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Array Algebra Estimation in 
Signal Processing* 

I Filtering concepts of digital signal processing are interpreted in terms 
of the new generalized adjustment calculus, numerical analysis, and 
mat hematical statistics of array algebra estimation. 

INTRODUCTION 

D IGITAL SIGNAL PROCESSING is a relatively new 
field (IEEE, 1975; Mitra and Ekstrom, 1978). 

It  experienced intense development during the 
past ten years due to phenomenal advances in 
computer technology. The major emphasis of 
multidimensional digital signal processing has 
been on the two-dimensional case because of its 
wide-spread applications, especially in image pro- 
cessing. An important part of the research in 
photogrammetric image processing and remote 
sensing is presently conducted using the concepts 
originated in the field of signal processing. 

these restrictions, thereby calling for a reformula- 
tion of the computational problems of many sci- 
ences and technologies of linear algebra in terms 
of the more digital ~ i ~ n a l - ~ r o c e s s i n ~  of 
arrav algebra estimation. Thus, the rethinking pro- . - 
cess caused by the introductibn of the fast trans- 
forms and filtering concepts of digital signal pro- 
cessing will be further expanded to the more gen-. 
era1 problems of linear algebra. 

The basic concepts of array algebra (Rauhala, 
1972, 1974) are introduced as a general one- 
dimensional estimation technique, which is then 
converted into fast multi-dimensional computa- 
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In comparison to the mathematical surveying 
sciences, multi-dimensional digital signal pro- 
cessing is a very specialized field with severe re- 
strictions in its design techniques and data struc- 
tures prohibiting its use in general problems. 
Similar difficulties were experienced in the first 
applications of the more general array algebra 
counterpart of signal processing. Recent devel- 
opments in array algebra have removed most of 
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I. tional rules for handling gridded data. The multi- 
dimensional array estimation technique can be 
interpreted as a generalized algebraic form of the 
"fast" transform technology (Good, 1958; Greville, 
1961; Cooley and Tukey, 1965) as shown by 
Rauhala (1976, 1977, 1980a). 

The first applications of array algebra dealt with 
separable space domain modeling, releasing the 
gridding requirement for input arrays and intro- 
ducing fast multi-dimensional convolution 
operators for regular grids (Rauhala, 1978, 1979; 
Kratky, 1978). The remaining restrictions of array 
algebra were released in the array algebra and sig- 

PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 
Vol. 48, No. 9, September 1982, pp. 1437-1444. 

0099-1 112/82/4809-1437$02.25/0 
@ 1982 American Society of Photogrammetry 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1982 

nal processing formulation of the problem of finite 
element filtering (Rauhala, 1980b). The present 
paper combines these general signal processing 
concepts of array algebra into the general linear 
estimation theory formulated by Rauhala (1981b). 

LINEAR ESTIMATORS OF SIGNAL PROCESSING 

The Best Linear Unbiased Estimator (BLUE) of 
mathematical statistics can be interpreted in terms 
of digital signal processing as the output Lo = HL, 
representing the minimum variance unbiased 
estimator of functions Lo = AoX, from input L 
satisfying the Gauss-Markov model 

Symbol E denotes the expectation operator and X 
consists of the modeling parameters to define the 
problem of linear algebra to be solved. The de- 
sign of modeling parameters X and the choice of 
functions AX to be sampled in the observable 
space domain determine the design matrix A. A ju- 
dicious choice of the output functions Lo = A. X 

P, 1 11n 11, 1 

"solves the problem." In terms of general linear 
estimators the "problem solution" can be defined 
as an establishment of the BLUE Lo = HL of such 
basis functions A& that span the whole unbiasedly 
estimable space of the problem, or focussed parts 
of it (Rauhala, 1981b). 

For Lo = HL to be the BLUE of AJ ,  the follow- 
ing two conditions have to be satisfied: 

HA = A. C* E(L,) = Lo (2a) 

H = A, (ATA)K AT tt trace (HHT) = min. (3a) 

where (ATA)K is a generalized inverse of ATA 
(Bjerhammar, 1955). In the general estimation 
theory the concept of a generalized matrix inverse 
is extended to "estimator" inverse G of matrix A 
in H = AoG so that the general BLUE Lo = AoGL 
satisfies Equations 2a and 3a by 

AoG A = A. (2b) 

In the general estimation theory G can be any 

operator if A,, p < rank (A), is chosen to span 
PI) mn 

only a subspace of the row space of A (Rauhala, 
1981b). 

