and artificial couari- 

ance matrices in photogrammetry. Paper presented 
to the XIVh Congress of the ISP, Commission 111, 
Hamburg 

Pope, A., 1975. The statistics of residuals and the detec- 
tion of outliers. Paper presented to the XVIt"Gen- 
era1 Assembly of the IAG, Grenoble 

Roberts, R. G., 1976. Tests of bundle block adjustment 
for suruey co-ordination. Paper presented to the 
XIIIth Congress of the ISP, Commission 111, Hel- 
sinki 

Slama, Ch., 1978. High precision analytical photo- 
grammetry using a special reseau geodetic lens 
cone. Paper presented to the ISP Symposium of 
Commission 111, Moscow 

(Received 25 August 1980; revised and accepted 27 May 
1981) 

- -  - 

Institute 
Map Projection Equations 

University of Wisconsin 
22-23 February 1982 

T h e  object of the  Institute, offered by the  University of Wisconsin-Extension, is to describe the  or- 
derly means of transforming positions of places on the surface of the Earth to corresponding points on 
a flat sheet  of paper-a map. T h e  background of the problem will be developed and the unifying princi- 
ples enunciated. Three major categories of maps-the conformal, the  equal area, and the conventional- 
will b e  explored. The object will be to develop useful equations which transform from latitude and 
longitude to Cartesian coordinates for plotting. 

For further information please contact 

Don Theobald, Program Director 
Department of Engineering & Applied Science 
University of Wisconsin-Extension 
432 North Lake Street 
Madison, WI 53706 
Tele. (608) 262-3516 


