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Optimum Sampling for Digital 
Terrain Models: A Trend 
Towards Automation 

Algorithms are presented for determining the optimum number and 
spacing of terrain elevation points in a DTM. 

M A N Y  INVESTIGATIONS have been made into 
techniques of producing a digital terrain 

model (DTM) using regularly spaced data points. 
Questions which relate to the problem of the op- 
timum number of data points and their associated 
distribution in relation to different types of terrain 
are usually ignored, although the importance of 
efficient sampling as opposed to interpolation 
techniques is often acknowledged. This is borne 
out by Blaschke's (1968) definition of a DTM in 

the appropriate sampling distribution of such 
points that constitute a good match for a given ter- 
rain. This is what is meant by optimum sampling, 
which obviously has two components: optimum 
sample size and optimum sample pattern. 

THE HARMONIC VECTOR MAGNITUDE 

The problem of how the stereoplotter operator 
could know when he has measured enough eleva- 
tions during the process of generating DTM data is 

ABSTRACT: The relative efficiency of seven different sampling methods- 
alignedlunaligned systematic sampling, alignedlunaligned stratified sampling, 
alignedlunaligned random sampling, and unaligned systematic stratified ran- 
dom sampling--were investigated in relation to four major classes of terrain. A 
'yiltering" technique in combination with the Harmonic Vector Magnitude, 
computed from the Double Fourier Function, was used to determine optimal 
sample size for any class of terrain through the process of progressive sampling. 
A computer program ATOSAP, developed from this research, can be used interac- 
tively by the steroplotter operator or in a fully automated system to determine 
the optimal size of the sample and also to generate a pattern of sampling for 
digitizing any given terrain. 

which he emphasized the importance of "storing 
measured coordinates X, Y, Z of characteristic ter- 
rain points in sufficient quantity and signifi- 
cance. . . ." A rather comprehensive definition of a 
DTM was given by Aycni (1976a) as "the numerical 
and mathematical representation of a terrain by 
making use of adequate elevation and planimetric 
measurements, compatible in number and dis- 
tribution with that terrain, so that the elevation of 
any other point of known planimetric coordinates 
can be automatically interpolated with specified 
accuracy for any given application." This defini- 
tion bears testimony to the importance of evaluat- 
ing the adequate number of data points as well as 
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not a simple one because it involves a proper as- 
sessment of the terrain roughness in relation to the 
size of the area occupied by the terrain. This im- 
plies that, if any terrain roughness parameter is to 
be used as a criterion to determine optimum sam- 
ple size, such a parameter should incorporate the 
size of the entire area. One parameter which 
seems to satisfy this condition is the Harmonic 
Vector Magnitude (HVM), which is computed in 
the following manner. The surface from the stereo 
model is fitted by least squares to a combination of 
two mathematical functions-a linear filter, Equa- 
tion l, and a double Fourier function, Equation 2, 
giving rise to Equation 3--that is, 
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M (the fundamental wavelength in x-di- 
rection) = x,, 
N (the fundamental wavelength in y-direc- 
tion) = y,, and 
~ . = 1 / 4 f o r i = j = O ; h C , = % f o r i > O , o r i = O , j  
> 0; h, = 1, for i > O and j > 0. 

The Fourier coefficients can be used as a measure 
of the magnitude of deviations of the surface from 
the plane defined by Equation 1 because the re- 
gional fit assumes that the surface oscillates har- 
monically in two mutually perpendicular direc- 
tions. The Harmonic Vector Magnitude (HVM) is 
defined as the square root of the sum of squares of 
coefficients for terms of specified m and n har- 
monics. Aycni (1976a) has demonstrated the use of 
HVM as a parameter of terrain roughness. Because 
the fundamental wavelengths, M and N, define the 
limits of the area concerned, the HVM, therefore 
can be used in determining a criterion for deter- 
mining optimum sample size. The following steps 
illustrate the use of HVM, in collaboration with the 
concept of progressive sampling of terrain models 
first proposed by Makarovic (1973-75) for the de- 
termination of optimum sample size. 
Step 1: Start with a suitable sample interval for 

taking SNZ elevation measurements (SN 
= 4, say) in a regular grid pattern on the 
stereo model. This permits a least squares 
solution of Equation 3 which has ten un- 
known parameters form = n = 1. 

