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Qualitv Control for NRC On-Line 

The NRC ANAPLOT software is capable of interactive statistical testing 
for the presence and location of potential gross errors affecting the 
scale constrained orientation of consecutive models in bridging. 

0 N E  O F  THE MOST IMPOKTANT applications of an 
on-line triangulation is a quality-controlled 

data acquisition followed by an off-line adjust- 
ment. One of the simplest ways of achieving this 
goal is to perform bridging in individual strips 
by consecutive relative orientation and scaling of 
models followed by a cross-tying of strips into a 
block (Kratky, 1980). After each orientation is 
carried out by the computer, y-parallaxes and tie 
discrepancies are computed and displayed for 

1968) or "tau" criterion (Pope, 1976), can be ap- 
plied. 

The NRC on-line triangulation, developed for 
the ANAPLOT, employs a mathematical model for 
relative orientation with an additional scale 
transfer constraint and statistically tests the stan- 
dardized residuals at measured image points. 
The full weight cofactor matrix of the residuals 
(Q,,) is computed for each point configuration 
used. From this matrix, points with highly corre- 
lated residuals can be identified. If these points 

ABSTRACT: An efficient quality control of observed dota by applying the data 
snooping technique for gross error detection has been implemented in the NRC 
ANAPLOT triangulation program. The exact values of the redundancy numbers 
are computed for each image point, a rigorous statistical test is applied, and 
the results are displayed. Weak points which are indicated by the test are 
remeasured, and the test is repeated before continuing wi th  new photographs. 
Using different types of data, the ability of the technique to detect gross 
errors is studied and suitable point  configuration,^ are tested. 

each point in the model. These parallaxes can 
indicate if a gross observational error or blunder 
has been committed. However, in many cases it 
is difficult, or even impossible, to locate cor- 
rectly the point where the faulty observation 
took place. This is due to two reasons. The first 
is the low redundancy available in the model as 
a unit and the second is the high correlation be- 
tween the residuals (or parallaxes) of some 
points. Therefore, relying on the magnitude of 
parallaxes for locating gross errors could be inef- 
ficient and misleading. The ability of the system 
to detect and locate gross errors improves by up- 
grading the geometry of intersecting rays and by 
using additional constraints. In addition, rigorous 
statistical testing, such as data snooping (Baarda, 
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have large residuals, the operator is able to iden- 
tify the suspected point and reobserve only this 
point even though other points may display 
larger residuals. 

The objective of this paper is to describe this 
aspect of the NRC on-line triangulation system. 
Using actual and simulated data, many of the fac- 
tors affecting the ability of the technique to de- 
tect gross errors can be studied. Here, the effects 
of point configuration, density, and location are 
presented. 

In the ANAPLOT software the scale transfer from 
model to model in the process of bridging is de- 
termined simultaneously with the relative orien- 
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tation of the model. In this instance the model 
coordinates of suitably chosen tie points in the 
preceding model directly constrain the intersec- 
tions of corresponding rays in the new model. 

Relative orientation of the first model is based 
on the determination of five unknown parame- 
ters whereas the simultaneous solution of the 
scaled orientation in subsequent models contains 
six unknowns. In order to preserve the uniform- 
ity of programming and an adequate real-time 
speed, the orientation of all models is formulated 
primarily with the use of the coplanarity condi- 
tion. In addition, all models except the first one 
enforce the connection with preceding models 
by using a modified collinearity condition. The 
collinearity condition is applied only to tie 
points. Because the intersection with correspond- 
ing rays is already enforced by means of the co- 
planarity condition, which is very strong in the 
YZ plane, it is sufficient to check the ties with 
the previous model by specifying a single collin- 
earity equation related to the XZ plane only. 

Both conditions are applied in the following 
form : 

coplanarity Fp -- (b  x' x") = 0, 
collinearity F,, = AXz" - AZx" = 0, (1) 

where vector b = (1 represents the photo- 
grammetric base normalized through its x-compo- 
nent into values pi = bilbx. Vectors x' = (x' y' 
z')~ and x" = (x" y" are derived by orthogonal 
transformation of the original camera coordinates 
using rotation matrices which are functions of 
the attitude elements K,  4, 0. Values AX and AZ 
are model coordinates of tie points reduced with 
respect to the right projection center. All un- 
knowns ( O x ,  P, ,  P z ,  K ,  4, 0 )  are dimensionless 
and expected to be of the same order of magni- 
tude. 

