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The Use of Contextual Information in 
the Classification of Remotely 
Sensed Data 

Contextual methods can be used in the classification of urban areas 
and the identification of linear objects and separation of cloud and 
cloud shadow from the remainder of a scene. 

I N RECENT YEARS, considerable effort has been di- 
rected towards the extraction of information 

from digital remotely sensed data by computer- 
assisted methods. Although such information may 
be in the form of continuous variables such as per- 
centage cover (Bentley et al., 1976; Marsh et al., 
1980), usually the extracted information is in the 
form of classes. Procedures to extract such infor- 
mation commonly rely on use of a feature space 
whose axes are defined by the channels from the 
multispectral data set. Attempts are then made to 

far from perfect classifications, errors of 25 percent 
or more being common for many classes (e.g., 
Townshend and Justice, 1980; Todd et al., 1980; 
Shimabukuro et al., 1980). The performance of 
per-point classifiers may well improve in the fu- 
ture with the use of sensing systems with better 
spectral and radiometric resolutions, especially 
those mounted on satellites (Salomonson et  al., 
1980; Gaubert, 1978). 

However, even with these improved sensors it 
is likely that far from perfect accuracies will be 
achieved, because not only will the data always 
contain noise, but also many classes have inher- 

ABSTRACT: A typology of contextual information as used in the classification of 
remotely sensed data is proposed. Procedures which use contextual information 
in the classification of remotely sensed data are defined as those where the 
spectral values or classes of pixels are used to assist classification of some other 
pixel or group of pixels. Procedures can be categorized according to whether 
they are applied to raw or classified data, by whether they apply to individual 
pixels or to groups of similarly classified pixels and objects, and by  the form of 
spatial relationships between the pixels. Examples of applications of each type 
of procedure are given with reference to classification using Landsat data. 

sub-divide the feature space into mutually exclu- 
sive sub-spaces corresponding as closely as possi- 
ble to the classes which need to be discriminated, 
using a proportion of the data for which one not 
only has spectral information, but also ground 
data. Assuming the latter proves possible, then the 
whole of an image may be classified relying solely 
on the spectral data. Implicit in this standard ap- 
proach is that each pixel (picture element) is clas- 
sified solely on the basis of its own properties 
without use of data from the remainder of the 
image; hence, the name per-point classifier. 

In practice, per-point classifiers often achieve 
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ently similar spectral properties. For example, in 
terms of land use, a short herbaceous cover may 
represent agricultural use, recreational use, or a 
part of residential use. 

Furthermore, improved spatial resolving power 
of satellites may not lead to improvements in clas- 
sification accuracy (Townshend, 1981). 

In order to improve classification it is natural 
therefore to use information not only from indi- 
vidual pixels but also from elsewhere in the 
image. Such spatial information is usefully sub- 
divided into two types-textural and contextual. 

Texture refers to a description of the spatial 
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variability of tones found within part of a scene. 
Various measures of texture have been success- 
fully used to define axes in a feature space, in a 
way similar to that described for spectral data 
(Haralick and Shanmugan, 1974; Haralick and 
Bosley, 1974; Hsu, 1978; Weszka et al., 1976). A 
useful summary of texture is provided by Haralick 
(1979). One disadvantage of textural measures is 
that there is an effective reduction in spatial reso- 
lution of the final classified image because an area 
has to be defined within which the measurements 
of texture are made. This is particularly disadvan- 
tageous when low resolution satellite data are used. 
For example, in Haralick and Shanmugan's (1974) 
work on land-cover types in the Monterey Bay 
area, sample sites of 64 by 64 Landsat pixels were 
defined, producing units approximately 5.1 km by 
3.6 km in size. 

Whereas texture refers to the spatial variation 
within a contiguous group of pixels, the context of 
a pixel (or a group of pixels) refers to its spatial 
relationships with pixels in the remainder of the 
scene. Thus, contextual classification of any pixel 
can potentially at least involve the use of any other 
pixel or group of pixels from throughout the whole 
scene. A contextual decision rule can be applied 
either to raw image data, in which case the spec- 
tral or textural properties of other pixels can be 
considered, or to classified data, in which case a 
preliminary classification can be amended by con- 
sidering classifications assigned to other pixels. 
This implies not only that classification error 
might be reduced by using contextual information, 
but also that additional classes could be recog- 
nized by separating pixels with the same spectral 
properties into additional classes according to 
their context. 