Step 2: Compute HVM for SN2 sample size. 
Step 3: Increase the number of elevation points to 

(SN + using a new interval for the reg- 
ular grid pattern. 

Step 4: Repeat Steps 2 and 3 until HVM satisfies 
the following criteria: 

where the quantity CC can be determined by 
Equation 5 for the (i + l)th sample; i represents the 
ith sample. 

0.2 - 0.5% of elevation for minimum uH 
0.4 - 1.0% of elevation for maximum UH 

where a, = pointing accuracy of elevation mea- 
surement for a given stereoplotter. 

The steps outlined above were used to deter- 
mine the optimum sample size of nine simulated 
terrains. The results are shown in Table 1. By op- 
timum sample size we mean the number of eleva- 
tion points on a terrain which will be ideal for 
adequately describing the roughness of the ter- 
rain. It will be observed from Table 1 that the HVM 
remains fairly constant after the optimum sample 
size is attained according to the above criterion in 
Equation 4. 

MULTIPLE LINEAR REGRESSION EQUATIONS FOR 

OPTIMUM SAMPLE SIZE 

An attempt was made to develop empirical 
linear regression equations for determining op- 
timum sample size which may require less com- 
putation than the HVM method. It was hypothe- 
sised that the optimum sample size, SN, is 
functionally related to nine terrain roughness pa- 
rameters (see Table 2). Using statistical selection 
procedures-maximum and minimum r2 im- 
provement, backward and forward elimination, 
and stepwise regression-for choosing the "best" 
equations (see Ayeni (1976a) for details), the fol- 
lowing regression equations (Equations 6 to 15) 
have been found to give results comparable to 
those of the HVM method: 

where SN is the optimum sample size (number of 
elevation points on the terrain). A useful criterion 
for stopping the progressive sampling procedure 
when using any of the Equations 6 through 15 may 
be stated as 

CC = HVMi+l X ~ H V M  (5) SNk - SNk+, < TR 

where fHVM may be taken as the measure of accu- 
where 

racy for photogrammetric representation of relief TR = SNk+, f, f = 0.5%, and 
given by Markarovic (1973-75). as k represents the kth sample. 
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TABLE 1. OPTIMUM SAMPLE SIZE USING MEAN 
HARMONIC VECTOR MAGNITUDE CRITER~ON 

(Units in Metres) 

Sample Mean Harmonic 
Surface Size Vector Magnitude 

Logarithmic 
Surface 
Surface (3) 

D. Fourier 
Surface 
with 
Synthetic 
Coeffs (6) 

Double 
Fourier 
Surface 
with 
Random 
Coeffs (4) 

Polynomia'i 
Surface (5) 

Surface 16 
with 25* 
Line 36 
Trend (1) 49 

Exponential 16 
Surface (2) 25 

36* 
49 

441 

16 
25 
36 
49* 
64 

441 

100 
121 
144 
169* 
225 
256 
289 
400 

144 
109 
196 
225 
256* 
289 
324 

81 
256 
289 
324 
361 
400 
441 
484* 
529 

Polynomial 
surface 
No. 2 (7) 

289 
361 
400 
44 1 
484 
529 
576 
625 
676* 
729 

D. Fourier 36 
Test Surface (8) 47 

64 
8 1 

100 
121 
144* 
169 
196 
225 

Surface 

Test 
Polynomial 
Surface (9) 

Sample 
Size 

Mean Harmonic 
Vector Magnitude 

50.157 
46.782 
44.034 
41.759 
39.8654 
38.336 
37.439 
37.431 
37.677 
37.939 

Optimum Sample Size 

In the previous section we have used a regular 
grid pattern (systemic pattern) to generate data for 
determining the optimum sample size. The prob- 
lem is that the systematic pattern may not be op- 
timum for a given terrain, and this may lead to 
sampling error. Two other sampling patterns well 
known in statistics-stratified and random pat- 
terns-are illustrated in Figure 1 with their minor 
variations. Morrison (1970) has shown that the first 
six sampling patterns can theoretically represent 
nearly all the possible sample point scatter in a 
two-dimensional plane. This author feels intui- 
tively that a seventh sampling plan-unaligned 
stratified systematic random-has some merits 
which deserve investigation. See the apendix for 
the definitions of the seven sample patterns used 
in this research. 

