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The Location of Three-Dimensional 
Linear Objects by Using 
Multiple Projections 

A least-sq uares method is developed for locating linear objects, 
such as straight and curved lines, which contain no 
distinct points or marks. 

INTRODUCTION 

S EVERAL APPROACHES have been utilized for 
locating objects in a three-dimensional space. 

Typical methods among them use stereo cam- 
era~,'-~ a three-degrees-of-freedom instrumented 
arm, or an ultrasonic t ransdu~er.~ 

The latter two are direct methods used for 
locating such objects as experimental equipment, 
machine tools, and so on. They place an arm tip or 
an ultrasonic transducer directly on the object. 
The first method, however, is an indirect method. 
It has been' developed in the photogrammetric 

clearly discernible on both photographs. Thus, 
using this method, it is difficult to determine the 
position of a line which contains no distinct points, 
or marks. Furthermore, if the stereo angle is small, 
the accuracy of the finally determined location 
depends largely on that of the measurement of 
camera axes orientations. In particular, it is dif- 
ficult to obtain information along the depth direc- 
tion in the vicinity of the plane determined by the 
centers of camera lenses and the object point. 

In order to complement these defects of tri- 
angulation, we have proposed a new method to 
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field, and applied to those objects on which it is 
impossible to directly place a sensor tip. It is 
widely applied to the analysis of electron mi- 
croscopic photographs, bubble chamber photo- 
graphs, aerial photographs, and so on. The basis of 
the method is triangulation; that is, the position of 
a point on the object is determined as the 
intersection of two lines, those lines being defined 
by corresponding image points on a  air of photo- 
graphs and the camera lens nodal points. There- 
fore, it is possible to determine the coordinates of 
only those points whose corresponding images are 
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determine the position of a linear object contain- 
ing no marks by using multiple photographs taken 
from different positions.'-" The idea of the method 
is that the coordinates of an object point can be 
determined based on the optimizing algorithmsa 
by utilizing several lines (data lines) simulta- 
neously, which are defined by sampled points 
(data points) on photographs and by the nodal 
points of the lenses. The coordinates are deter- 
mined to minimize a certain cost function defined 
by these data lines and the location of the object 
point. The present paper describes the principle of 
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the method and formulates it for such objects as 
points and straight and curved lines. 

There are two types of projection, parallel and 
convergent. The latter is a projection of objects by 
divergent rays from a point source, while the for- 
mer is defined by parallel rays and is a special case 
of the latter. 

The method to determine the least-squares po- 
sition of an object in three-dimensional space by 
using multiple convergent projections is first de- 
scribed, and then the method is reformulated for 
the case of parallel projections. 

PRINCIPLES 

Consider the problem to determine the position 
of an object Q in Figure 1 as accurately as possible 
by using N projections. In the figure, S"' and n"' 
are the position vector of the ith source and the 
normal vector of the ith projection plane, respec- 
tively. Available data are S"', nCi', and coordinates 
of a set of the points (data points) sampled inde- 
pendently on the image of the object for each pro- 
jection. Denote the coordinates of the j th data point 
on the ith projection by pii'; (xj"), y,"', 0 ) ,  where the 
ith projection plane and its n"' are given the ith 
projection coordinate ~ ( ~ ' - y " '  and z"', respectively. 

Now, given the normal vector nCi' and the posi- 
tion of the origin 0"' of the ith projection coordinate 
with respect to the reference coordinate system 
X-Y-2, p,"' can be transformed into Pii' (Xj( i ) ,  Y i i ) ,  
2,"') in the reference system as follows: 

where 0"' and T"' are the principal point (A"', B"', 
C"') and the orientation matrix of the ith projection 
coordinate in the reference system, respectively. A 
line determined by the data point P,") is called a 
data line I..,"). Using the curvilinear coordinate r, 
any point on the line is given by 

FIG. 1. Convergent multi-projection. 

where S'" is the position vector (a(", b(", d i ) )  ofthe 
ith source, and ei") is the tangential vector (I,"', . -  . 
mj"', n,"') of the data line = ( P i i  - S(i')l 
1p;ci' - S(i)l .  
8 2 

ldeally,'the object must be located on every data 
line for i = 1,2, . . . ,N; j = 1,2, . . . ,M. In practice, 
however, each data line is located a little apart 
from the object, as shown in Figure 2, due to vari- 
ous errors in the measured values of S"', o"), nCi', 
and p i  i ) .  

