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Analytical Triangulation of 
Space Photography 

Two bundle adjustment methods were developed, and aerial 
triangulation tests using those methods were carried with Skylab 
orbital photography. 

L ARGE PORTIONS of the world are still very poorly mapped, even at scales of 1:250,000 or smaller. The 
policy of making space photography available almost at no cost to the user makes mapping from 

space photography more and more attractive. The authors of this paper were involved in a research pro- 
gram to investigate the maximum possible accuracy for aerial triangulation using Skylab photography 
combined with very high altitude aircraft photography and utilizing Skylab orbital parameters. 

Appropriate applications for space photography are for areas where there is no ground control as such, 
except point coordinates obtained from small scale maps. Accordingly, in such aerial triangulation the 
coordinates of the ground control must be treated as observed values and must be adjusted when solving 
the photogrammetric problem. This idea led to the developing of two new bundle adjustment methods, 
which could be efficiently used for the aerial triangulation of space photography and could be applied 
when the available ground control is of inferior quality. 

In the first method the coordinates of the ground control as well as the photo measurements are used 

ABSTRACT: A mathematical model and a computer program were developed by 
the authors to perform analytical aerial triangulation with space photography. 
In this paper, the mathematical model as well as the results of a few tests are 
giuen. 

as observations in the collinearity condition equations. Then, point by point, the contributions to the 
normal equations are calculated. The system of the normal equations can then be solved, yielding the 
corrections to both the unknown camera parameters and the unknown ground coordinates of the pass 
points. Finally, point by point, the residuals of the photo measurements and the ground measurements 
(if the points are control points) can be calculated. 

In the second method, the camera parameters, the ground coordinates of the control points, and the 
photo measurements are used as observations in the collinearity condition equations. Although the 
second method can rigorously treat the case of space photography for which all orbital parameters are 
measured, its solution requires more computer time and memory. In this method, the contributions to 
the normal equations can not be calculated one point after another. Instead, first the contributions of all 
the control points must be calculated as one unit and then the contributions of all the pass points as 
another unit. The only unknowns in this case are the ground coordinates of the pass points. Therefore, 
only one iteration is necessary to reach the final solution. Finally, the residuals for all the measurements 
and their variance-covariance matrices can be calculated if needed. 
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The idea of the bundle adjustment is to use the well known collinearity equations to establish two 
equations for each measured photo point, and, further, to obtain a unique solution for the system of ob- 
servation equations by the least-squares method. The linearized form of the collinearity equations may 
be given by I 
where 

6 is the correction vector to the approximate values set for the unknowns; 
V is the residual vector, i.e., the correction vector to the observations; 
W is the misclosure vector; and 

A,B are two matrices whose elements are the partial derivatives of the collinearity equations with 
respect to the unknowns and to the observations, respectively. 

The principle of the least-squares method requires the minimizing of the quadratic form V'PV, where 
P is the weight matrix whose elements are the weights associated with each of the observations. The 
least-squares solution of an equation similar to the linear form of the collinearity condition equations 
given by Equation 1 can be given as 

6 = N-'U, 

where 

Also, the residual vector V can be expressed as 

where R is the Lagrange multipliers vector and can be given by 

Moreover, the variance-covariance matrices for the unknowns Z, can be calculated from 

where 4 is the variance of unit weight. 
By applying the method of least squares to solve the system of linearized observation equations (Equa- 

tion l), one can see that two matrices have to be inverted, M (Equation 5) to form the normal equations 
and N (Equation 3) to solve for the unknowns. A direct method of computing and inverting such large 
matrices is not practical due to both the excessive amount of computer time and memory required and 
also because of the rounding off of errors in machine calculations. 

Several methods and computer programs have been developed using the method of adopting single 
bundles of rays as a unit to adjust a block of aerial photography (see, for example, Brown (1964), Keller 
and Tewinke1(1967), Schmid (1956-57), Schut (1978), and Wong (1971)). To overcome the difficulties of 
calculating and inverting such large matrices (like M and N), the computer programs associated with 
these methods only solve special cases of the general observation equations (Equation 1). For example, 
Keller and Tewinkel(1967) used the ground coordinates of all points (even of the geodetic control sta- 
tions) and all the camera parameters as unknowns and in this case the B matrix of Equation 1 is equal to 
a unit matrix I. To distinguish between the unknown pass points and the observed control points, Keller 
and Tewinkel used what they called a position control weight to control the degree of agreement be- 
tween the adjusted and the measured values of the control point coordinates. 

