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Cali bration and Model Reconstruction 
in Analytical CIose-Range 

- 

Stereo photog rammetry 

Part I: Mathematical Fundamentals* 

The method has application to stereophotography, rasterstereography 
(using a projected grid), Moire topography, and stereoradiography. 

I N CLOSE-RANGE PHOTOGRAMMETRY, particularly 
in biostereometrics, simple uncalibrated photo- 

graphic devices are very often used in various ge- 
ometries which may considerably deviate from 
the normal caqe of photogrammetry. For example, 
oblique or convergent camera orientations are 
used in the case of stereophotography, or, in the 
case of rasterstereography (a stereophotogram- 
metric method using a projected grid, see Frobin 
and Hierholzer (1978a, 1978b)), the stereo image 

the past, and some of them are not very satisfac- 
tory with regard to the handling of statistical and 
systematic image errors. However, the analytical 
method of bundle adjustment which has been de- 
veloped in recent years allows a generally valid 
determination of all unknown parameters of the 
photogrammetric problem, such as interior and ex- 
terior orientation, model coordinates, and control 
point corrections in a unified procedure which is 
rigorous from a statistical point of view (Brown, 
1976). In the case of the self-calibrating bundle 
adjustment, systematic image errors can be com- 
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In the subsequent Part 11, special calibration and reconstruction procedures 
for rasterstereography and Moire topography are described. 

pair is produced by two different optical devices. 
In addition, in contrast to the situation in geodesy, 
the precision of the control point coordinates may 
be poor, and the cameras may be non-metric. 

Consequently, a great variety of procedures for 
calibration and model reconstruction, often dedi- 
cated to a special project, has been developed in 

* Part I1 of this article will be published in a sub- 
sequent issue. 
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pensated for by introducing additional parameters 
into the bundle equations (see, e.g., Griin, 1978), 
the whole method remaining a single uniform so- 
lution procedure of the photogrammetric problem. 

The calculation method described in the present 
Part I of this paper has been worked out for the 
evaluation of stereoradiographs (with conver- 
gence angles of about lo0), of 90" biplane radio- 
graphs, and of rasterstereographs and conven- 
tional stereophotographs (with arbitrary conver- 
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gence angles). Applying some modifications 
concerning the image data preparation, Moire 
topograms may be evaluated too. This is due to the 
fact that a Moir6 apparatus may be considered as a 
device for distance measurements by triangula- 
tion, the basic geometry being similar to that of 
stereophotography. In Part I1 of this work (Frobin 
and Hierholzer, 1982) special evaluation proce- 
dures for rasterstereography and Moire topogra- 
phy will be presented. In contrast to aerial pho- 
togrammetry with block triangulation, we are here 
concerned only with image pairs. 

As mentioned above, an exact determination of a 
priori control point coordinates may be difficult, 
especially in large control point distributions. 
Therefore, the corrections of the control point co- 
ordinates calculated in the bundle adjustment may 
be relatively large. In addition, the starting values 
for all unknown parameters in the iteration proce- 
dure of the bundle method may be quite poor. 
Consequently, modifications of the bundle equa- 
tions as well as of the convergence criterion of the 
iteration are necessary as compared to the algo- 
rithms for other applications reported in the litera- 
ture ( G N ~ ,  1978; Schwidefsky and Ackermann, 
1976). 

The solution of the photogrammetric problem 
consists in a least-squares fit of the calculated 
model parameters to the observations by a varia- 
tion of the unknown model parameters. The obser- 
vations consist of the measured image coordinates 
of the control points and of the object points. Fur- 
thermore, in the case of control points which are 
not exactly known, their three-dimensional coor- 
dinates determined in an independent measure- 
ment are also considered as observations. The 
error distribution of the observations is assumed to 
be normal (Gaussian), possibly with different stan- 
dard deviations for the different observations, and 
without error correlation. 

The unknown model parameters consist of the 
elements of interior and exterior orientation of the 
imaging systems, possibly supplemented by addi- 
tional parameters such as distortion, and of the 
three-dimensional coordinates of the reconstructed 
model points. 

The relation between the observations or the 
corresponding calculated model parameters and 
the unknown model parameters is established by 
the imaging (or collinearity) equations. As the 
number of equations is generally higher than the 
number of unknown model parameters, the least- 
squares principle has to be employed to arrive at a 
unique solution. From a statistical viewpoint, the 
square sum of the observation errors has to be 
minimized in a rigorous analysis. However, in 
some applications other measures (e.g., the ,re- 
siduals of the collinearity or coplanarity equa- 

tions) are optimized. This may lead to discrepan- 
cies in the case of strong deviations from the nor- 
mal case of photogrammetry (Schwidefsky and 
Ackermann, 1976, chapter 3.4.1.2). 