In the following sections the principles of nu- 
merical analysis are reviewed for computing HL. 
After that, the operator H is specialized to yield 
the filtering concepts of digital signal processing. 

COPERNICUS-GAUSS PHILOSOPHY 

In the conventional least-squares theory the 
basis functions Lo = A& spanning the unbiasedly 
estimable space consist of the modeling parame- 

ters X themselves. Thus, Lo = X, A. = I, and the 
design matrix A is brought to have full rank, 
yielding 

Lo = 8 = A'L, A' = (ATA)-'AT. (4) 

The BLUE of all other estimable functions FX, sat- 
isfying FAgA = F, can be found by F8 = FA'L. 

Advances in the least-squares problems of sur- 
veying sciences were made by improving the ac- 
curacy of the observed quantities L and following 
the philosophy of Copernicus, by developing 
better modeling parameters X explaining the 
physical phenomenon associated with L by AX = L 
for the "true" values of X,L. The development of 
this so-called adjustment calculus begun by Gauss 
over a hundred years ago, was drastically accel- 
erated in the 1950's when comnuters and matrix 
algebra became the essential tools of the problem 
analyst. The highlights of modern adjustment 
calculus, before the introduction of array algebra 
estimation in the early 1970's, can be outlined 
as follows: 

Inefficient and fully correlated elements of X, 
causing ill-conditioning or singularity of the nor- 
mal equation matrix, can be empirically discarded 
during the elimination process (Brown, 1955, 
DD. 9-10). Thus. initiallv the math model is en- 
couraged to contain an; physical parameters that 
reduce the residuals fT = L - AX. Essentiallv the 
same philosophy is behind the theory of geheral 
matrix inverses (Bjerhammar, 1955; Rao and 
Mitra, 1971, pp. vii, 212). 

An important practical modeling tool is the ex- 
plicit introduction of additional physical or em- 
pirical modeling parameters Y for elimination of 
small unmodeled systematic errors or "signal." 
To avoid ill-conditioning of the resulting normal 
equations a-priori statistical constraints L, for the 
additional parameters Y are introduced (Brown, 
1958) 

A X + B Y = L - V  
CY = L, - v,. (6) 

For serially correlated data the space domain 
response or "signal" S = BY of the systematic 
errors can be considered as an additional parame- 
ter for each observed value. In the case of one- 
dimensional evenly distributed observations the 
inverse covariance matrix A-I of the signal can be 
conveniently derived from the process of auto- 
correlation, yielding the solution, (Brown, 1955; 
Brown, et al., 1963; Brown and Trotter, 1969; 
Helstrom, 1967; Moritz, 1978; Rauhala, 1976, p. 
118; Strang van Hees, 1981) 

During the 1960's the computational algorithms 
for a rigorous least-squares solution of tens of 
thousands of modeling parameters X in Equation 7 
were designed for the emerging minicomputers. 
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The algorithms typically utilized zero block matri- AoX = Lo (8) 
ces for deriving the reduced normal equations of 
Pranish-Praniewich type. The reduced system ex- have a full-rank design matrix A,, rank (A,) = p s n 
hibits a banded-border structure in the problems P w 

of analytical photogrammetry and satellite geod- Thus, the parameter transformation can be per- 
esy (Brown and Trotter, 1969). More detailed re- formed by solving for Equation 8 
views of the development of modem adjustment 
calculus can be found in Brown (1974), Pope 
(1974), and Moritz (1978). 

In the 1970's computer technology flooded the 
mathematical sciences with an enormous amount 
of digital data. The next section describes how 
array algebra extends the Copernicus-Gauss 
philosophy into empirical multilinear space do- 
main modeling for the computational treatment of 
large data arrays. 

ARRAY ALGEBRA ESTIMATION 

The idea of array algebra relaxes the choice of 
basis functions Lo = A. X of the unbiasedly esti- 
mable space beyond A, = I of the above 
Copernicus-Gauss philosophy. A new fast numeri- 
cal analysis is introduced for handling multilinear 
gridded data arrays Lo, L. 