It is desirable to determine the position of the 
object as accurately as possible based on those 
data lines given by Equation 2. Let vector V denote 
the parameters describing the position of the ob- 
ject; then the distance d,"' between the object Q 
and the data line 4") is a function of V .  We can 
estimate the position of the object by V*, which 
minimizes the cost function, 

f (V)  = 2 2 d? (V) .  
i j 

(3)  

Based on all the data points, the solution V* is 
given and is optimum in the sense of least squares. 
The minimization problem of Equation 3 can be 
solved by the use of the simplex m e t h ~ d , ~  which is 
well known to be effective for the optimization 
problem of the unimodal function.1° 

ACCURACY 

The accuracy of the position determined by the 
method depends both on the relative values and 
on errors in the measurements of S"', Ti) ,  and p,"'. 
For simplicity, consider the case in which the po- 
sition of a single point is to be determined by the 
method. 

Assume the Euclidean distance between the 
object point and a data line for the distance d"' in 
Equation 3; then d"' is given as follows: 

where V is the position vector (X,Y,Z) of the object 
point. The least-squares position can be deter- 
mined by solving the equations af(v)lav(=aflax, 
aflaY, afIa2) = 0 .  Since the solution V* can be 
regarded as a function of those measured quan- 
tities (S"', Ti', P ' ~ ) )  and it is possible to measure p(i' 

FIG. 2. Locating error d,'$' due to measurement. 
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with sufficient accuracy, the locating error (AV) is 
affected mainly by the errors (AS"), Ae")) of (S"), 
e")) and is given as follows: 

where i3V/aSci) = (avlaa"', avldb"', dV/dcti)), and 
aV/ae( i ,  = (aVlal(i), aVlamci), aVlan( i ) ) .  

Tables 1 and 2 show the values of aV/aSti) and 
aV/adi) obtained by Equation 5 with experimental 
data described later. The maximum errors of the 
experiment are as follows: 

Source (or the center of camera lens) locating 

I 
error, AS"', * lcm; 
Projective orientation error, beu', 2 0.S; and 
Data point coordinate error, Ap'", k lmm. 

The maximum estimates of AV due to AS") and 
Anti) are 3 cm and 20 cm, respectively, obtained by 
using Equation 5 and the values in Table 1 and 2. 
So the effect of An") is larger than that of AS"' in 
the experiment. In the case of methods based on 
the triangulation, generally, the effect of the pro- 
jective orientation error is the largest. 

The most favorable means for minimizing the 
orientation error is to use the three projections 
with orientations perpendicular to each other, so 
as to minimize aV/aeci). However, such projection 
conditions are not always possible, and a calibrat- 
ing method is necessary for the projective orienta- 
tion so as to minimize errors. 

I CALIBRATION OF THE PROJECTIVE ORIENTATIONS 

The projective orientations data are contami- 
nated not only by errors in the measurement but 
also by errors in the enlarging process. It is desir- 
able for the accurate locating of the object that the 
projective orientations should be calibrated by 
using several reference points whose images are 
definitely recognized in every projection. 

Assume that M reference points are gained for 
every projection; then the least-squares position of 

the reference point Vj* (j = 1,2, . . . ,M) with re- 
spect to orientation matrices {T")) (i = 1,2, . . . ,N) 
is obtained as a solution of the equation df(Vj)l 
av ,  = 0, and the solution Vj* is a function with re- 
spect to T"). Therefore, Tti)  can be calibrated, by 
minimizing the sum of the cost function f(Vj) for 
the all reference points. That is, the orientation 
matrices {T")*} which minimize the following 
function are optimum in the sense of least squares: 

M 

F(T0) Tt2) , , . . . , TtN))  = f ( v j ) .  
j = 1  

(6)  

The solution {T")*) minimizing Equation 6 can 
be obtained with an iterative method. 

SOME NOTES FOR THE PARALLEL PROJECTION 

In the case of the parallel projection, the direc- 
tions of data lines are equal to the projective 
orientations. Therefore, assuming that the pro- 
jective plane is perpendicular to the projective 
orientation, the distance dj t i )  between the object Q 
and the data line L,") is equal to the distance be- 
tween the image q and the data point &") in the 
projective plane (see Figure 3), where the image q 
is the projection of Q on the plane. 

