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Fisher Classifier and its Probability 
of Error Estimation 

Computationally efficient expressions are derived for estimating the 
probability of error using the leave-one-out method. 

R ECENTLY, there has been considerable interest in the development of techniques for the classifica- 
tion of imagery data (such as the data acquired by the Landsat series of satellites) for identifying and 

inventorying natural resources, monitoring crop conditions, detecting changes in natural and man-made 
objects, etc. Supervised or nonsupervised classification techniques can be used for the classification of 
imagery data. Both of these approaches require the availability of class labels for the training patterns. 
For remote sensing imagery, it can be difficult and expensive to obtain labels for the training patterns. 
(For example, in the classification of remotely sensed agricultural imagery data, the labels for the 
training patterns are provided by an analyst interpreter by examining imagery films and using some 
other information, such as crop growth stage models historic information, etc.) 

Usually, as the number of parameters to be estimated increases, the required number of labeled 
patterns also increases. There is considerable interest in the use of linear classifiers for imagery data 
classification because they are simple and because fewer parameters need to be estimated than, for 

ABSTRACT: The Fisher classifier and the problem of estimating its probability of 
error are considered. Computationally efficient expressions are derived for es- 
timating the probability of error using the leave-one-out method. The optimal 
threshold for the classification of patterns projected onto Fisher's direction is 
derived. A simple generalization of the Fisher classvier to multiple classes is 
presented. Furthermore, computational expressions are developed for estimat- 
ing the probability of error of the multiclass Fisher classifier. 

example, with maximum likelihood clustering. In many cases, it is required to estimate the probabilities 
of classification errors in addition to designing the classifier. (For example, to correct for the bias 
introduced by the classifier in the estimation of proportion of class of interest in remotely sensed 
agricultural imagery data, the probabilities of classification errors are estimated using a separate set of 
labeled patterns called Type 11 dots.) Because acquiring labels for the patterns is expensive, the avail- 
able labeled samples should be effectively used both for designing the classifier and for estimating the 
probabilities of classification errors. 

The leave-one-out method (Lachenbroch and Mickey, 1968) is proposed in the literature as an effec- 
tive way of estimating the probability of error from the training samples. The method is as follows: If 
there is a total of N-labeled patterns, leave out one pattern, design the classifier on remaining (N - 1) 
patterns, and test on the pattern that is left out. Repeat this process N times, every time leaving a 
different pattern, and then estimate the probability of error as an average of these errors. Use of this 
method, however, requires N classifiers to be designed. Misra (1979) presented simulation results using 
remote sensing data in estimating the Fisher error probability with the leave-one-out method. Chitti- 
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neni (1977) developed a computational technique based on eigen perturbation theory for estimating the 
probability of error of the Fisher classifier using the leave-groups-out method. 

This paper considers the Fisher classifier (Fisher, 1963; Chittineni, 1972). The Fisher classifier is one 
of the most widely used linear classifiers. Computational expressions are developed based on matrix 
theory for estimating the probability of error of the Fisher classifier using the leave-one-out method. 
This paper is organized as follows: 

The Fisher classifier for the two-class case is first presented. Computational expressions for using the 
leave-one-out method for estimating Fisher's error probability are then developed. The effect of the 
Fisher threshold is discussed and expressions for obtaining the optimal threshold by minimizing the 
probability of error are presented. In the next section, a simple generalization of the Fisher classifier to 
multiple classes is presented. Finally, computationally efficient expressions for the estimation of mul- 
ticategory Fisher error using the leave-one-out method are developed. Some matrix relations used in the 
paper are derived in Appendix A. Detailed derivations of the optimal threshold are presented in Appen- 
dix B. 

The Fisher classifier is a linear classifier that uses a direction, W, for the discriminant function 

g(X) = WrX - t (1) 
so that, when the training patterns are projected onto this direction, the intraclass patterns are clustered 
and the interclass patterns are separated to the extent possible, as depicted in Figure 1. 