For illustration of array algebra estimation, con- 
sider the examples of Moritz (1978, formula 72, p. 
427) and Rauhala (1972, pp. 18-22; 1978, p. 8) 
written as the observation equations 

The "physical" modeling parameters X represent 
n + m coefficients of global spherical harmonics 
expansion of the Earth's potential function for 
modeling a large amount of observable functions 
AX (gravity anomalies, deflections of vertical, etc.) 
of a local (say lo by lo) area. Matrix A is singular or 
very ill-conditioned so that neither (ATA)-I nor 
(AAT)-' exist. This means that the modeling pa- 
rameters X are not unbiasedly estimable because 
IGA Z I for any G in Equation 2b (Bossler, 1973; 
Grafarend and Schaffrin, 1974). Thus, we have to 
find another basis spanning the unbiasedly es- 
timable space. 

It follows from Equation 2b that all observed 
functions AX are always unbiasedly estimable 
because AAgA = A, G E Ag. Thus, any choice of 
p - rank (A) independent AJ among AX offers the 
desired basis. In the two-dimensional examvle L 
is assumed to be sampled using the Nyquist rule. 
In practice, large data sets L , m = m ,m,, at grid 

I l l ,  1 

points are organized (by direct sampling or pre- 
processing) into array L . Then ideally, array Lo , 

nr l ~ n  , " P 2  

p = p ,p , ,  is chosen to consist of every second row 
and column of array L. 

The fictitious error-free observables of the 
chosen basis functions 

which inserted in the original ill-conditioned ob- 
servation equations in parameters X yields the 
full-rank observation equations in parameters 
Lo by 

(AA7) Lo = L - V , E ( V ) = O , E ( W T ) = I ,  
m p  p ,  I nt, 1 tn.  1 

rank (AA;) = p. 
m p  

(104 

The BLUE of Lo is the least-squares solution of 
Equation 10a 

The choices for gridded L,Lo in Equation 11 
usually cannot be fully utilized because of the 
"physical" modeling parameters determining the 
design matrix A. A new philosophy for the space 
domain modeling is introduced in array algebra 
to take advantage of the gridded structure of 
arrays L,LW 

In the example, the system (Equation 10a) 
partitions as 

since LO is coincided with p observed functions. 
The redundant observed functions AEX are ex- 
pressed as interpolations KELo from the chosen 
basis functions Lo = A d .  The crucial idea of the 
new space domain modeling technique of array 
algebra estimation is to replace the "Copernicus- 
Gauss interpolation" KELo in Equation lob by an 
empirical- one, resulting in a fast space domain 
solution Lo; in the first step we only separate the 
noise O from the discrete observed values L using 
the efficient filtering rules of array algebra and 
digital signal processing for densely distributed 
Lo. In the second step we analyze the behavior of 
Lo in order to design parameters X properly. Com- 
putation of X from Lo is facilitated since Lo and 
the associated empirical interpolation rule repre- 
sent a non-discrete function which can be evalu- 
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ated at any strategic and computationally desirable 
variable locations. 

In the example the above philosophy can be 
interpreted as follows: The measuring density of 
gridded L is in practice far higher than the res- 

r n P z  

olution capability of "physical" modeling parame- 
ters X even if in our case n + w. It is customary to 

n, 1 

determine the sampling rate or resolution of L 
r n l m 2  

with respect to the "worst case" to capture local 
abrupt behavior of the observable space. Thus, in 
our example, the resolution of both L and Lo 

m l m z  PIP?. 

far exceeds that of the physically explainable 
parameters X. Therefore, it is only natural to re- 
place the low resolution "Copernicus-Gauss inter- 
polation" KELo of Equation lob by any feasible 
and local separable interpolations from few (usu- 
ally 4 by 4) closest unknown values of the chosen 
basis Lo . Separable interpolation is character- 

P I P 2  

ized by F(y,x) = kl(y) Lo kT(x) where kdy) Lo 
IS, P ~ P Z  Pp.1 'J'l PIPS 

interpolates the values F(y,j), j = 1, 2 , .  . . , p2  
along the columns of Lo and the subsequent inter- 
polation of the resulted values along the row- 

direction of Lo by F ( y j )  kT (x) yields F(y,x). 
I S 2  Pp.1 

The drastic computational consequence of the 
above separable space domain modeling for 
gridded L,Lo allows Equations 10a and lob to 
be rewritten as the array algebra observation 
equations 

using formally the approximation 

where 8 denotes the Kronecker or tensor product. 
In Equation 12a matrix multiplication KILO inter- 
polates the row values of the unknown grid Lo 
into the row locations of the measured grid L. The 
column values of the resulting grid are then in- 
terpolated to the column locations of grid L by 
(KiLoIKT. 