Brown (1964) used the two collinearity equations in the same way as Keller and Tewinkel, but, in- 
stead of using position control points, he formed extra observation equations (using them as constraints 
to the system) for the measured ground coordinates, the measured camera parameters, and any other 
available sources of information. But one can see that in Brown's method he treats the ground coordi- 
nates of the control points and the camera parameters as unknowns in the photogrammetric collinearity 
conditicn equations, and later, when adding the constraints, the same ground coordinates and the same 
camera parameters are treated as observations. 

In this way, Brown, like Keller and Tewinkel, transfers the general form of the observation equations 
(Equation 1) to a special case where the B matrix is equal to a unit matrix I. This special case of observa- 
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tion equations is known as the parametric case of least-squares adjustment, and its solution is much 
simpler and requires considerably less calculation when compared with the general least-squares solu- 
tion case. This advantage provided Keller and Brown with a good reason to adopt their solutions, espe- 
cially when considering that one of the main goals of their programs is to adjust as large a number of 
photographs as possible in the most economic way. 

For space photography, the cost portion for adjusting the photogrammetric measurements is negligible 
compared with the cost for the entire mission. The main goal is to achieve the best possible accuracy for 
the aerial triangulation by using few photographs. This reasoning indicates the need for a new method 
using 

measurements of space photography; 
ground control points which are few in number and inferior in quality; and 
camera parameters for each exposure station, all employed in a simultaneous least squares adjustment. 

It was hoped that such a system would produce better estimates for the measured coordinates of the 
ground control points and would supply accurate coordinates. Two methods and their computer pro- 
grams were developed. Although these methods are also special cases of Equation 1, they are more suit- 
able for the case of space photography. 

In the first method the two collinearity condition equations are used to calculate two equations for 
each measured photo point. In these equations all the camera parameters are used as unknowns, while 
the ground coordinates are treated in two different ways: 

1 the coordinates of the control points are used as observations, and 
1 the coordinates of the pass points are used as unknowns. 

To explain this new method, assume that one starts to form the normal equations by calculating the 
contribution of all the observed control points, followed by the contribution of the unknown pass points. 
Then, the design matrices A, B, and W may be given by 

r A, ! 0 1  (equations associated with 
(NE i 

A = 
observed control points) ---9-?~'---+ --------- .------------- -- - ............................. 

! A (equations associated with 
(9) I Au 

~ o I I ,  B J ~ )  j (NEQII. and unknown pass points) 

B i d (equations associ- 
ated with observed 

(10) 

0 I 
I ciated with un- 
I 
I known pass points) 

r W (equations associated with 
observed control points) ................................ 

(equations associated with p~~~ unknown pass points) 
where 

I I I , ,  , . , .. , ... are affured to any elements related to the camera parameters, ground coordinates, and 
photo coordinates, respectively; and 

1 '11 are affixed to the elements associated with the observed ground control points and the 
unknown pass points, respectively. 

Accordingly, the elements of the above equations can be explained as follows: 

N E Q I ,  NEQu are the numbers of equations associated with the observed control points and the 
unknown pass points, respectively; 

A,, &I are the matrices which represent the partial derivatives of the collinearity condition 
equations (CCE) with respect to the unknown camera parameters and associated with 
the observed control points and the unknown pass points, respectively; 
are the matrices which represent the partial derivatives of the CCE with respect to the 
unknown ground coordinates of the pass points and of the observed ground coordi- 
nates of the control points, respectively; 
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I,, Ill are two unit matrices which represent the partial derivatives of the CCE with respect 
to the photo measurements and associated with the observed control points and the 
unknown pass points, respectively; and 

WI, WII are the misclosure vectors associated with the observed control points and the un- 
known pass points, respectively. 

Moreover, the above matrices can be written in more detailed forms as follows: 

=[J a,,. 

where 

are the partial derivatives of the CCE with respect to the unknown camera parameters and 
associated with the ground point i; 
are the partial derivatives of the CCE with respect to the unknown ground coordinates XG, 
Ye, ZG of the pass point i (8; = 0 when processing the observed control point, i.e., when 
i < k); 
are the partial derivatives of +e CCE with respect to the observed ground coordinates (X,, 
YG, ZG) of the control point i (bi = 0 when processing the unknown pass points, i.e., when 
i > k); 
is the misclosure vector associated with the ground point i; 

is the number of camera stations; 
are the numbers of points with observed and unknown ground coordinates, respectively; 
and 
is the number of equations associated with the ground point i ,  and this number is equal to 
twice the number of photographs with the image of this ground point. 