Using these definitions, the structural or syn- 
tactic approach to scene classification (Grimsdale 
et al., 1959; Fu, 1974; Fu, 1976; Pavlidis, 1979) 
involves a form of contextual classification. This 
approach relies on the identification of scene 
primitives, whose relationships are described 
using formal grammatical rules. 

Human photointerpreters have long exploited 
context very thoroughly, and recently attempts 
have been made to incorporate context in 
computer-assisted image classification. However, 
context has only been defined in very imprecise 
terms, and it has not been clear to the user just 
what procedures use contextual information and 
what advantages might attach to its use. The initial 
objective of this paper is to propose a typology of 
contextual information in order to demonstrate the 
variety of choices open to analysts as well as to 
provide a framework so that the relationships be- 
tween different uses of context are clarified. In the 
following sections we illustrate how these various 
procedures can be implemented with examples 
from our own and others' investigations. In several 

of the latter the term "context" was not explicitly 
used in the original papers, but we believe that the 
development of a typology enables these methods 
to be explicitly identified and related to other, 
similar, procedures. In addition, the examples de- 
scribed provide some indication of the levels of 
accuracy, or improvement in accuracy, attainable 
through the use of context. 

For the sake of comprehensiveness, we should 
first distinguish between contextual information 
within an image and context derived from non- 
image sources. The latter includes knowledge of 
the geographic context of the image as a whole, the 
time at which the image was obtained, and the 
definition could even be extended to include in- 
formation about individual parts of images from 
registered areal data sources, such as topographic 
or geologic maps. Welch and Salter (1971) have 
suggested that contextual information can also in- 
clude appearance modifiers due to sensor lim- 
itations and to levels of solar illumination. In the 
present paper we restrict our attention to contex- 
tual information from within the image itself. 

As stated in the previous section, a contextual 
procedure can be applied either to raw or to clas- 
sified data. In the latter case, in addition to re- 
classifying a single pixel, it is also possible to take 
a decision with respect to a group of contiguous 
pixels which belong to the same class. Such a 
group of pixels can be termed an "object." There 
is, therefore, an important distinction between 
procedures involving objects, relevant only to 
classified data, and those applied to individual 
pixels, useable with either raw or classified data. 

In either case the assignment made to a pixel or 
object will be contextual if it considers the values 
of another pixel or set of pixels with a given re- 
lationship to the pixel(s) in question. Contextual 
procedures can, therefore, be categorized on the 
basis of the type of spatial relationship involved. 
Four basic forms of relationship-distance, direc- 
tion, connectivity, and containment-are illus- 
trated in Figure 1. 

Both distance and direction can be applied both 
to single pixels and to objects and can, therefore, 
be used on either raw or classified data. Very 
commonly, all pixels within a given distance of the 
pixel of interest are considered, and an assignment 
is made on the basis of either their spectral or class 
characteristics, possibly combined with their rela- 
tive arrangements. Alternatively, pixels or objects 
separated by a specific distance andlor direction 
can be considered. 

The concepts of connectivity and containment, 
as used here, apply strictly only to objects and can, 
therefore, only be used where some preliminary 
segmentation of the data has been made. One ob- 
ject may be said to be "contained in another if it 
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FIG. 1. Types of spatial relationship. 

is completely surrounded by that object. Connec- 
tivity describes the relationship between a pixel 
and the other contiguous pixels of the same class. 
If a pixel is connected to a very large object, or an 
object of a particular shape, it could be assigned to 
a particular class. 

Consideration of all the above factors leads to 
the typology of context shown in Figure 2. Proce- 
dures can be categorized by the use of raw as op- 
posed to classified data, by whether they apply to 
individual pixels or to objects, and by the form of 
spatial relationships considered. 