To establish the imaging equations, we consider 
a point X given in the basic spatial coordinate sys- 
tem (X,Y,Z); this point is imaged onto the two 
image planes producing a "left" and a "right" 
image point X,, and Xbr respectively given in the 
image coordinate systems (xbl,yL1,zbl) and (x,,y,,, 
z,,). The coordinate systems together with the ele- 
ments of interior and exterior orientation are illus- 
trated in Figure 1 (the rotation angles being omitted 
for the sake of simplicity). 

According to this choice of geometry parameters, 
the imaging (or collinearity) equations may be 
written as 

where 

FI = Z ~ I  /(Zo, - ZI), Fr = Zor/(Zor - Zr) (334) 

and Xo, and Xor are the left and right center of per- 
spective (Figure 1). The coordinates X1 and Xr are 
the coordinates of point X transformed into the left 
and right image coordinate system: 

Definitions for the rotation matrix D are given, 
e.g., by Finsterwalder and Hofmann (1968) or 

XOL 

I 

I 

FIG. 1. Coordinate systems and elements of interior 
and exterior orientation of a stereoscopic image pair 
H ,  H, - principal points 



CALIBRATION AND MODEL RECONSTRUCTION. PART I 

Frobin and Hierholzer (1979). X,, and X,, repre- 
sent the translational part of the transformation 
(Figure 1). 

In the following calculations we combine the 
elements of interior and exterior orientation into 
nine-vectors: 

where cP represents the three rotation angles 
(+,~,4. 

In the preceding treatment the validity of the 
collinearity equations is assumed. If necessary, 
the imaging equations may be modified to account 
for image distortion and other systematic image 
errors by introducing additional parameters which 
may be treated in much the same way as the orien- 
tation elements. Such a procedure is discussed, for 
example, by Criin (1978), but we shall not go into 
details of this. 

To establish the error equations of the photo- 
grammetric problem, we consider a spatial distri- 
bution of n points. The first n, of them are control 
points with approximately known coordinates X,, 
the rest being object points with unknown coordi- 
nates X. From the observed image pairs X,, and 
X,nr of all points and from the imaging Equations 1 
and 2, we obtain the error equations 

with the residuals Vli  and V r .  due to the measuring 
errors and the overdeterminacy of the system. 
These are equations for the unknown point coordi- 
nates X i  (object points and control points) and for 
the unknown orientation elements 0, and 0,. As 
the approximately measured control point coor- 
dinates X,,  are considered as observations, too, ad- 
ditional error equations have to be established for 

1 the n,  control points only: 

X i  = X,, + W i  (11) 
( i  = 1 , .  . . ,n,) 

The system of Equations 9, 10, and 11 has to be 
solved with the constraint that the (generally 
weighted) square sum of the residuals is mini- 
mized: 

"P 

+ 2 wiT Hi W i  = Min. 

measurements and of the control point measure- 
ments. The weight factors may be determined by a 
priori estimations, proportional to the inverse of 
the observation errors. The observation errors are 
generally assumed to be uncorrelated. The weight 
matrices are then diagonal. 

To simplify the following calculations, we note 
that the third sum in Equation 12 may be extended 
to n, if weights of zero are introduced for the ob- 
ject points. Thus, the control points and the object 
points may be treated in exactly the same way. 

We now collect the vectors and matrices oc- 
curring into "hypervectors" and "hypermatrices" 
to obtain the error equations and the minimum 
condition in compressed form 

X, = X ,  + v (13) 
x = x , + w  (14) 

VTGV + WTHW = Minimum (15) 

with the abbreviations 

and similar expressions for X, X,,  and W .  The 
matrices are given by 

GI,, G,,, and Hi are weight factors or, more gen- 
erally, weight matrices of the left and right image 
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assuming no observation error correlation. The 
dimensions of the vectors are 4n for X ,  X,,,, and V; 
3n for X, X,, and W (the last 3n - 3n, components 
being irrelevant); and 4n x 4n and 3n x 3n re- 
spectively for the matrices. 

From the error equation we obtain by lineari- 
zation 

A d O + B d X = a + V  (21) 
d X = b + W  (22) 

where 

A = functional matrix containing all deriva- 
tives of the calculated image coordi- 
nates (Equations 1 and 2) with respect 
to the orientation elements (4n x 18 
elements); 

B = functional matrix containing all deriva- 
tives of the calculated image coordi- 
nates (Equations 1 and 2) with respect 
to the control point and object point co- 
ordinates (4n x 3n elements); 

d o  = correction vector of the orientation (18 
elements); 

dX = correction vector of the control point 
and object point coordinates (3n ele- 
ments); 

a = X ,  - Xbo = image error at the point of 
consideration; and 

b = X, - Xo = error of the control points 
(the last 3n - 3np components are ir- 
relevant). 