CORRELATION FOR OPTIMUM SAMPLING PATTERN 

The correlation characteristics of topography 
may be considered from a two-dimensional 
viewpoint. For example, the correlation between 
elevation points separated by distances u and v 
along the x- and y-directions may be expressed as 

P(U,V) = E[(Zf+u ,  I+" - P)(Z" - 41 (17) 

where p  is the mean of the elevations ZU.  
The same correlation function may be approxi- 

mated by 

where q = 0, 1,2, . . . , T (Lags in x-direction); 
p = 0, 1,2, . . . , T (Lags in y-direction); 
rn, n represent the number of data points; 
along x- and y-directions, respectively; and 
2 = sample mean of Z i j .  

Since the correlation properties are related to the 
spatial distribution of surface irregularities, cor- 
relation characteristics will be applied to the 
problem of optimum sampling pattern. 

The problem of finding the relative efficiency of 



TABLE 2. REGRESSION OF OPTIMUM SAMPLE SIZE (DEPENDENT VARIABLE) ON THE PARAMETERS OF TERRAIN ROUGHNESS (INDEPENDENT VARIABLES) 

Resultant No. of No. of 
Mean Var. of Kurtosis Breakline Points 

Optimum Mean Mean Mean Bump Direction of Direction Per Unit Per Unit 
Sample Gradient Curvature Comparea Dip Freq. Cosines Cosines Area Area 

Surface Size (SN) (X,) (X2) (X,) (X4) (Xs) (Xd (X7) (Xd (Xe) 

1 25 1.141 0.0 1.998 27.506 0.010 0.276 1.3374 0.0 0.00025 
2 36 0.6646 1.101 1.3196 42.453 0.399 0.4072 1.1682 0.0 0.000036 
3 49 0.099 0.094 1.0003 69.973 7.723 0.4246 2.2615 0.0 0.000049 
4 169 23.897 23.922 213.447 1.794 68.576 0.9905 6.750 0.111 0.2934 
5 289 227.247 31.316 1087.07 10.915 606.361 0.8409 8.303 0.029 0.5017 
6 484 207.129 247.358 19730.746 0.6341 945.158 0.9975 12.2968 0.151 0.8403 
7 676 2499.869 344.405 32732.96 -0.175 133505.873 0.9997 180.317 0.049 1.1736 
8 196 25.680 14.56 132.068 4.880 48.48 0.983 4.169 0.0243 0.391 

DEFINITION OF TERMINOLOGIES FOR SURFACE ROUGHNESS (See Ayeni (1976a) for details) 
Mean gradient = mean of the first spatial derivatives (i.e., magnitude of mean gradient) at various points on the surface computed from 

s =Jig) + (g) 
Mean Curvature = mean of second spatial derivatives (i.e., magnitude of mean curvature) computed from 

Comparea = ratio between the surface area and the plane area computed from the product of length and breadth of the area occupied by the terrain. 
Mean Dip = Mean of the slopes of a set of triangular intersecting planes fitted to adjacent groups of three elevations. 
Mean Bumv Freouencu = Mean of the distances from elevation points or the terrain to the best-fit planar surface in a direction normal to the latter. . " 

Variance of Direction 
Cosines = Variance of all direction cosines computed between any two points in the X, Y, Z directions on the terrain. Statistically, variance is the 
second movements of these direction cosines. 
Kurtosis of Direction cosines = Third movements of all direction cosines computed between any two points in the X, Y, Z directions on a terrain. 
Breakline = Sudden or abrupt change in slope. The objective method of detecting the number of breaklines on a terrain from sample data is de- 
scribed in Ayeni (1976a). 
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U n a l i g n e d  
Random 

Unaligned 
Stratified 

Unaiigncd 
Systematic 

( 5 )  
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Random 
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. 