TYPE 1: PIXELS WITHIN A LOCAL AREA 

In theory, the classification of a pixel may be 
made to depend upon the spectral properties of all 
the other pixels in the scene. However, not only 
would this be computationally unwieldy, but also 
there is not necessarily a relationship between 
land-cover types some distance apart. Therefore, it 
is frequently assumed that only pixels within a 
given distance can affect a classification, and the 
majority of contextual classifiers are based on the 
use of local windows. These may be divided into 
two types, those which consider both the values 
and the internal arrangement of the pixels in the 
window and those which consider only the values. 

TYPE 1A: INTERNAL ARRANGEMENT N O T  CONSIDERED 

Classifiers which employ some modification of 
the commonly used per-pixel statistical classifiers 
are frequently based on the use of the spectral val- 
ues of the immediate neighbors of a pixel (Welch 
and Salter, 1971). Kettig and Landgrebe's ECHO 
classifier relies on a two-stage procedure whereby 
homogeneous objects are recognized in local 
areas, and each object as a whole is spectrally clas- 
sified using a non-contextual algorithm (Kettig and 
Landgrebe, 1976), In contrast, Bryant (1979) de- 
scribes a contextual method for recognizing both 
homogeneous areas and boundary pixels (see 
Type lb) followed by contextual reclassification. 
Such methods can lead to significantly improved 
classification accuracies, and the results have a 
less noisy appearance than those produced by 
per-pixel procedures. 

TYPE 1B: INTERNAL ARRANGEMENT CONSIDERED 

Extension of the approach of Welch and Salter 
(1971) has been developed (Swain et al., 1980; 
Swain et al., 1981) which permits consideration of 
the position of pixels in the local area for the pur- 
poses of land-cover classification. 

Where the relative locations of pixels in the 

Contextual information 

Internal io image ~xternalto image 
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classifier 
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Pixels within Pixels at a 
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47 and direction 

Internal Internal 
arrangement arrongement 
considered ignored 
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FIG. 2. A typology of context. 
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of proportions as described by Cochran (1963). 
These limits are symmetrical, unlike many quoted 
in the literature (Hord and Brooner, 1976; Hay, 
1979), because with the large sample sizes which 
are used, the distribution can be assumed to be 
normal rather than binominal. 

Related procedures can be used to recognize 
edges, which can be used to enhance images for 
interpretation of their geologic features (Goetz et 
al., 1975), to detect geological lineaments (Burdick 
and Speirer, 1980), to assist regional delimitation 
(Strong and Rosenfeld, 1973), and to aid in the 
registration of images from different dates (Nack, 
1977). Using the labeling of the array above, an 
edge may be considered to be present at pixel e, if 
the values on one side of it are significantly differ- 
ent from those on the opposite side. For example, 

FIG. 3. Results of linear feature detection on a Landsat 
scene of Henley, England. G, = ( a  + 2 b  + c )  - ( g  + 2 h  + i )  

G, = ( a  + 2 d  + g )  - ( c  +2f + i )  

local area are considered, it is possible to deter- 
mine whether the pixel under consideration forms 
part of an edge or boundary between classes, or is 
part of a linear feature. 

Linear feature detectors may be used to identify 
roads and rivers (e.g., Bajcsy and Tavakoli, 1976; 
VanderBrug, 1976; Montoto, 1977; Gurney, 1980). 
In the last work quoted, a variation of the proce- 
dure developed by VanderBrug was used. Con- 
sider the array labeled 

a b c  
d e f 
g h i  

A vertical dark line is considered to be present 
at e if 

(a + d  + g ) > ( b  + e  + h ) < ( c  +f +i )bysome  
threshold T and also that d 3 e f. 