Let Xfeo,, k = 1,2, . . . , Ni, i = 1 , 2  be the training pattern set. The unbiased estimates of means, I&, 
and covariance matrices, 2,  of the patterns in the classes, mi, are given by the following: 

2. = 1 2 (X) - I&) (Xf - I&)T. ' 
(Ni - 1) j=l 

The Fisher classifier chooses the weight vector, W, such that, when the patterns are projected onto it, 
the interclass distances are maximized and the intraclass distances are minimized. A criterion, p, which 
can be used to obtain the weight vector, W, can be written as follows: 

where 

& = 21 + 2,. 
The weight vector, W, which maximizes P, can easily be shown to be 

W = (&)-I  (A1 - m2). 

FIG. 1. Fisher's weight vector and threshold. 
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The Fisher threshold, t, is chosen as 

t = w  (&I+ Ihz) 
2 

(71 

The direction, W, and the threshold, t, are illustrated in Figure 1. Fisher's decision rule is as follows: 

Decide Xewl if g(X) 3 0 (8) 
Decide Xew2 if g(X) < 0. (9) 

Fisher classifications depend on the direction, W, and the threshold, t. Later in this paper, the effect 
of Fisher threshold on classifications is discussed, and expressions are presented for obtaining the opti- 
mal threshold, t, in the Fisher direction, W, by minimizing the probability of error. 

In this section, computational expressions are developed for using the leave-one-out method with the 
Fisher classifier described in the previous section. The cases in which a pattern Xi from class w1 is left 
out and in which a pattern from class w, is left out can be treated identically. 

Let a pattern from class w1 be left out and the patterns from class o2 remain. The means &, 
i = 1,2, and the covariance matrix 2, are defined as in Equations 2 and 3. Define the matrix 2 ,  of the total 
pattern set from class w, as 

Let 

Note that 2, is defined differently from the usual unbiased estimate for covariance matrices. The $1 is 
defined this way to allow the use of the Bartlett matrix inversion relation (Equations A-5 and A-6) in ob- 
taining computationally efficient recursive relations for the Fisher weight vector and threshold. With 
this definition, then, for estimating the Fisher probability of error, the matrix inversion needs to be done 
only twice, once when patterns from class wl are left out and again when patterns from class o, are left 
out. Now compute W and t as 

W = 9~~ (Al  - A2) (12) 
and 

When a pattern Xk from class w, is left out, the unbiased estimates of the mean hlk and the covariance 
matrix e l k  of the patterns in class w, are given by the following: 

'"1 

and 

#k 

Let Swlk = Slk + 2,. Then the Fisher weight vector Wlk and threshold tlk, when a pattern XI; from 
class w, is left out, are given by 

Wlk = (Ifilk - f i z )  (16) 

tlk = 
Wk (Alk + 

2 
(17) 
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Expressions are now developed for the computation of Wlk and tlk in terms of W and t. The relation- 
ships between mlk, elk, Swlk, and &,, %,, and Sw can be shown to be as follows (see Appendix A): 

dllk = fil - (xi - al) 
(N1 - 1) 

(18) 

SWlk = SW - N 1 (Xi - m,) (Xi - fiJT . 
(Nl - 1) (Nl - 2) 

From Equation 18, one obtains 

(If i lk  - $12) = ($11 - IfiJ - (xi - a,). 
(Nl - 1) 

From Equation 20, one obtains (Appendix A) 

SG!,, = s;: + as;;' (Xi - $1,) (Xi - ffiJT $6' 
1 - a(Xi - $1l)T 96' (Xi - $11) 

where 

Let 

p(xi) = (x i  - ~ f i , ) ~  S;' (xi - a,) 

Using the definitions of Equations 23 to 28, one obtains the following: 

Equations 29 and 30 can be used to compute Wlk and tlk from W and t every time that a pattern Xi is 
left out from class o, and the pattern Xi is tested. Similarly, recursive expressions can be derived when a 
pattern Xj: is left out from class o,. It is to be noted that the matrix Sw needs to be computed and inverted 
twice, once when patterns from class w, are left out and again when patterns from class oz are left out. 