Unaligned Random 

Stratif ied Systematic 

( 7 )  

FIG. 1. Seven sampling patterns (see Appendix for the description of these sampling 
patterns). 

various sample patterns for certain categories of (iii) 2VI(u,v + 1) 3 VI(u + 1 , ~ )  + *(u + 1, v + 1) 
populations has been the subject of many pub- and 
lished papers in statistics, namely, Das (1950), (iv) 2q(u + 1,u) > VI(u,v + 1) + q ( u  + 1, v + 1) 
Quenoulle (1949), Cochran (1946), and others. < a,2 (iae., stratified sampling is more efficient Cochran (1946) working with one-dimensional than random sampling) for any size of the sample 
autocorrelation has developed some theorems to and u3t~ < u r ~  unless equality holds in each case. 
show when a particular type (Random, ~~t~ that p(u,u) is the correlation defined in 
Stratified, or Systematic) is more efficient than the Equation other. Das (Igs0) has a two- Corollary: For all infinite populations in which 
dimensional extension of Cochran's theorems, to A1$ = A2$ < 0, a$ s u: for any size of the sample 
establish the relative efficiency of these three and as,2 < 0,2 equality holds in each ofthe 
major sampling patterns. Das theorems are now above cases. 
stated without proofs. (see Das (1950) for proofs). ~h~~~~~ 2: when is by 

DAS THEOREMS FOR RELATIVE EFFICIENCY OF parallel strips along u-direction if 
SAMPLING PATTERNS (i) AjVI s 0 

(ii) A ~ V I  6 0 and Theorem 1: For all infinite populations in (iii) VI(u + (u,v + + VI(u + + 

which then, u,* s a: 
(i) A,* \lr 0 where A, = p(u + 1,v) - p(u,v); 

A2 = P(U,V + 1) - p(u,v) 
(ii) A,* s 0 where VI = p(u,u) + p(-u,v) 

Corollary: When stratification is made by par- 
allel u-strips if A,$ s A,$ s 0 then ast2 < a: (i.e., 
stratified is better than random). 
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Theorem 3: For all patterns of stratification if 

(i) AiV c 0 
(ii) AzV c 0 and 

(iii) AIA, < O then ugt2 c u: 

Theorem 4: For all infinite population which 

(i) G;p(u,u) < 0 where Sfp(u,u) = p(u + 1,u) 
+ p(u - 1 , ~ )  

(ii) S,2p(u,u) 2 0 where S,2p(u,u) = Gf[~fp(u,u)] 
Then usu2 c ugt2 for any sample size and 
uSv2 < uStz unless equality holds; 
i.e., systematic is better than stratified. 

Theorem 5: For all infinite population in which 

(i) A,F(u,u) c 0 
(ii) Az9(u,u) c 0 

(iii) G~(u ,u)  0 
(iv) @(u,u) 3 0 

Then u,2 3 uSt2 3 usUZ 
i.e., systematic is better than stratified and 
stratified is better than random. 

It  should be noted that the physical interpreta- 
tion of these conditions is very difficult to perceive 
except in  one-dimension. For example, in 
Theorem 5, conditions (i) and (ii) are nothing but 
strictly monotonic correlation properties and (iii) 
and (iv) are properties of second differences of cor- 
relation in the x and y directions, for elevation 
points separated by distances u and U. 

THEORETICAL EXPECTATION AND EMPIRICAL RESULT 

OF THE EFFICIENCY OF SAMPLING PATTERNS 

The objective of this Section is to investigate the 
validity of these theorems when they are applied 
to a topographic surface as the infinite population 
of interest, and when efficiency of sampling pat- 
tern relates to interpolation accuracy. An experi- 
ment set up to determine the practical efficiency 
of the various sampling patterns shown in Figure 1 
is briefly described below. 

Step A: Determine the theoretical relative effi- 
ciency of the six standard sampling patterns ac- 
cording to Das' theorems. A computer program 
called AUTOCO computes the correlation prop- 
erties described in Theorems 1 to 5. From this, the 
theoretical efficiency of a sampling pattern can be 
determined. For example, if all the conditions in 
Theorem 5 are satisfied, then systematic sampling 
is "better" than stratified sampling, which in turn 
is "better" than random sampling. 