Lines of different orientations can be identified 
using similar equations. An objective choice of 
values of T was based on the likely spectral re- 
flectance values of lines and backgrounds as well 
as the probable width of the linear features. Thus, 
information from the pixel, e, itself is utilized 
along with its contextual relationship with sur- 
rounding pixels. Figure 3 shows the results of such 
a line detection procedure applied to a Landsat 
scene 150 by 110 pixels in size near Henley, U.K. 
The most prominent linear feature detected is the 
River Thames, which is approximately 55-m wide 
in this area. Tests of 220 randomly chosen pixels 
which had been classed as "linear" indicated that 
at the 95 percent confidence level between 74 
percent and 82 percent of these pixels actually cor- 
respond to some recognizable linear feature on the 
ground. 90 percent of the pixels traversed by the 
Thames were classed as "linear" by the detector. 
The confidence limits quoted here and elsewhere 
in this paper are based on the single-sample lists 

High values of G denote the presence of an edge. 
Many modifications of this procedure have been 
develo~ed: for reviews and com~arison see Davis 
(1975), ~ r i e s  and Modestino (i977), and Shaw 
(1979). 

TYPE 11: PIXELS A T  A SPECIFIC DISTANCE 

AND DIRECTION 

Although the use of local windows is more gen- 
erally applicable, there are cases where pixels in a 
specific position at a given distance andlor direc- 
tion can provide information for classification. As 
an example of this, we examine a procedure for 
identifying cloud and cloud shadow from Landsat 
multispec&al data (Gurney, 1982). Identification is 
based on the assumption that all cloud pixels have 
a value greater than a threshold T, (though not that 
other objects cannot have such values) and that 
similarly all shadow pixels have values less than 
a threshold T, (though not that other objects can- 
not have such values). The distance between 
clouds and their shadows is calculated from a 
knowledge of sun elevation, solar azimuth, satel- 
lite heading, image geometry, and, where avail- 
able, cloud base height. Cloud base height can be 
obtained either from meteorological data, or by 
measuring a sample of cloud to shadow distances 
and substituting for the cloud base height in the 
equations. All the other variables are available 
from Landsat header records. Figure 4 gives a dia- 
grammatic representation of the method used. Es- 
sentially, bright pixels are identified, and on the 
assumption that they are clouds, cloud shadow is 
searched for in a window centered at the appropri- 
ate distance and direction. If a sufficiently dark 
pixel is found, then it is classed as shadow and the 
bright pixel as cloud. Dark and bright pixels with- 
out this spatial relationship are assumed to belong 
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FIG. 4. Cloud and cloud shadow recognition. 

to other classes. Thus, the introduction of contex- 
tual information allows pixels with the same tonal 
properties to be separated into distinct classes. An 
example of the results of such a procedure applied 
to Landsat data for March 1973 covering Beachy 
Head is shown in Figure 5. The area of sea on the 
lower left of the image has been successfully sepa- 
rated from the spectrally similar cloud shadow in 
the upper left of the image. 

CONTEXTUAL RECLASSIFIERS 
The results of any classification will inevitably 

contain error. By employing contextual informa- 

tion, at least a proportion of this error may be cor- 
rected by reassigning classified pixels to another 
class. Additionally, the use of object based proce- 
dures can lead to the identification of additional 
classes. 

TYPE 1: PIXEL-BASED RECLASSIFIERS 

Amendments of preliminary classifications 
made of individual pixels can be carried out using 
the same type of procedures as those employed for 
classifying raw data using context (see Figure 2 
and the previous section). However, rather than 
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FIG. 5. Results of cloud and cloud shadow recognition 
on part of a Landsat scene near Beachy Head, England. 

considering the spectral values of the pixels, their 
classes are considered. 

Most pixel-based reclassifiers are based on the 
use of local windows of varying sizes. A widely 
used assumption is that pixels of a given class are 
likely to be surrounded by pixels of the same class. 
This assumption may often be valid where the un- 
derlying size of the classes is large relative to the 
pixel size, though it may not hold where single 
land-use classes contain many different spectral 
classes, as is more likely with higher spatial reso- 
lution data. Thus, for example, a procedure can be 
adopted in which the central pixel in a window is 
assigned to the class which occurs most frequently 
within the window (e.g., Itten and Fasler, 1979). 
This process is directly analogous to the use of 
local averaging on raw data, and has a similar ef- 
fect to that of smoothing out isolated noise. In 
theory, a window of any size could be used, and 
rather than using a simple majority rule, different 
thresholds could be adopted for each class. Thus, 
for example, one class might require a large 
number of pixels present before reassigning a 
pixel, whereas for another class only a few pixels 
would be required. Such a procedure might be 
applicable where different error rates are as- 
sociated with different classes. 