The fast least-squares array solution of Equation 
12a is found by Rauhala (1972, p. 10; 1974-1981b), 

Lo = H I  L HT * I IL - K,L~K;~  1 = min. 
P I P 2  P l m l  r n l m 2  rn2PZ (13) 

In three and higher dimensions the notational 
systems of matrix and tensor calculus would fail 
for a convenient shorthand expression of Equa- 
tions 12a and 13, and array algebra was designed 

to fill this gap. In a more general case there are 
several batches of separable or non-separable 
observation equations and the least-squares solu- 
tion (Equation 13) becomes non-separable as 
shown next by interpreting the above approach 
in terms of digital signal processing. 

LSV FILTERING 

The non-separable estimator of Equation 11 

(i0)i.j = C C (hq,r)i~ 4 , r  
9 r 

(15) 

or the separable estimator of Equation 13 

usually have LSV (Linear Shift Variant) operators 
h,,,, ha, hr called impulse responses in digital 
signal processing, i.e., each combination of i j  
has its own impulse response different from the 
others. For the purpose of illustrating the explicit 
connection of array algebra estimation with the 
filter design of digital signal processing, the least- 
squares solution of sequential array equations will 
be derived next. 

The sequential separable observation equations 

result in the normal equations 

In terms of two-dimensional unitary transform 
coefficients (Pratt, 1972), 

the normal equations (Equation 18) read by pre- 
multiplications with S1, and postmultiplications 
with ST as 

The purpose of the parameter transformation 
(Equation 19) is to bring a special structure to the 
normal equations (Equation 20) so that a very 
efficient solution for 2 from Equation 20 exists. 
The important practical case of diagonal matrices 

dominates the filter design of digital signal pro- 
cessing. Now the diagonal operator 
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8 
i = 1.2.. . . . P I  "design transform domain" parameters X repre- 

* = 1 j )  = I . . . . P (21) sent the "Copernicus-Gaussy' parameters 
I= I of structural finite elements, Lo is a regular array 

Pl.2 
is called "transfer function." In this special case of their space domain response, and = S, Lo the solution of the diagonalized system (Equation 
20) is simply ST represents the "filter transform domain." For 

the empirical space domain modeling it is often 
2 = H* (S,UST) convenient to introduce additional "spatial trans- 

( a t ,  = (H*)i, (SIUSZ)~, (22) form domain" parameters Y by linear transform 
Lo = B, Y BT . An example of such parame- where * denotes elementwise (dot) multiplica- . . . ,, , Pp, 

tions. ters are the spline functions (Greville, 1961; 
If Equation 20 is non-singular, estimator 2 is Kubik, 1971; DeMasson $Autume, 1976, 1978). 

BLUE qualifying as the ''problem solution" and ~t is convenient to choose B,, B~ in finite element 
representing a basis in the "filter transform do- filtering such that they are diagonalized by the 
main" of Z. Estimators Lo of the space domain same FET unitary transforms as Q, R in E~~~~~~~ 
and f of "design transform domain" are found by 20 (Rauhala, 1980b, pp. 25-26). linear transformations 

LSI FILTERING 

The emphasis of the vast literature of signal 
(23) processing is put on the design of the very special 

and computationally efficient LSI (Linear Shift 

(24) Invariant) filtering using FIR (Finite Impulse Re- 
s ~ o n s e )  coefficients h,, , in the convolution of 
&uations 15 and 16. gb;w the non-separable LSI Estimator 2 is biased i fp < n. In practice f is best filtering of Equation 15 can be to 

computed by evaluating Lo through the empirical 
local separable interpolations as Lo at fictitious 
points where Lo = A, X. The fictitious design o i  = 7 hqr ui-aj-r (26) 
matrix A. is brought to exhibit some special struc- 
ture so that 2 = &]Lo = A? Lo can be efficiently reading in the separable case as 

realized. hqr = 6 1 ) ~  (h2)r 
According to the custom of adjustment calculus, 

the variance-covariance matrices of estimators (i0)i.j = 2 ( (h2)r ~ * , j - r ) i q  