The computations are based on the combined 
form of least-square adjustment 

converted into parametric fonn 

by interpreting the miscjosure vector u as vector 
of pseudo observations 1 = -2 = - A1 with cor- 
responding pseudo weights P = (AQAT)-' and 
pseudo corrections V = -Av.  Here, A and B rep- 
resent the design matrices with respect to real 
observations x", y" and to unknown parameters g, 
respectively, whereas Q is the weight cofactor 
matrix of observations 1. 

Coordinates xu, y" are the only observations in 
Equations 1 and are measured in a parallax mode 
with respect to fixed coordinates x', y', indepen- 
dently for each pair of rays. Consequently, matri- 
ces A, and A, have a diagonal form and their 
elements are 

Recognizing the well known, experience-based 
relationship of u priori expected inaccuracies for 
x'  and y' measurements 

q,, = 29xx, 
one defines 

Q = Qx,  = I ,  Q,, = 2Qzx = 21 
and derives 

- 
Q,, = ApQuuApT, QLL = ALQxzALT.  

The pseudo weights to be associated with co- 
planarity and collinearity conditions treated 
simultaneously in a six parameter solution of 
Equation 3 are then 

The effect of a gross error Ali on the residual vi 
of an observation li is 

where ri, called the redundancy number, is the 
ith diagonal element of matrix QvvP. The weight 
cofactor matrix of the residuals, Qvv is given by 

where N is the normal equation matrix. The stan- 
dardized residual w i  is computed by 

where qi is the ith diagonal element of matrix 
Qvv . 

Before trying to draw conclusions from the 
knowledge of redundancy numbers, it may be 
useful to demonstrate that they truly represent 
the actual situation. In other words, is Equation 
5 valid for various practical cases? To answer 
this question numerous tests were conducted, in 
which gross error Ali was introducted to observa- 
tion li and its effect Avi was computed after rela- 
tive orientation and scaling. The expected AEi 
was also computed using Equation 5 and its 
values compared with the actual Av,. Different 
cases have been studied and some of the results 
are presented in Table 1. Point distribution is 
shown in Figure 1. Values of Ali are always 
equal to 100 pm. All the tests produced a com- 
plete agreement between the expected residual 
AGi and the actual residual Avi, demonstrating 
that the redundancy numbers, as computed by 
QvvP, are correct. 

Table 2, based on real measurements, illus- 
trates the distribution of an artificial error of 
100 pm introduced in point 3, after orientation 
was completed (the point numbering as shown in 
Figure 1). The table also gives the y-parallax and 
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TABLE 1. TEST OF REDUNDANCY NUMBERS 

Point # 

Number of 
Points Used 

in Orientation 
Faulty 

Coordinate 

Expected 
Act 
Pm 

Actual 
Avt 
Pm 

standardized residual for each of the six points. 
From the examination of y-parallaxes, point 2 
seems to be the one in error, although this is not 
true. However, the largest standardized residual 
appears at point 3 where the error actually took 
place. It is obvious that the standardized residu- 
als show the real significance of distributed dis- 
crepancies and that they should be tested for 
gross errors rather than the magnitude of paral- 
laxes. 

When analyzing a suitable point distribution 
and density, two aspects of on-line triangulation 
must be considered-the accuracy of collected 
data and the efficiency of used procedures. The 
efficiency is not only judged by the time needed 
to perform the operations, but also by the intrin- 
sic reliability of data. The on-line calculations 
are always applied to volume limited data and 
are not so much important for the final, usually 
independent, block adjustments as they are for 
the crucial function of quality control. One 
should take great care that statistical testing is 
not too adversely affected by the limited on-line 
geometry. The geometry will ultimately be im- 
proved in the final, simultaneous processing of 
data, but then statistical tests are much more dif- 
ficult to run. It is important to consider suitable 
point configurations which guarantee high relia- 

FIG. 1. Standard point distribution. 

bility of statistical testing rather than the highest 
possible accuracy of space limited photogram- 
metric solutions. 