The procedure may be illustrated, for binary 
data, by the following equation: 

i 
( 0, otherwise 

where x ( i j )  = class of pixel at i, j; 
xl(i,j) = new class at i, j; 

W2 = area of square window of side W; 
a = ((W + 1)/2 - 1); and 
T = number of pixels of class 1 re- 

quired to change central pixel to 1. 

Assigning the central pixel to the majority class of 
surrounding pixels is therefore equivalent to using 
T = W/2. The use of expand and shrink proce- 
dures (Rosenfeld and Kak, 1976), which are often 
used for data smoothing, is also a special case of 
this method using T = 1 and W = 2E + 1 where E = 
the number of expansions. In general, use of a 
large value for W and a small value for T will have 
a very marked effect on the data and is, therefore, 
suitable where error rates are known to be high. 
Conversely, correction of a smaller error might 
only require a small W andlor a large T.  

The effects of varying the size of W for a reclas- 
sification of land-cover types in southern Italy are 
shown in Figure 6. As might be expected, im- 
provement declines with increasing size of win- 
dow and there is a small decline as more distant 
pixels are considered. Unless some form of 
weighting is introduced so that the more distant 
pixels have progressively less importance, such a 
decline will inevitably occur. An example of such 
weighting is that suggested by Thomas (1980) who 
uses a gravity model to assign relative weighting. 
The actual degree of improvement attained will be 
a function of the relative sizes of the pixels and the 
area1 units at ground level. 

An alternative procedure for correcting classifi- 
cation error by using information from a local area 
is the use of relaxation labelling (e.g., Schachter et 
al., 1977). Such procedures consider the prob- 
abilities that assignments are correct. Rather than 
making an immediate discrete decision, as above, 
the probabilities are iteratively updated using the 
set of probabilities contained in the local area. 
After a finite number of iterations, a stable solution 
is reached (Peleg and Rosenfeld, 1978) in which 

50; 
1x1 3x3 5x5 7x7 

Size of cell 

FIG. 6. Variation of final classification accuracy for re- 
classification of landcover types in southern Italy using a 
range of cell sizes. 
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correct assignments are reinforced and errors are 
reduced invprobability (Zucker and Mohammed, 
1978). Both edge or line data and general classi- 
fied data can be reclassified using such proce- 
dures. 

As mentioned above, the assumption that pixels 
of a given class are likely to be surrounded by 
pixels of the same class does not always hold. 
Some land-cover classes may be characterized by a 
heterogeneous assemblage of component cover 
classes. This is likely to be the case, for example, 
for scenes of residential areas, which are com- 
posed of roof tops, trees, herbaceous cover, and 
roads, especially where the imagery is of high res- 
olution. In such circumstances, reclassification 
into land-use classes according to the frequency 
distribution of ground-cover classes found within 
a window has been proposed and successfully im- 
plemented by Wharton (1982). 

In practice, use of either a window-based con- 
textual classifier, or a reclassifier may give similar 
results. The use of a reclassifier may be preferable 
in some cases because the use of windows larger 
than 3 by 3 pixels is readily possible, whereas for 
contextual statistical classifiers much greater com- 
putational demands are made. Reclassifiers are, 
therefore, more viable and, in addition, it is possi- 
ble to restrict attention to only one class. However, 
the use of discrete classes rather than spectral val- 
ues does decrease the amount of information 
available for a decision. In this respect, the use of 
raw data for the recognition of linear features and 
edges is distinctly preferable to the use of classi- 
fied data. 

The following section contains a further exam- 
ple of a pixel-based reclassifier combined with an 
object-based procedure. 

TYPE 11: OBJECT-BASED RECLASSIFIERS 

A classified data set may be regarded as an ar- 
rangement of discrete objects of class Ck, where k 
= 1, . . . , N  and N  is the total number of classes. 
Each object contains one or more connected pixels 
which have been assigned to the same class. The 
contextual arrangement of these objects can be 
used to reclassify them. 