Further, using the definition of the B matrix given by Equation 10, the M matrix of Equation 5 may be 
given as follows: 

(associated with observed ground control) 
.................................................... 4 18) 

(associated with unknown pass points) 

where 
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and 

mi is the nonzero submatrix of the M matrix associated with the ground point 
tnwi.neqi) i, and 

m, = bi pi1 1;; + p;' for i = 1, 2, . . . , k (associated with control points (21) 
or 

mi = p;' for i = k + 1, k + 2, . . . , k + n (associated with pass points) 
where 

is the weight matrix for a ground control point i, and 

is the weight matrix for the measured photo coordinates associated with the 
ground point i. 

If the image coordinates are measured using a comparator, then pi's are diagonal matrices and the 
diagonal elements are proportional to the reciprocals of the variances of the measured photo coordinates. 

It can be seen from Equations 19 and 20 that the inversion of the M matrix can be easily and directly 
obtained by inverting its block diagonal submatrices. 

Using the definitions of the A and M matrices (Equations 9 and 18) by utilizing the detailed ~ O ~ I I S  of 
AI, 41, A, MI, and MIr matrices given by Equations 12, 14, 15, 19, and 20, respectively; and using the 
definitions for the N matrix and the U vector given by Equations 3 and 4, respectively; the system of nor- 
mal equations can be written in detail as follows: 

where 

represent the unknown corrections to the ground coordinates Xc, Yc, and ZG of the pass point 
(3,1) i , a n d i  = k  + l , k  + 2  ,..., k +n, 
8 represent the unknown corrections to the camera parameters. 

(em. 1)  

One space photograph covers a relatively large area, and it may be practically sufficient to adjust few 
of the photographs at a time. Then, if the unknown ground coordinate vectors tii are eliminated, the re- 
duced system of normal equations can be written as: 

or in abbreviated form as 
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Since the size of the NR matrix is relatively small, the unknown corrections to the camera parameters 
6 can be easily calculated as follows: 

6 = N i l U R  
(%In. 1) 

(31) 

From Equation 23 one can find out that the unknown corrections, 6, to the ground coordinates for any 
point i can be calculated from equations similar to the following equations 

The last step is to present the method by which the variance-covariance matrices of the unknowns are 
calculated. 

The weight coefficient matrix for the unknown camera parameters is provided by the inversion of the 
NR matrix when the 6 are calculated (Equation 31). 

The weight coefficient matrix, Qs;, for the unknown ground coordinates of point i can be calculated 
by applying the error propagation law to equations similar to Equation 32 and the final result may be 
given as follows: 

Although Equation 33 only provides the submatrix associated with point i of the full weight coefficient 
matrix for all the unknown ground coordinates 6, this information is sufficient for the photogrammetric 
applications considered. 

From the above formulas the following interesting conclusions can be drawn: 

The submatrix m, and consequently its inverse mi', associated with the ground point i, is dependent only on 
terms associated with this mint  (bl. I%, A); accordingly, mi' can be calculated for any ground point inde- . . . - . . - . . . - -  . 

pendently of the other poiits; 
For the unknown ground pass points when b, = 0, mi1 is a diagonal matrix and the diagonal elements are 
proportional to thevariance of fne photo measirements: 1n this c&e mi need not be inverted for such points; 
From the definition for N, &, &, U and @ given in Equations 24,25,26,27, and 28, respectively, it can be con- 
cluded that the contribution of any ground point i to the reduced system of nonnal equations (Equation 29) 
can be calculated independently one point after another. The same idea is applied in the process of back sub- 
stitution to calculate the unknown ground coordinates & (Equation 32). Also, because nq, mi', &, n-', N, N,, 
and NR-' are symmetric positive definite matrices, only their upper or lower triangle need to be calculated, and 
a computer subroutine using the Choleski method for the matrix inversion may be used wherever inversions 
of such matrices are needed. 

Finally, by using the refined forms for the design matrices (A, B, and W), the residual vectors can be 
calculated from 

iii = 6' ri (34) 

where 

vi is the residual subvector of the measured ground coordinates, X,, Y,, and Z ,  of the point i; 
(3.1) 

T i  is the residual subvector of the measured photo coordinates associated with the ground 
("eqi.1) point i ;  and 

r, is the Lagrange multipliers subvector associated with the ground point i ,  i.e., 
tnwi .I) 

r .  = - m- I ]  (ai 6 + wt) when i = 1,2, . . . , k 

r k + i  = - mi:, (ak+, 6 + w ~ + ~ )  - mi:, ijlr+i ,$ when i = 1,2,  . . . , n. (37) 

Also, here, it is worth mentioning that all the submatrices (except 6) which are needed to calculate 
q,  iii, and iii (Equations 36, 37, 34, 35) for any ground point i are the submatrices associated with this 
ground point. 