2, Lo, 2 can be computed as 

cov (Lo) = ST 
P. 1 PP 

cov (2) 
PP 

cov ( f )  = A? cov Lo) AYT 
n, 1 

h2 = 1vYd.f. d.f. = degree of freedom 
s 'J1 P 2  

10' = 1 llLt1I2 - 1 1 (2 * s1UsT)t.j. (25) 
I =  1 i-1 j-1 Q1.2 Pg, 

The above solution is treated in more detail by 
Rauhala (1980b) and specialized to Karhunen- 
Loeve transform of a tridiagonal matrix called the 
FET (Fast Eigen Transform or Finite Element 
Transform), closely related to the FST (Fast Sinus 
Transform) and the ~m (Fast Fourier Transform). 
The application of the above solution technique 
in Rauhala (1980b) consisted of array algebra 
modification of finite element filtering (Junkins, 
1976; Ebner and Reiss, 1978; Meissl, 1980). 

The space domain modeling of finite elements 
can be treated by the introduction of additional 
transform domain parameters. Assume that the 

In the "filter transform domain" Equation 26 is 
expressed as 

Lo = ST (H  * SIUST) Sz. (28) 

To illustrate the idea of the filter design in 
Equation 28, assume a perimeter controlled grid 
of a leveling net of Figure 1 measured along all 
horizontal and vertical traverses. 

The observation equations can be expressed as 
a specialized array algebra Pranish-Praniewich 
system of Rauhala (1979) by 

known p o i n t  

unknown p o i n t  

FIG. 1. A perimeter controlled grid of a leveling net 
measured along all horizontal and vertical traverses. 
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yielding the normal equations 

q L o +  (21 + B,)Lo + Lo(21  + B,) = U (30) r -  0 1  

Here L,O denotes a priori estimates of the un- 
knowns all associated with the homogeneous a 
priori weight q. 

Singular value decomposition of B, = STXI S1, 
B, = ST,X,S, results in the solution, Equation 28 
(Rauhala, 1980b), 

2 = H * SIUST, Lo = STZS, 

where St, S, represent the FET transforms 

S1 = {sli,j) = (- sin [ i j r l (p l  + I)] 
1, 111 1 + V ( p l  + 1)/2 

S2 = { s ~ j )  = (- 1)' sin [ i j r ~ ( ~ *  + l)] 
"ZPZ + v ( p Z + 1 ) / 2  

The beauty of the solution (28), (31) resides in 
the fact that the derivation of the transfer function 
(31) actually "solves the problem" by FET domain 
filtering of the right hand side array U. In the 
vectorized formulation (28) translates into 

The inverse N-I of the normal equation matrix 
has three common interpretations: (1) It  repre- 
sents the variance-covariance matrix of Lo ,  (2) 

P. 1 

the ith row of N-I is the covariance function of the 
ith element of Lo (Hirvonen, 1956), known as (3), 
the impulse response in the terminology of digital 
signal processing (IEEE, 1975; Mitra and Ekstrom, 
1978). 

The impulse response H of element (f.o)i,j 
P 11' 2 

can be extracted from N-I by 

Hi.j = (S1 €3 S2)T diag ( H  * )  (S, €4 S,) (e: 8 eT) 
P 1P 2'1 

where eTej contains the unit pulse in location i j  
of the input space and Hi,j is the response in the 
output space. The transfer function H * deter- 
mines the amount and type of filtering of the sys- 
tem by acting upon the "filter transform" of the 
input space through the simple elementwise 
multiplications. 

The special case of LSI filtering is found in this 
example of leveling net adjustment as the size 
pl,p, of Lo becomes large and as q >> 0. With 

P l P 2  

the exception of narrow strips around the bound- 
ary points, the impulse responses of the remaining 
center points become (a) finite, i.e., only a finite 
number of elements in H i , j  around the element 

7' 17' 2 

i j  are significantly different from zero, and (b) 
these coefficients remain the same for all center 
points i j .  In the example the impulse response is 
also octavially symmetric. In this case H is identi- 
cal to that of finite element filtering with first 
differences as the continuity constraints (Rauhala, 
1980, p. 63). Notice that this case of q >> 0 cor- 
responds to the shift invariant error propagation 
of a rigorous photogrammetric bundle adjustment 
while the weaker LSV case q + 0 reflects the 
error propagation of crossing traversing or level- 
ing closely related to the error model of analog 
photograrimetry of Meissl (1971). 

