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Fic. 1. Coordinate system, attitude, and arrays for sat-
ellite. Arrows on ellipses indicate direction of increasing

yaw, etc. Sample tracking detectors are shown dashed for
Case 1 (fore and vertical). Not to scale.

the evaluation of a single quadrant. Only periodic

terms occur if the full orbit is considered.

The formulas given are based on the following
symbols and conventions (see Figures 1 and 2),
using the same satellite orbit as that of Landsat 1,
2, and 3. Let

satellite

Fic. 2. Coordinate system for Earth, showing satellite
orbit. Not to scale.

R, = radius of the circular orbit (7,294,690 m).
i =inclination of the orbit, counterclock-

wise from the equator as viewed at the
ascending node (99.092°).

P, = period of revolution of the satellite

(103.267 min).

P, = period of rotation of the Earth between

ascending nodes (1440 min for the sun-
synchronous Landsat orbit).

For the Earth,

= semi-major axis of the Earth ellip-
soid (the Clarke 1866 ellipsoid is
arbitrarily used for the calculations
here: a = 6,378,206.4 m).

e = eccentricity of the Earth ellipsoid
(e* = 0.006 768 658 for the Clarke
1866 ellipsoid).

¢ = geodetic latitude on the Earth’s sur-
face of a point seen by a detector.

= geodetic longitude of the point, rel-
ative to the ascending node which
just precedes the satellite position
under consideration.

h = height at (¢, ) of the surface of the
Earth above the surface of the ref-
erence ellipsoid.

(X,Y,Z) = rectangular coordinates of the Earth

surface at (¢, A, h), with the origin at
the center of the Earth, the X-axis
increasing toward the ascending
node, and the Z-axis increasing
toward the North Pole.

For the satellite position,

\' = position of the satellite along the
orbit, as the angle from the as-
cending node, viewed from the
center, and directly proportional
to time. The ascending node oc-
curs on the dark side of the Earth.

k =yaw of the satellite, positive
counterclockwise when viewed
from overhead.

p = pitch of the satellite, positive
with the nose down (although ¢ is
used in photogrammetric work for
pitch, it is not used here to avoid
confusion with latitude).

o = roll of the satellite, positive coun-
terclockwise when viewed from
the nose.

B = angle of the optical axis for the
array (fore is 23°, vertical 0°, and
aft is —23°).

a = off-axis angle of the detector on a
given array from the optical axis
(0° to 5.5° for the approximate
range of sensing, positive coun-
terclockwise when viewed from
the nose).
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modified for transformation from rectangular geo-
detic coordinates (X, Y, Z) to ¢", \", because ¢, A
do not need to be calculated. The double prime
was used in the SOM formulas for Landsat to dis-
tinguish between coordinates relative to the verti-
cal groundtrack (¢’, \') and relative to the geo-
centric groundtrack (¢", \"). For Mapsat, the latter
may be used for a convenient set of intermediate
coordinates wherein A" relates to an imaginary
Landsat-like satellite as A’ relates to Mapsat, and
¢" is the angular distance to the left of the geo-
centric groundtrack as viewed from the satellite
but measured from the center of the Earth. The
use of rectangular geodetic coordinates does not
appear to reduce computer time.

To find ¢", \” for a given \', array, and attitude,
first X is calculated from many of the Equations 1
through 29 (for A = 0). Then, with \' as the first
trial A", \" is found from Equations 66 through 68
by successive substitution, until A" does not change
significantly. Calculation of ¢” follows completion
of the iteration for \".

6 = (Py/P,) (\" = \") (66)

cos B —sinf 0
sin® cos® 0 |X
0 0 1

X, = (67)

cos i

X, tan \" ) ( sin i )( )’,)
- 68
( a sin ¢” —sini cos i Z; 68)

For inverse equations, given ¢”, ", and to find X:
(Y,) =(c$)s z —sin iA )(X, tén }\’ ) (69)
Z, sini cosi a sin ¢

where
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SumMaryY OF TRACKING CAPABILITIES

While perfect tracking does not appear feasible,
it does appear possible to achieve tracking to with-
in a fraction of a 10-metre pixel. This is accom-
plished by varying yaw and pitch in Case 1 and
yaw only in Case 2, using a satellite with its equi-
valent of an optical axis initially pointing geo-
centrically rather than vertically. Matching is also
satisfactory within the small predicted range of in-
stability. A Fourier series for each of these attitude
corrections may be determined after a one-time
iteration is performed for a given set of orbit pa-
rameters.

It should be noted that the discrepancies in Ta-
bles 1, 2, and 3 should be treated qualitatively
only. Calculated for a mathematical model, even
the “unstable attitude” conditions described in
Table 3 are idealistic in that they represent con-
stant offset or a constant rate of change. In prac-
tice, instability would follow a wobbly pattern, but
it should fall within the ranges shown.
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