Step B: Determine the practical (empirical) rel- 
ative efficiency of the six standard sampling pat- 
terns in the following manner: 

A surface is generated (or simulated) by a math- 
ematical function using the program TERRAIN. 
Let the parent function be Z = a, + bX + cX2 + 
dY + eY2, for example. 
A program called GENSAP was written to generate 
Z values for the seven sampling patterns dis- 

cussed above, at a given or optimum sample size 
using this parent function. 
A "deficient" function is established by dropping 
one or two terms of the parent function, e.g., 
Z ,  = BX + CX2 + Eye. Then, by least-squares 
technique, the Z values so generated for the 
seven sample patterns are used in fitting the de- 
ficient function to determine the parameters B, 
C, and E which are, in turn, used to compute the 
Z,  values at some points whose X, Y, Z coordi- 
nates are known on the parent surface. 

Step C:  The RMS (root mean squares) of differ- 
ences between the Z's from parent surface and the 
2,'s from "deficient" surface are then computed. 
The sampling plan with the smallest RMS is then 
chosen as the most efficient for that terrain. This 
result is then compared with the most efficient, 
theoretically speaking, sampling pattern obtained 
from Step A. 

The results of the empirical investigations into 
the relative efficiency of the seven sampling pat- 
terns shown in Figure 1 in relation to eight ter- 
rains chosen from the four major terrain types ob- 
jectively classified by the author (Ayeni, 197613) 
may be enumerated as follows (see Table 3): 

Das's theorems can be used as a good a priori 
indicator of which of the six standard sampling 
patterns is optimum for any given terrain irre- 
spective of the roughness, class, or sample size of 
the terrain. This may suggest that the paramount 
characteristics of the terrains that determines the 
optimum sample pattern is correlation. 
The seventh sample pattern-the unaligned sys- 
tematic stratified random pattern-was found to 
be most efficient in nearly all the terrains investi- 
gated. 
The relative eficiency of sampling patterns may 
also be determined by comparing the determi- 
nants or traces of the dispersion matrices (D) (i.e., 
normal coefficient matrices) in a least-squares 
solution for interpolation. For example, for two 
sampling patterns, dispersion matrices D,, D2 are 
obtained. If I D, I < I D, I or if trace (Dl) < trace 
(D,) then sampling pattern 1 is better than sam- 
pling pattern 2. 

AUTOMATIC OPTIMUM SAMPLING FOR A DTM 

As a result of the investigations performed in 
this research, a FORTRAN IV program called ATOSAP 
was developed, which could be used interactively 
by the stereoplotter operator or in a fully auto- 
mated system to determine the optimum sample 
size and also to generate the optimum sample 
pattern for digitizing any given terrain. The es- 
sential features of ATOSAP are as follows: 

It uses the HVM program to interactively sample a 
stereo-model to obtain the optimum sample size 
using the criterion in Equation 4. As an alterna- 
tive, the operator could use any of the linear re- 
gression equations. Equations 6 through 15 in 
conjunction with Equation 16. 
ATOSAP then calls AUTOCO to determine apriori 
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TABLE 3. THEORETICAL EXPECTATION A N D  EMPERICAL RESULTS OF THE EFFICIENCY OF SAMPLING PATTERNS 

Sample Theoretical Emperical 
Surface Class Size Ex~ectation Result 

25 rand. < str. rand. < str.: 
64 sys. < str. sys. < str. 

sys. str. 

2 I 36 rand. < str. rand. < str.: 
sys. < str. 

100 No decision No decision 

49 rand. < str. rand. < str. 
sys. < str. 

3 I 100 rand. < str.; rand. < str.: 
rand. < sys. rand. < sys. 

100 No decision No decision 
4 I1 169 sys. < str. sys. < str. 

5 I11 256 sys. < str. sys. < str. 
324 sys. < str. sys. < str. 
400 sys. < str. sys. < str. 

100 sys. < str. rand. < str. 
sys. < str. 