In the second method, the two collinearity condition equations are also used to calculate two equa- 
tions for each measured photo point. The application of these equations is as follows: 
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All the camera parameters are used as observations, and 
The ground coordinates are used in two different ways: 

The coordinates of the control points are used as observations, and 
The coordinates of the pass points are used as unknowns. 

TO form the normal equations for the least-squares adjustment, one has to calculate the M matrix given 
by Equation 5. Here, in the second method, the B matrix has partial derivatives of the collinearity con- 
dition equations corresponding both to the coordinates of the ground control points and to the camera 
parameters. Hence, it is impossible to calculate the contributions to the normal equations for either a 
point or a photo independently of the others. Accordingly, the whole A, B, W, and M-' matrices have to 
be calculated before it is possible to calculate any contributions to the normal equations. However, to 
reduce the computing time and memory, all the ground control points are used as one group followed 
by all the pass points as another group. In this way, the M matrix is partitioned into four smaller sub- 
matrices which can be calculated one after another. 

Assuming that one starts to calculate the observation equations associated with all the control points 
and then calculates the observation equations of all the pass points, then the design matrices A, B, and 
W can be written as follows: 

where 

A, B, W,, WII 

j 
B I ,  B" 

equations associated with the 
control points -------- ............................... r O l  
equations associated with the 

(NEQ11,3n ) LAJ pass points 
equations 

I 

control points 

equations 

pass points 

equations associated with the 
control points 

equations associated with the 
'NEQII.l) L J pass points 

have their dehi t ions and their detailed expressions as in the first method (Equations 
15, 13, 16, and 17, respectively); 
is the number of stations with observed camera parameters; and 
are two matrices which represent the partial derivatives of the collinearity condition 
equations with respect to the observed camera parameters and associated with the 
observed ground control points and ground pass points respectively. 

After matrix multiplication, the M matrix (Equation 5) can be written as 

. =  6: 7 
M 2 9  

where 

M,, = B,, P-' B;, + Pi:, 
(NEQII.NEO1l) 
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and 

P is the weight matrix for the measured camera parameters. 

The inversion of the M matrix can be obtained by the method of partitioning and may be expressed as: 

where 

The only unknowns in the case of the second method are the ground coordinates of the pass points 
6: which can be calculated directly from 

where 

Since the collinearity condition equations can be transformed to a linear form with regard to the un- 
knowns (see Manual of Photogrammetry (1966), p. 51), only one iteration is needed to reach the final 
solution. The residual vectors (Equation 6) may be calculated from 

where 

V, v are the residuals of the measured camera parameters and of the measured ground coordi- 
nates of the control points, respectively; 

V1, VII are the residuals of the measured photo coordinates associated with the control points and 
the pass points, respectively; and 

RI, RII are two Lagrange multipliers sub-vectors, and they may be given by 

RII = -(fiiz w1 + fizz (A 6 + WII)) 

Several aerial triangulation tests were performed using the two computer programs to adjust some of 
the Skylab space photography (scale 1:2,900,000), and a combination of Skylab and very high altitude 
aerial photography (scale 1:120,000) with and without utilization of Skylab orbital parameters. Although 
some test results were given in previous publications (Ali, 1976; Ali and Brandenberger, 1978), the full 
details of all the tests and their analysis are given in the author's thesis (Ali, 1980). Here, only a few 
tests will be described in order to show the efficiency and the capability of the developed programs. 

One model of Skylab photography (S-190 A camera), covering the areas of Windsor in Canada and 
parts of the State of Michigan in the U.S.A., was adjusted using the developed bundle adjustment pro- 
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TABLE 1. RMSE AND AVMR FOR THE ROUNDED CONTROL POINTS 

Ontario area 

RMSE AVMR 
Number 

Coord. of X Y Z X Y Z 
Rounded to points (m) (m) (m) (m) (m) (m) 

I 
grams. Seventy-six points were identified in the model, and their ground coordinates were measured 
from either 1:25,000 or 1:24,000 scale maps of Canada and the U.S.A., respectively. It was assumed that 
space photography would not be used for aerial triangulation in areas for which large scale maps exist. 
Consequently, and to simulate real conditions, map coordinates were rounded off to the nearest 100, 
200, . . . to 1,000 m. The differences (or residuals) between the map coordinates and their rounded val- 
ues, as well as the Root Mean Square Errors (RMSE) of the differences for each case were calculated. 
Table 1 shows the RMSE'S as well as the Absolute Values of the Maximum Residuals (AVMR) for each case. 
Figure 1 shows the relation between the RMSE'S and the values to which the map coordinates were 
rounded. 