From Equations 21 and 22 we obtain in the 
usual way, utilizing the weight matrices, the nor- 
mal equations 

Starting from some pre-estimated values for the 
unknown orientation, 0 0 ,  and for the control point 
and object point coordinates Xo, the solution of 
these normal equations yields corrections d o  and 
dX of the initial values. A reasonable choice for 
the initial control point coordinates (first 3n ,  com- 
ponents of Xo) would of course be their observed 
values X,. By iteration, we arrive at final values 
fulfilling the minimum condition (Equation 15). 

As mentioned earlier, the last n - n, sub- 
matrices of H belonging to the unknown object 
points are zero. Thus, the corresponding compo- 
nents of dX and b have no influence in Equation 
24. However, for the control points the contribu- 
tion of Hb in this equation is quite important, at 
least if the observed values of the control point 
coordinates are not very accurate and if the initial 
value Oo  of the orientation is only a rough estima- 
tion. In such situations. which often occur in close- 

for reaching the minimum. Testing of the correc- 
tions d o  and dX against a threshold, as sometimes 
reported in literature, is only a necessary, not a 
sufficient, condition for the least squares solution. 

If the initial control point coordinates are chosen 
as their observation values, then b = 0 in the first 
iteration step. However, omitting the term Hb in 
Equation 24 in every iteration step (see, e.g., Griin, 
1978; Schwidefsky and Ackermann, 1976, chapter 
3.4.4.2) appears to be equivalent to utilizing a zero 
weight matrix H for the control points, if the itera- 
tion is continued to the least squares minimum 
(Equation 15). That is, the final solution is then 
not bounded to (weighted) minimal control point 
corrections, and it is, in general, independent of 
the actual choice of H. The only effect of introduc- 
ing H on the left, but not on the right side of Equa- 
tion 24 is to change the convergence rate of the 
iteration. 

This can be understood from the following con- 
siderations. First, omitting Hb means that only the 
image errors a but not the control point errors b are 
taken into account in the normal equations; con- 
sequently, the observed control point coordinates 
are of no influence on the final solution (0. X) of , - .  
the least squares problem. 

Second, if we assume that a least-squares solu- 
tion (0, X) (with respect to the image errors) has 
already been obtained, then 

From Equations 23 and 24 it then follows (with 
Hb = 0) that 

and the solution is stationary, independent of H. If 
the final solution (0, X) is not yet achieved, the 
correction dX calculated from the normal equa- 
tions is apparently the less the larger the elements 
of H are chosen. Thus, the rate of convergence, 
but not the final stationary solution, is affected by 
the choice of H, if b = 0 throughout the iteration. 

In the above analysis we have tacitly assumed 
that initially only a rough estimation of the orien- 
tation elements is known. This is the case in most 
close-range applications. However, the orienta- 
tion may also be treated as an observation and can 
thus be introduced into the normal equation 
(Equation 23) using an appropriate weight matrix 
F and an error vector c in analogy to H and b in 
Equation 24 (see, e.g., Brown, 1976). 

The system of normal equations (Equations 23 
and 24) is solved by the well known procedure of 
partial reduction yielding 

d o  = (ATQA)-' AT (Qa - GB(BTGB + H)-' Hb) 
(25) 

- - -  

range photogrammetry, the iteration of the normal using the pseudo weight matrix 
equations (Equations 23 and 24) must be con- 
tinued testing the least squares sum (Equation 15) Q = G - GB(BTGB + H)-' BTG. (26) 
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The correction dX is then calculated by back 
substitution of Equation 25 into 

dX = (BTGB + H)-'(BTGa + Hb - BTGAdO) 
(27) 

derived from Equation 24. 
Of course, the above solution is possible only 

for a proper control point distribution with non- 
vanishing weights. Otherwise, the necessary 
matrix inversions are not possible due to singu- 
larity. 

If the initial control point coordinates are chosen 
as their observed values, then initially b = 0. 
However, this is not true in the subsequent itera- 
tions, as discussed above. 

The functional matrices A and B may be built up 
from the contributions of the individual control 
and object points, as reported for example by 
Frobin and Hierholzer (1979) in a special repre- 
sentation. 