196 No decision No decision 
484 No decision sys. < str. 

sys. < str. 
sys. < str. 
sys. < str. 

sys. < str. 
sys. < str. 
sys. < str. 

sys. < str. 
sys. < str. 
sys. < str. 

sys. < str. 
sys. < str. < random 
sys. < str. 

"i" = better than 
sys. = systematic sampling 
str. = stratified sampling 
rand. = random sampling 

which of the sampling patterns is relatively most 
efficient according to Das's theorems. 
GENSAP is called by ATOSAP to generate the X,Y 
coordinates for the theoretically most efficient 
sampling pattern. If the operator wishes, he 
might call any type of sampling pattern of his own 
choice, especially for an unusual occurrence of 
"Breaklines" on a terrain-a situation which can 
also be detected by ATOSAP. 

The author wishes to express grateful thanks to 
Professor S. K. Ghosh for his supervision of the 
research reported in this paper. Extensive use of 
t he  facilities of t he  Instruction a n d  Research 
Computer Center of the Ohio State University is 
gratefully acknowledged. 
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There are three major sample types well known 
in statistics. These are 

a Random sampling 
Stratified sampling 

a Systematic sampling 

Quenoville (1949) has rightly pointed out that 
there are many ways in which we can sample a 
two-dimensional space because there is flexibility 
in employing random, stratified, or systematic 
sampling in either direction. However, Morrison 
(1970) has demonstrated that six sampling patterns 
can theoretically represent nearly all the possible 
sample point scatters in a plane. This author feels 
intuitively that a seventh sampling pattern which 
combines all the features of the three major sam- 
pling patterns has some merits which deserve in- 
vestigation. These seven sample types are now 
briefly described. 

UNALIGNED RANDOM SAMPLING 

Unaligned random sampling is a type of sam- 
pling in which each point is chosen randomly. In a 
two-dimensional plane this means that the coordi- 
nates X and Y of a given point are selected at ran- 
dom either by using a table of random numbers or 
by generating random numbers through a com- 
puter program. This gives rise to an uneven areal 
coverage. It is believed by statisticians that this 
type of sampling is efficient if there is periodic 
variation or any type of trend in the population 
because it gives rise to an uneven areal coverage. 

ALIGNED RANDOM SAMPLING 

This type of sampling is similar to the previous 
one except that the random number in one direc- 
tion, X or Y, is fixed and in the other is chosen 
randomly. This type of sampling does not have as 

good areal coverage as its counterpart without 
alignment. 

UNALIGNED STRATIFIED SAMPLING 

This is a type of sampling in which the area con- 
cerned is subdivided into strata within which 
sampling points are chosen randomly in a manner 
similar to unaligned random sampling. The ad- 
vantage of stratified sampling is that it tends to 
increase the precision of the estimate of a popula- 
tion parameter without increasing the number of 
points because the areal coverage of points seems 
to be more representative of the population. 

ALIGNED STRATIFIED SAMPLING 

This is the same as its unaligned counterpart 
except that one of the coordinates is aligned 
within each stratum. 

UNALIGNED SYSTEMATIC SAMPLING 

Unaligned systematic sampling is generated by 
dividing the area into sections (rectangulars or 
squares) and points are sampled randomly in each 
section. 

ALIGNED SYSTEMATIC SAMPLING 

This is by far the most popular type of sampling 
used in digital terrain model studies because it is 
the easiest to generate. The  initial point is 
selected randomly or purposefully and all others 
are determined by a fixed interval. 

UNALIGNED STRATIFIED SYSTEMATIC 

RANDOM SAMPLING 

As the name implies, this sampling type is a 
combination of all the three major sampling types. 
The area concerned is covered with squares or 
rectangular grids and the first point is selected at 
random in the first square. The X coordinate of this 
first point is then used with a new random Y coor- 
dinate to locate the new point in the second 
square. A new point is similarly treated in the sub- 
sequent squares in the first row. The second and 
subsequent rows of squares are treated like the 
first row to generate the points required. Figure 1 
shows the examples of sample point scatters re- 
sulting from each of the seven sampling plans dis- 
cussed above. 