The map coordinates and their rounded values for 28 well distributed points were used as control in a 
series of eleven aerial triangulation tests. The differences between the adjusted ground coordinates of 
the control and pass points and the map coordinates and the RMSE'S of these differences were calculated 
for all tests. Table 2 shows the RMSE'S and the AVMR'S for the eleven tests nos. 1 to 11 when the coordi- 
nates of the 28 control points were either the map coordinates or their values rounded to the nearest 
100,200, . . . or 1,000 m, respectively. Figure 2 shows the relation between the RMSE'S for the adjusted 
coordinates of both the control and the pass points and the accuracy of the control points used. Table 2 
also shows the RMSE'S and AVMR'S for one test (Test no. 12) using the second bundle adjustment method 
and when the coordinates of the control points were rounded to the nearest 500 m. 

Rounded X . Y . 2  coordinate valuer 

FIG. 1. Graphs showing the RMSE'S for the differences between the rounded coordinates and the map coordinates as 
a function of the rounded coordinates values (Ontario model). 
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TABLE 2. RMSE AND AVMR (ONTARIO MODEL USING THE FIRST AND SECOND BUNDLE ADJUSTMENT METHOD) 

RMSE AVMR RMSE AVMR 
of control points of control points of pass points of pass points 

Serial no. X Y Z X Y Z X Y Z X Y Z 
of test (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 

First bundle adjustment method 
1 01 01 00 02 01 00 35 40 148 104 127 394 
2 22 30 28 46 80 45 40 39 162 92 127 394 
3 37 45 62 91 96 99 37 46 128 116 122 374 
4 52 44 84 112 104 151 52 34 148 96 136 397 
5 53 66 138 105 104 220 46 58 194 141 183 532 
6 76 84 175 138 166 243 69 44 130 149 168 325 
7 34 76 196 113 165 292 39 53 191 98 126 385 
8 68 65 209 116 161 313 75 62 205 168 155 386 
9 114 107 228 247 221 337 100 88 210 203 248 406 

10 86 111 241 155 273 396 88 88 193 181 239 385 
11 40 63 280 91 133 474 36 58 286 122 108 588 

Second bundle adjustment method 
12 34 53 170 76 159 242 36 41 157 100 129 357 

CONCLUSIONS 

The aerial triangulation results of the Skylab model, using the first bundle adjustment method when 
the coordinates of the ground control points and the check points were measured from 1:25,000 scale 
maps (Table Z), show RMSE'S of 53 m in planimetry (17 pm in photo plane) and 148 m in height (0.035 
percent of orbital height). Although the planimetric accuracy seems of reasonable order, it is lower than 
the accuracy claimed by some other investigators (Kubik and Kure, 1971; Brown, 1976) for the adjust- 
ment of normal aircraft photography using the bundle adjustment technique. The reason for the relative- 
ly poor accuracy could be due to the fact that the ground coordinates used to check the results were mea- 
sured from maps. The height accuracy is poor as expected; this is mainly due to the small baselheight 
ratio of the Skylab photographs. 

Tests no. 1 to 11 using the first bundle adjustment program show that using ground control of different 
accuracy is not the main factor which influences the accuracy of the aerial triangulation; the differences 
of the RMSE'S are statistically insignificant (at the 95 percent confidence level). In fact, in Test no. 11 for 
the Ontario model, better results were obtained when the coordinates of the ground control were 
rounded to 1000 m compared with the results for coordinates rounded to 300 m. This, to some extent, 

m. 
300 

275 

B 250 
3 
2 225 

c "7 s o  

; ,2 
2 e  175 
a 8 
6 a 150 4 2 
2 %  125 

* 
100 

,5 

50 

25 

100 200 300 400 500 600 700 800 900 1000 

Rounded X , Y , Z  coordinate values 

FIG. 2. Graphs showing the RMSE'S for the differences between the adjusted coordinates using the first bundle ad- 
justment algorithm and map coordinates as a function of the rounded coordinate values for the control points (Ontario 
model). 
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coincides with theoretical studies done by Ebner (1972) concerning the effect of the accuracy of the con- 
trol on the results of aerial triangulation. 

Comparing the similar tests using the second and the first bundle adjustment methods (Tests no. 12 
and 6, respectively), it can be seen that a significant improvement in planimetry was obtained by using 
the second method. But during the investigation, the camera parameters supplied to the authors by NASA 

were not well defined. Moreover, due to some inherent difficulties during the mission, the parameters 
were also not reliable. Accordingly, the camera parameters and their weights resulting from the solution 
using the first method were used as obsenrations in the second method. Hence, the significant improve- 
ment of the accuracy of the results obtained from the second method compared with those of the first 
method should not be used to draw any final conclusion. 
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