This section considers the problem of finding the optimum threshold, t, to achieve minimum proba- 
bility of error for the projected patterns onto Fisher's direction. The patterns in classes wi are assumed 
to be normally distributed, i.e., p(X(o,) - N(mi, Xi). Let y be the projection of pattern, X, onto Fisher's 
direction, W; i.e., 

(31) 
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Because X is normally distributed, y is also normally distributed (for a constant W); i.e., 

~ ( y l w i )  - N ( N ,  4 ,  i = 1 , 2  
where 

and 
I 

If the decision rule is used, decide y c o ,  if y 3 t ;  otherwise, decide yew,, the probability of error in- 
curred, can be written as 

where 4(() = l / s e x p  (-34 6') and Pi are the o priori probabilities of the classes mi, i = 1,2. On dif- 
ferentiating Equation 35 with respect to t, the following is obtained: 

1 Equating aP,lat to zero and then simplifying it, one obtains 

The following cases are considered: 

Case 1: P ,  = Pz,  a, = a2 

From Equation 37, the optimum t that minimizes the probability of error when the patterns are pro- 
jected onto Fisher's direction can be obtained as 

1 It is seen that Equations 13 and 38 are identical. 

Case 2 :  P ,  + Pz ,  a, = u2 = u 

In this case, the optimum value of threshold t can be obtained from Equation 37 as 

Case 3: P I  # P2, ul + u2 

On simplification, the following is obtained from Equation 37: 

,, + (2111~;  - 2112(~3 + (~11122 - ~22111.21) - 2u1uf  log (2 2) = 0 .  
(4 - 4.1 

( 4 0 )  
(4 - 4) ( ~ 2 1  - ~ 2 2 )  

This is a quadratic equation of the form a t 2  + b t  + c = 0 .  The discriminant of the equation q = b2 
- 4 a c  can be shown to be 

From Equation 41, it is seen that when P ,  = Pz, q is always positive, thus giving real roots for Equa- 
tion 4 0 .  Even when P I  * P,, if q is positive, real roots are obtained for t .  The q is negative when there 
exists no real threshold that minimizes the probability of error. Equation 4 0  gives two roots for t. To 
obtain t that minimizes P,, differentiating Equation 36 with respect to t results in the following: 
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Let t 1  and t ,  be the roots of Equation 40, where 

t l  = ( - b  + <?)/2, 

t2  = ( - b  - <?)/2, and 

b = ( 2  p1uz2 - 2  pzu12)l(u1z - uzz). 

It is shown in Appendix B that t 1  is the desired threshold which gives positive value for Equation 
42. Using the results of the last section, one can update the threshold, t ,  for use with the leave-one-out 
method because it is a function of means and covariance matrices. 

GENERALIZATION OF THE FISHER CLASSIFIER TO MULTIPLE CLASSES 

Rewriting Equations 12 and 13 in terms of the discriminant functions g,(X) = VfTX + vi, i = 1 ,2 ,  the 
following decision rule is implemented: 

Decide X E O ~  if gl(X) > g2(X) (43) 

Decide X E O ~  if gl(X) < g2(X). (44) 

Thus 

and 

It is seen that Equations 43 to 46 implement the decision rule of Equation 6. This suggests the def- 
inition of discriminant functions for an M-class problem as 

gi(X) = V X  + of ,  i = 1, 2, . . . , M 

where 

Then the decision rule is the following: Decide Xeoi if 

gi(X) > gj(X). j = 1 , 2 ,  . . . , M and j 7 i 

This section presents computational expressions for the leave-one-out method for updating Vi and 
vi .  Let there be M classes. Consider the case when a pattern Xk from class o, is left out. Define the 
means and covariance matrices of the total pattern set as 
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Let Sw = 2,  + 2, + . . . + 2, .  Compute Vi and vi, i = 1 , 2 ,  . . . , M as 

vi = S,' & 

When the pattern X i  from class o, is left out, Fisher's parameters are computed as 

where 

The rA, and z i ,  i = 2 ,  . . . , M are defined as in Equation 49. One obtains recursive relations for Fisher's 
parameters as follows: 

where 
I 

a = N 1 

(N l  - 1) (N l  - 2) 
Y ( X i )  = S,' ( X i  - Ifl,) 

B ( x 2 )  = (xi - S i l  ( X i  - fhl) 
v(X,$) = 1 - a/3(XL) 

d l  = Y T ( X i )  A, 

(ml + I f l z  + . . . + f i M )  
4, = YT(X,$) = -YT(Xf) m 

M 
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Recursive relations can be obtained similarly when a pattern Xf, from class o, is left out. It is to be 
noted that the matrix t?iw is to be inverted once for each class. The use of these recursive relations results 
in a computationally efficient way of implementing the leave-one-out method. 