Loosely speaking, the calculation of the orienta- 
tion, e.g., according to Equation 25, may be de- 
noted as "orientation," and the calculation of the 
point coordinates, Equation 27, as "reconstruc- 
tion." Rewriting the normal equations leads to an 
alternative for the simultaneous solution described 
above. From Equations 23 and 24 we obtain 

ATGA d o  = ATGa" (28) 
(BTGB + H)dX = BTGa' + Hb (29) 

with the abbreviations 

a W = a - B d X  (30) 

a f = a - A d 0  (31) 

Assuming a" to be known, we may calculate the 
orientation from Equation 28. This is mssible in 
the case of exactly known control (leaving 
the object points out of consideration for the mo- 
ment). On the other hand, if the orientation ele- 
ments are exactly known, the point coordinates 
may be reconstructed from Equation 29. Now if 
the orientation elements and the control point co- 
ordinates are already known with some accuracy, 
it should be possible to replace the simultaneous 
solution of the system (Equations 23 and 24) by an 
alternating solution of Equations 28 and 29 at least 
for small corrections d o  and dX, i.e., in linear ap- 
proximation. The procedure is as follows: 

In the first step the control point coordinates are 
considered to be accurate. The orientation elements 
are determined by iteration of Equation 28 alone 
with dX = 0. 
In the second step the new orientation is used to cal- 
culate corrections of the control point coordinates 
(and possibly of the object points) by iteration of 
Equation 29 with d o  = 0. 

1 The corrected control points coordinates are in- 
serted into Equation 28 again to obtain better orien- 
tation values, and so forth. 

It should be noted that in the first step only the 
relatively accurate control point coordinates, but 
not the roughly estimated object points, are used 
to calculate the initial orientation. However, after 
the second step the object points are likewise 
known with good accuracy and may thus be used 
in Equation 28 from the third step on. In other 
words, the whole procedure may be regarded as a 
higher order correction of the basic photogram- 
metric procedure utilizing exactly known control 
points for calibration, and the then exactly known 
orientation for reconstruction. 

The advantage of this procedure consists in the 
simpler structure of the equations as compared to 
the bundle equations. However, it appears that 
the computing time savings are not very important, 
as more iterations are necessary than for the simul- 
taneous solution. A symbolic comparison of the 
two methods is shown in Figure 2. The minimum 
on the hyper-surface of the square sum of errors 
(Equation 15) is located either by proceeding in 
the direction of the gradient (simultaneous correc- 
tion d o  and dX in the case of the bundle method) 
or by alternating orthogonal steps in the d o  and 
dX direction. Evidently more steps are necessary 
in the case of the alternating method to arrive at 
the minimum. 

For a complete error analysis of the solution 
(0, X) of the normal equations (Equations 23 and 
24) in terms of variances and covariances the 
matrix of the system 

has to be inverted. In most cases this is impractical 
because of its large number (18 + 3n) of rows and 

FIG. 2. Location of the minimum on the hyper-surface 
of the square sum of errors 
dashed line: simultaneous solution (bundle method) 
solid line: alternating orientation and reconstruction 
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columns. However, the covariances defined by 
the diagonal elements of the inverse matrix may 
be calculated much less elaborately by dispensing 
with determination of all error correlations. 

Following the procedure of Schmid (1959), we 
may write 

The submatrices K and M can be calculated ex- 
plicitly. We merely state the results. For a full 
derivation see Frobin and Hierholzer (1979). The 
submatrix K relates to the orientation elements; 
we obtain 

K = (ATQA)-' (34) 

This expression had already to be calculated for 
Equation 25. Thus, no additional calculations are 
necessary for the error analysis of the orientation. 
Furthermore, correlations between the orientation 
elements may also be obtained from Equation 34. 

The variances of the coordinates can be deter- 
mined from the diagonal elements of M. M con- 
sists of 3 x 3 submatrices of the form 

Mij = 6, Tyl + UT KU, (35) 

each submatrix containing contributions of only 
two (control or object) points numbered i and j. 
Here we are concerned only with the diagonal 
submatri.ces 

Mi, = Tyl + UT KUi (36) 

The submatrices U and T are given by 

ui = (@i Gli '1,) T;l  

AT, Gr, Br, 

All matrices occurring have already been calcu- 
lated during the partial reduction of the system of 
normal equations (see Equations 23 through 27). 
Thus, only a few additional matrix operations have 
to be performed to obtain the desired variances. 

From the number of degrees of freedom f of the 
system of error equations 13 and 14, we calculate 
the standard deviation of unit weight, or, more ac- 
curately, an estimation of it: 

s2 = (VTGV + WTHW)If (39) 
where f = n  + 3 n ,  - 18 (40) 

From the diagonal elements of Equations 34 
and 36, we calculate the confidence limits 

for the 18 orientation elements Oj  and the 3n con- 
trol point and object point coordinates Xi,, respec- 
tively, the index i denoting the point number; k 
relates to the x ,  y, and z coordinate. tsCf) is the t 
distribution of confidence S for f degrees of free- 
dom (see, e.g., Spiegel, 1972). 
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