When the object is a point, the position v of the 
image 9 is given as 

where V is the reference coordinates (X,Y,Z) of Q, 
and T ~ ) ~  is the transpose of T i )  in Equation 1. 

Distance di  i ,  (V) in the cost function is given by 
dti'(V) = Iv - pF'l 

= V(x - x j ( i ) ) z  + (y - yj(i))z, 

where both pi") and v are of the projection coordi- 
nates, so that dj")(V) for the parallel projection is 
simpler than that for convergent projection. 

POINT 

The Parameters V ,  which determine the posi- 
tion of a point, are coordinates (X,Y,Z) of the point. 

X -0.244 x lo4 -0.200 x l W  -0.112 x 103 
-0.313 lW -0'289 lW FIG. 3. 

beating emor d,(" projected on to the i" projec Z -0.386 x 103 -0.332 x 103 -0.131 x 103 
tion plane in parallel projection. 
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Assume that only one data point is obtained for 
a projection, and that the total number of data 
lines given by Equation 2 is N. The cost function 
f(V), defined by substituting dci)(V) of Equation 4 
into Equation 3, becomes a unimodal function 
with respect to each parameter. For a point object, 
therefore, the least-squares solution is always ob- 
tained bv the s i m ~ l e x  method. 

Even if the objects contain plural points which 
are indistinguishable on each projection, the 
least-squares position of each point can be ob- 
tained by searching the best combination of data 
points that makes the  cost function f ( V )  a 
minimum. However, when the number of points 
contained in the objects increases, the necessary 
computation in order to minimize f(V) grows too 
large to be practical, and for such cases some pre- 
processing to decrease the number may be re- 
quired. 

STRAIGHT LINE WITHOUT MARKS 

Assume that a straight line has no marks or dis- 
cernible points on it and that there exists no corre- 
spondence among data points sampled on each 
projection, that is, data points are sampled inde- 
pendently on each projection. Then a line can be 
expressed as 

where Ro is a certain point (X,Y,Zo) on the line, eo 
is the tangential vector (l,m,no) of that point, and r 
is the curvilinear coordinate. 

The distance dj"'(V) between the object line and 
a data line is given as 

Since it is alwa s possible to set X, = 0  and 1 ,  = 
1 - m - no2, the vector V for a straight line + 

consists of four independent  parameters 
(Y,z,m,no). 

The cost function f(V) obtained by substituting 
Equation 8 into Equation 3 becomes a multi- 
modal function with respect to each parameter. 
Therefore, it is required, for the simplex method 
used to minimize f(V), that the initial simplex 
Vh(h = 1,2, . . . ,5) must be selected within the 
domain in which the minimum value o f f ( V )  is ob- 
tained. 

Though the general solution for the  above 
problem has not been known in the general op- 
timization problem, the following simple treat- 
ment is effective for a straight line: 

Search the most distant pair p,"', p,"' among all 
data points on each projection; 
Define a plane PL"' by three points, psci', pF"', 
and S(*', for i = 1,2, . . . ,N; and 
Define a line by the intersection of two planes 
chosen arbitrarily among {PL'~');  ( i  = 1,2, . . . , N )  
and use its parameters for the initial simplex. 

It  is reasonable to assume that the locating of the 

object line determined by the all data points is 
sufficiently close to those lines obtained by the 
above steps. Therefore, with the initial simplex 
V,; (h = 1,2, . . . ,5), the cost function f(V) is well 
minimized. In other words, the least-squares po- 
sition of the line may be determined by using the 
simplex method. 