TYPE IIA: INTRINSIC OBJECT PROPERTIES 

The principal intrinsic object properties are 
those of size and shape. A simple example of the 
use of such properties is where a pixel of class Ck 
is considered to be present in one context if at- 
tached to N ,  other pixels of class Ck, and in an- 
other context if attached to M other pixels of the 
same class where M >> N,. Using such a method, 
objects can be classed on the basis of their size. 

Reassignment of an object below a given size to 
whichever class forms the majority of its perimeter 
can be used to reduce classification noise (e.g., 

FIG. 7. Classification of urban land cover of Reading, 
England, using Landsat data. 

Kan et al., 1975; Carter and Stow, 1979) or to 
smooth data for presentation at different scales 
(e.g., Davis and Peet, 1977). This technique of 
error correction coupled with a ~ixel-based reclas- 
sifier has been used to improve classification of 
urban land use of Reading, England, using Land- 
sat data for June 1973 (Figure 7) (Gurney, 1981). 
Random samples of 400 pixels classed as urban 
and 400 pixels as non-urban were sampled for ac- 
curacy assessment. When a simple per-pixel clas- 
sifier was utilized, the errors were estimated as 
being 19.6 + 4.0 percent for the urban class and 
15.5 r 3.6 percent for the non-urban class at the 95 
percent confidence level. Figure 8 shows the ef- 
fects of applying an error correction procedure 
with a window size of 7 by 7 pixels, considering 
the central pixel only if it had been classed as 
non-urban, reassigning it to the urban class if at 
least 14 urban pixels lay within the local window. 
Subsequently, urban areas of less than 100 pixels 
in size were classed as non-urban, using the pro- 
cedure described above, so that only major urban 
areas were retained. Error in the non-urban class 
was reduced to 5.2 -t 2.2 percent and in the urban 
class to 6.1 r 2.4 percent. This is a significant 
change in error at the 95 percent level, illustrating 
the considerable improvement of classification 
that may be achieved utilizing such procedures. 

A pixel of class Ck may be considered to have 
different contexts if attached to pixels Ck which 
are arranged in different ways: in other words, the 
objects have different shapes. This forms the basis 
of syntactic procedures to identify linear features 
in classified scenes, where the local shapes of 
linear features are considered (e.g., Li and Fu, 
1976; Lu and Fu, 1976). A global shape measure 
has been used by Carter and Stow (1979) to sepa- 
rate motorways from urban areas. Jackson et al. 
(1980) suggest the use of a shape measurement to 
distinguish fields which are usually rectangular, 
from urban areas of undefined shape, where the 



PHOTOGRAMMETRIC ENGINEER 

FIG. 8. Results of applying error correction proce- 
dures to the urban classification shown in Figure 7. 

categories are tonally inseparable. However, accu- 
rate measurement of shape in low resolution data 
from current satellite data is hindered by impre- 
cise definition of object boundaries. Moreover, in 
any data, the presence of classification errors will 
themselves obfuscate the shape of objects. Shape 
measurement will probably, therefore, prove to be 
a less common use of context than many of the 
other procedures discussed in this article. 

TYPE IIB: RELATIONSHIPS BETWEEN OBJECTS 

We can use three basic contextual relationships 
between two objects of different classes to im- 
prove classification, namely, whether they are ad- 
jacent, separated by a given distance andlor direc- 
tion, or whether one contains another. If both ob- 
jects have the same class, then clearly only the 
second property can be used. 

In classification, it may happen that a proportion 
of the pixels are not assigned to any specific class, 
but are placed in an unlabeled class. In such cases, 
the unclassified objects may be assigned to 
whichever class forms the majority of the objects' 
perimeter. For example, Gurney (1980b) describes 
a procedure where objects initially classified as 
cloud or shadow were assigned to whichever 
land-cover class made up the majority of the 
perimeters. Recognition and classification of com- 
plete objects in this way avoids a large number of 
iterations through the data which would be neces- 
sary if the reclassification were carried out pixel 
by pixel. 