The solutions of Equation 26 by convolution 
and Equation 28 through the transform domain are 
exactly equivalent. Computationally, the con- 
volution approach is usually most advantageous 
for implementation of the FIR filtering of large ar- 
rays using disk oriented minicomputers if the size 
of the input array exceeds the core capacity. The 
computation of the impulse response after an an- 
alytical derivation of the transfer function has sev- 
eral analogies in the simulation techniques of 
mathematical surveying sciences. An early exam- 
ple is the "Bolz arrays," consisting of ready tabu- 
lated LSV inverse matrices for hand calculation of 
net adjustments before the computers were avail- 
able. Also, several methods in digital terrain mod- 
eling utilize one-time simulated square or rectan- 
gular inverse matrices. 

The implementation of separable and non- 
separable convolution is extensively studied in 
the literature of signal processing and array 
algebra. Some new strategies of excellent compu- 
tational efficiency are reported by Rauhala (1979, 
1980b). One of their leading ideas can be charac- 
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terized as "filtering by data snooping," which 
combines the techniques of FIR (Finite Impulse 
Response) and IIR (Infinite Impulse Response) in 
a simple manner; the small "normal e uation 
residual'' 0. = Lo - U is convolved from (Jq,r)l,j = 
U,,,,, - U,, using the impulse response H;U = 
eTej - H, drastically reducing the summation 
limits of indices q , r  in the convolution. In some 
experiments of digital terrain models a 5 by 5 
impulse response sufficed for 0, in contrast to the 
15 by 15 width for the direct convolution of Lo. In 
the new approach the same Lo is found by adding 
the output Vu to the original input U. The name 
data snooping comes from the fact that typically 
the impulse response of Lo E L fully describes 
the variance-covariance matrix of least-squares 
residuals used in the control theory of data snoop- 
ing for extracting blunderous data in a net adjust- 
ment (Baarda, 1973). 

APPLICATIONS 
Implementation of LSI array filtering using a 

new computational algorithm of "rotating ad- 
dressing" made the octavially symmetric non- 
separable filtering even more efficient than the 
separable one. In finite element filtering of digital 
terrain modeling 720,000 nodes were convolved in 
a CPU time of  58.5 seconds with 22 K bytes allo- 
cated for the data in the minicomputer SEL 32155. 
Over 200 million nodes were solved to experi- 
mentally find out the best math models for pro- 
cessing volumous data arrays at the Defense Map- 
ping Agency Aerospace Center. Also, a new com- 
plete family of theories for splitting non-separable 
modeling into a sequence of separable ones in any 
dimension was found by Rauhala (1980b) by ex- 
tending the singular value decomposition tech- 
nique of Treitel and Shanks (1971). In Rauhala 
(1978) this splitting technique has been applied 
for the solution of the boundary value problem in 
physical geodesy. 

To extend the practical applicability of the very 
fast LSI array filtering, a new theory has been 
under development aiming at solving any compu- 
tational problem of properly redefined linear 
algebra using a new linear solution algorithm. The 
LSI filtering is an integral part of this futuristic al- 
gorithm (Rauhala, 1980b). 

The above example of a leveling net has rather 
straight-forward extensions to the "fast" solutions 
of self-calibrating inertial networks, readjustment 
of huge continental or national networks, self- 
calibrating Global Positioning System, and other 
fundamental problems of digital surveying sci- 
ences. Probably the most exciting avenue opened 
by array algebra is a realistic computational solu- 
tion of the fundamental problem of digital photo- 
grammetry. 

The ultimate problem of digital photogramme- 
try consists in converting the overlap areas of sev- 

eral digitized images into a high-resolution or- 
thophoto and digital terrain model. With a pixel 
size of 10 to 15 pm, a frame may contain 175 to 400 
million pixels with 1 to 2 bytes in each pixel. The 
first task is to rectify the images to account for the 
effect of interior and exterior orientation. The sec- 
ond stage consists of rigorous "precision" array 
correlations of every single pixel or blocks of 
pixels. The powerful concept of array correlation 
automatically incorporates several pre- and post- 
processing tasks of the conventional correlation 
methods (Rauhala, 1977, 1980a,b). The third stage 
consists of orthorectification and some other 
futuristic possibilities. To perform all these tasks 
involving billions of arithmetical operations in a 
competitive time frame using off-the-shelf 
hardware costing approximately the same as an 
analytical plotter is a reasonable challenge to the 
array algebra software and hardware technology. 
In this paper this new technology was interpreted 
as an advanced form of digital signal processing 
and modem computer sciences. 
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