MULTI-LINES APPROXIMATION FOR A CURVED OBJECT 

Since it is possible to approximate a curve to any 
desirable accuracy by employing multiple straight 
lines, then the approximate location of the curve is 
also made possible by applying the method fonnu- 
lated in the last section to the locating of those mul- 
tiple lines. Assume that the curve isapproximated 
by K lines and that K sets of the parameters given 
by Equation 7 are used. The total number of pa- 
rameters used to locate the  curve is 4K 
(YO1,ZOl ,m~l ,nO1,  . . . , Y O K , Z O K , ~ O K , ~ O K ) -  For the 
distance measure djCi), the least distance among 
the K distances between the data line and K ap- 
proximate lines is available. That is, dj"'(V) for a 
curve is defined as 

where dkti)(V) is the distance between the data 
line L,"' and the kth approximate line, and is given 
by Equation 8 with eo = ( lok,mok,nok)  and % = 
(0,  y o ,  , zok) .  The cost function f (V) ,  obtained by 
substituting Equation 9 into Equation 3, also be- 
comes a multi-modal function and it is difficult to 
select the initial simplex. For a relatively simple 
curve, however, the following treatment is effec- 
tive for selecting the initial simplex V h ( h  = 1,2, 
. . . ,4K + 1) within the domain in which the min- 
imum value of f(V) is obtained: 

Find a pair of data points p,"', pF"' located at both 
ends of the projected curve in each projection; 
Arrange the residual data points from ps'il to pFci )  
in a string, for each projection, so that the dis- 
tance between neighboring points is minimum 
among distances between any two points; 

e Choose K - 1 data points p,"' ( g  = 1,2, . . . ,K - 
1) which divide the data points string intoK parts, 
so that an equal number of points are selected in 
each part; 
Define K planes PL*"' ( i  = 1.2, . . . ,N; j = 1, 
2, . . . ,K) for each projection with respect to the 
point source S"' and each two data points (p,"', 
PC:"), (PC:", PC?') . . . ( P ~ M - I : " ,  PF"'); and 
Define the initial simplex of the ja approximate 
line by the intersection of the two arbitrary 
planes selected among {PL:~'}; (i = 1,2, . . . 8). 

The final approximate lines are considered to be 
located near the initial approximate lines obtained 
by the above process. In this case, however, when 
the number of data points per one approximate 
line is as small as two or three, the simplex often 
fails to converge to.the least-squares solution due 
to errors contained in the initial simplex. There- 
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fore, the larger the number of approximate lines is, of the it" pin hole, and f is the focal length of the 
the more data points are required. camera lens. 

The method was applied to several photogram- 
metric examples. Positions of points and lines on 
an iron frame structure and a curved cord were 
determined by using three convergent photo- 
graphs. The accuracy of the position determined 
by this method was checked by comparing the po- 
sition with its true value. 

ANALYSIS WITH PHOTOGRAPHS TAKEN BY A CAMERA 

If an ordinary camera is idealized to a pin hole 
camera, then a set of photographs of an object are 
convergent projections and the object can be lo- 
cated by them. Now, the center of camera lenses 

1 and a photograph correspond to a point source and 
a projection, respectively. The necessary data are 
the position and orientation of the camera for each 
projection, the coordinates of the data points on 
the projection, and each distance between the 
source and the projection plane. 

The projection system is illustrated in Figure 4. 
Let the projective orientation, that is, the direction 
of the line defined by the center 0"' of the iih pro- 
jection plane (principal point) and the pin hole s"', 
be the z"'-axis. The projection coordinate sys- 
tem, x-y-z, can be transformed to the reference 
system, X-Y-2, by Equation 1. 

Let @ti)', be angles between the y(0-axis, 2")- 
axis of the im projective system and the Y-axis, Z- 
axis of the reference system, respectively; then, 
Equation 1 is reduced to 

cos k)cos+"' sin@) -cos fFi'sin+") 
sin#i)cos+(i) cos@(i) ~infFi)~in+(i)) (I:)) , 
sin$") 0 COS+(~) 

where (Aci', B"), C"') are the reference coordinates 

photograph 
(projection plane) 

pin hole 

X 
object 

FIG. 4. Convergent projection by a camera. 

An iron frame structure was analyzed from three 
photographs (Figures 5a, 5b, and 5c) taken from 
different positions about 5 m away from it. Four 
points, A, B, C and D, on the frame were selected 
for the objects, and their three-dimensional coor- 
dinates were determined by the present method. 

Table 3 shows distances calculated from the co- 
ordinates of each point, in comparison with those 

( a )  i = 1  

( b )  i .2  

FIG. 5. Three photographs of an iron frame structure to 
be analyzed. 
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TABLE 3. DISTANCES BETWEEN OBJECT POINTS 
(A, B, C, AND D) ON THE FRAME IN cm. 