The distance and direction between two objects 
can be used either to reclass one or both of the 
objects, or to reclass some other portion of the 
data. An example of the former is given by Brayer 
et al. (1977) to identify clouds and shadows in 
classified data. An example of the latter can be 
found in the interpolation of missing segments of 
linear objects or edges. Where two segments to- 
gether have similar orientations and for which the 
missing segment would also have a similar orien- 
tation, then they can be assumed to be part of the 
same object, and pixels lying on the path between 
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them may be reassigned as part of a linear object. 
Interpolation procedures of this type can be based 
on tracking a segment to its end, searching over a 
given area for a new segment, and then continuing 
(e.g., Bajcsy and Tavakoli, 1976). Alternatively, 
stored information about each segment's size, 
orientation, and position may be used (e.g., Van- 
derBrug and Rosenfeld, 1978; Gurney, 1980a). 
Exemplification of this type of procedure is pro- 
vided by its application to the results of the line 
detection (Figure 3), the results of which are 
shown in Figure 9. Following interpolation, seg- 
ments less than five pixels in size were removed. 
The accuracy of the results has been significantly 
improved by this procedure, the change in error 
being 17.5 percent. 

Reclassification of an object may also be carried 
out on the basis of whether or not it is contained 
within another object, For example, Brayer et al. 
(1977) used such considerations in identifying 
"commercial" areas. These were assumed to lie 
within the "downtown" area, so that any pixel 
classed as commercial which lies outside this area 
may be assumed to be in error and reclassification 
performed. Definition of the downtown area was 
by operator interaction rather than by relying di- 
rectly on classified information within the data. In 
effect, such reclassification is relying on some 
form of hierarchical subdivision of the data (Fu, 
1976). This type of approach is closely related to 
the decision-tree approach proposed by Wu et al. 
(1974) in which classification takes place at a 
number of sequential stages, possibly relying on 
non-remote sensing data at one or more stages. 

A wide variety of contextual classifiers and re- 
classifiers are available which can provide im- 
provements in accuracy beyond those achieved by 
simple per-point classifiers. Despite the number 
of methods available, it is possible to categorize 

FIG. 9. Results of applying error correction procedures 
to the linear feature classification shown in Figure 3. 
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them into a relatively small number of types on the 
basis of the character of the context used. Rela- 
tively sophisticated contextual classifiers have 
been  proposed based on extension of the  
maximum likelihood rule. However, it is possible 
to develop very simple contextual rules which can 
substantially improve upon conventional clas- 
sifiers. Specifically, we have shown how contex- 
tual methods can be used in the classification of 
urban areas and the identification of linear objects 
and separation of cloud and cloud shadow from the 
remainder of a scene. 

It  is important to note that, although contextual 
information will often be of substantial value in 
classification, design and use of appropriate con- 
textual rules is primarily dependant upon the 
analyst's knowledge of the spatial relationships 
actually existing on the ground and the on the re- 
lation between pixel size and object size within a 
scene. 

Frequently, contextual classifiers and reclas- 
sifiers involve additional computation compared 
with simple per-point classifiers. In view of this, 
application of contextual relationships should 
usually be adopted only after there has been a 
preliminary classification of samples of the total 
data set, or if there is reasonable a priori knowl- 
edge of contextual relationships which can be 
exploited. 

We have been concerned principally with the 
application of contextual methods to Landsat MSS 
data. Such methods are likely to be of even greater 
relevance in the future. There is clear empirical 
evidence that future satellite sensors, with their 
finer spatial resolving power, may not necessarily 
lead to improved classification when simple per- 
point classifiers are used (Townshend, 1981). This 
arises because of the higher internal spectral vari- 
ability of classes, which becomes apparent as res- 
olution becomes finer. For this reason also, simple 
pixel-based contextual reclassifiers may also be 
unsuccessful in such situations. However, full and 
successful use of higher resolution data from sat- 
ellites such as Landsat-D and SPOT will rely on the 
appropriate application of classifiers relying on 
context. 

The authors would like to thank A.E.R.E. Har- 
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graphic facilities and research funding for Dr. 
Gurney, and the drawing office of the Geography 
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