The Fisher classifier is one of the simplest and most widely used linear classifiers. Recently, con- 
siderable interest in its application for the classification of multispectral data acquired by Landsat has 
been expressed. Acquiring labels of the training patterns is expensive, and in many cases the proba- 
bility of error is to be estimated in addition to the designing of a classifier. (For example, in remote 
sensing, a separate set of labeled patterns is used for estimating the probability of error.) Hence, in 
practical applications, it is advantageous to use the available labeled patterns more effectively. 

This paper has presented computational expressions for estimating the probability of error using the 
leave-one-out method. Thus, the available labeled patterns can be used effectively both for designing 
the classifier and for estimating the probability of error. Because the classification accuracy depends 
on the threshold used with the Fisher classifier, expressions for optimal threshold for minimizing the 
probability of error in Fisher's direction are presented. 
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DERIVATION OF MATRIX RELATIONS 

From Equation 14, one obtains 

thus obtaining Equation 18. From Equation 15, 
N. 

Consider the following: 
N1 2 (x,' - a lk )  (xi - = 1 [x! - *l + (Xi - a , )  ][XI - el + 

j=1 j=1  N1 - 1 

= 2 (XI - rA,) (X,' - a, )T + 1 
(x i  - a , )  C (x,' - 

j=1 (NI - 1) j = ~  

(x i  - a J T  + N1 (x i  - al) (xi - allT 
(NI - 1)' 

= (N, - 2 ) e 1 +  N1 (XB - a,) (xi - 
(N, - 112 
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Consider 

Substituting Equations A-3 and A-4 into A-2 results in the following: 

elk = [ ( N l  - 9 %  + N l  (xi - f i l )  (xi - - 
N: ( X i  - * I )  ( X i  - h , )~]  

(N1 - 2 )  ( N I  - ( N I  - 112 

thus obtaining Equation 19. 
Let S = Z - a M M T ,  where S and Z are nonsingular matrices and M is a vector. Then the inverse of 

S can be expressed in terms of the inverse of 2, as in Bodewig (1959): 

S-1 = x-1 + ax-'MMTS-' 
1 - LYMTZ-'M 1 thus obtaining Equation 22. 

DERIVATION OF THE OPTIMAL THRESHOLD FOR THE CASE P1 z Pz AND u1 # u2 

Using Equations 40  and 41,  the roots t, and t, of Equation 40  can be written as 

where 

bl = (pIuz2 - p 2 ~ 1 ~ ) I ( u l ~  - u s 2 ) ,  

7 1  = (u,u~)/(u,~ - uZ2), and 

772 = ( ( E L I  - Pz), + 2(uI2 - uz2) log ( P Z U ~ ~ P ~ U ~ ) ) " ~ .  

From Equations B-1, B-3, and B-4, we get the following: 

A sufficient condition that t, minimizes the probability of error P, is 

Substituting Equations B-1, B-6, and B-7 in Equation 42  and using the condition B-8 yields 

Pz ( ~ z ( P 2  - Pl) + ~ 1 7 7 2 )  > 5 (pz  - P I ) u I  + u2172 

uI2 (u12 - uz2) exp (log(-)) uz2 (uI2 - uz2) P l ~ 2  

On simplification, we get from B-9 

1 
- 772 > 0- (B-10) 
UlU2 

It  is seen that the condition B-8 is satisifed when q2 > 0. But there exists no real threshold when r]2 

< 0. Thus, the optimal threshold that minimizes the probability of error is given by t l  of Equation B-1. 
Proceeding similarly, it can easily be shown that the condition B-8 is not satisfied when t = t a  and 
when r) ,  > 0. 
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