A-C A-D B-C B-D 

True Value 171.0 127.5 132.5 171.0 
Calculated Value 172.6 127.0 131.1 171.1 
Difference 1.6 -0.5 -1.4 0.1 

measured by a precision tape scale. The accuracy 
of the positions determined by the present method 
can be estimated based on those results. It can be 
seen from the table that the accuracy of the dis- 
tance determined by the method is better than 1 
per cent for any two points. 

Since the projective direction errors in this ex- 
periment were accidentally *0.5O, the errors of the 
determined positions were more than 4 cm for the 
distance of 5 m when employing ordinary trian- 
gulation. The optimization procedure in the pres- 
ent method decreased those erros to one half or 
one quarter. The standard deviation of the dis- 
tances between the object and data lines was 
2.8 cm. 

The line AB on the frame was then analyzed 
with the same photographs. Sampling eight data 
points on the line image for each photograph ran- 
domly, the parameters (Y,Z,m,no) of the line AB 
were determined based on those 24 total data 
points. 

The resultant parameters are shown in Table 4 
in comparison with those calculated bv the least- 
squares positions of points A and B obtained by 
the last ex~eriment. Those Darameters obtained bv 
the two dikerent methods almost agree with each 
other. Therefore, the parameters of a line may be  
determined with the same accuracy as those of a 
point. It can be seen also from the table that the 
accuracies of Yo, mo, for the Y-axis are less than 
those of Z,n , for the Z-axis, because the parallax 
for the Z-axis is less than that for the Y-axis. The 
standard deviation of the distances between the 
object and data lines, in this case, was 2.5 cm, and 
it was also on the same order as that for a point. 

EXPERIMENTS FOR A CURVED LINE 

The algorithm described for the multi-lines ap- 
proximation for a curved object was applied to the 

TABLE 4. PARAMETERS OF THE LINE AB IN cm. 

Parameter YO Zo mo no 

Determined by the 
least-squares 
positions of 304.1 26.6 0.093 0.606 

A and B 

by 302.8 26.7 0.109 0.607 Equation 8 

determination of the approximate position of a 
curved line by using K straight lines (K = 1,2,3,4). 

A curved cord, suspended in a span as shown in 
Figure 6, was analyzed by employing three photo- 
graphs which were taken with a camera placed at 
three different positions about 3 m distant from the 
cord. Fifty-four data points (18 points for each 
photograph) on the images of the curved line were 
randomly sampled from these photographs and the 
parameters of the approximate lines were deter- 
mined from those data. 

Table 5 shows the RMS values D of dj(i). 

(11) 

where M, is the total number of data points. A 

( a )  i = 1  

Difference 1.3 0.1 0.016 0.001 F I G .  6 .  Three photographs of a curved cord to be 
analyzed. 
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TABLE 5. RMS VALUES D OF dlt)  FORK = 1,2,3,4 IN cm. 

small value of D indicates the good approximation. 
It can be seen from the table that D decreases as K 
increases. When the number of the approximate 
lines K is increased from two to three, D decreases 
considerably, that is, the  approximation is greatly 
improved. However, when K was increased from 
three to four, D did not decrease so much. There- 
fore, the cord can be sufficiently well approxi- 
mated by using three or four lines. 

Figure 7 shows the inverse projections of the 
final approximate lines on  each projection plane 
overlapped onto data points. These figures also ' show that sufficiently accurate approximations are 
achieved for K more than 3. 

A new method, determining the least-squares 
position of a point, a straight line, or a curved line 
by  using plural projections, is proposed. T h e  
method gives the optimum position in the sense of 
least squares. 

The  features of the method are as follows: 

The influence of the errors on the measurements 

FIG. 7. Data points and inverse projections of the final 
approximate lines. 

is minimized, since the result is obtained as the 
least-squares solution for all data points; 
Relative positions of data points on the object are 
unnecessary for every projection; 
The value of the cost function f(V) at the termina- 
tion of iterative calculation indicates the variance 
of the distances between data lines and the 
least-squares position; 
As more projections and data lines are acquired 
for higher accuracy, the amount of the calcula- 
tions increases; and 
In the case of a complex shaped object, it is often 
difficult to select the initial simplex within the 
domain of the peak containing the minimum 
value of f(V). 
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