MODELS WITH NO SCALE TRANSFER 

First models in every strip are computed only 
by relative orientation at a given scale. Because 
no scale transfer is applied, this computation is 
not typical for the on-line bridging process. Nev- 
ertheless, it is instructive to start our analysis 
with a model in which the coplanarity formula- 
tion is separated from other constraints. 

It should be noted that the geometry of pure 
relative orientation is sensitive to relations gov- 
erned by the y positions of corresponding points, 
with little or no respect to changes in x coordi- 
nates which primarily affect only the height defi- 
nition of a measured point and not the orienta- 
tion proper. Any statistical tests are, therefore, 
capable of detecting gross errors in y-coordi- 
nates, but even significant blunders in x may go 
undetected. 

Figure 2 shows the redundancy numbers for 
measured y coordinates (or rather y-parallaxes) 
for points ranging from 6 to 15 in six different 
configurations (a) to (f). In general, the geometry 
of intersecting rays, which controls the success of 
relative orientation, is determined by the distri- 
bution of image points. A good geometry results 
in a high reliability of the orientation. The re- 
dundancy numbers, r, then indicate the local re- 
liability of the adjustment as reflected by any 
particular observation. A low redundancy num- 
ber reflects limited reliability, while its in- 
creased value means an improved reliability. For 
instance, the residuals at all corners of the six- 
point pattern (a) in Figure 2 will show only 8 
percent of the actual local error. 

The mechanism of the error distribution by 
Equation 5 is clearly illustrated by the full ma- 
trix Q,. Figure 3 lists its values corresponding to 
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TABLE 2. DISTRIBUTION OF A GROSS ERROR IN PA~ERN(B) IN FIGURE 4 

Point # 

Redundancy number r 0.09 0.77 0.07 0.32 0.40 0.23 
y-parallax in pm 6.6 -20.7 6.6 -2.6 11.8 -2.0 
Standardized residual w 1.38 1.44 1.51 0.27 1.14 0.25 

the previous example. One should realize that 
the listed values are two times larger than the 
corresponding redundancy numbers, r. These are 
derived from the product Q,,P for which the 
weight matrix for y observations is, as shown 
above, P,, = 0.51. The six values in any ith col- 
umn of Q, express the proportional distribution 
of the error in the ith observation over the six 
points used in the solution. Whenever an off-di- 
agonal element exceeds or matches the diagonal 
one, the error distribution distorts the testing of 
errors by the magnitude of residuals, which be- 
comes misleading and worthless. This is clearly 
documented in Figure 3 in each column of the 
matrix. All critical values are marked by boxes. 
The same effect is graphically represented in 
Figure 2 by heavy arrows indicating the direc- 
tion of all critical, misleading transfers in pattern 
(a). The numbers at arrow lines are the critical 
weight cofactors from matrix Q,,P, characterizing 
the degree of distortion. Also shown for each of 
the patterns in Figure 2 are the number of obser- 
vations, n, and trace, tr, of the derived weight 
cofactor matrix Qoo of unknowns, which could be 
used to assess and compare the expected accu- 
racy of individual solutions. 

The remaining sketches in Figure 2 can be an- 
alyzed in the same manner. The heavy arrows in 
patterns (b), (d), and (e) again indicate a critical 
transfer of errors. Dotted arrows in pattern (c) 
show an error transfer which is less critical, but 
still serious enough to be misleading. It is ap- 
parent that patterns (a), (b), (c), and (d) are very 
poor and, obviously, it is not only the number of 
points which improves the stability. The lowest 
redundancy numbers show in corners, and it ap- 
pears to be very efficient to strengthen the sta- 
bility by doubling points in critical areas, as 
shown in cases (e) and (f). These twin points 
will also show a high correlation between their r 
values; however, this is not critical any more. 
Because their location is almost identical, the 
problem area is uniquely identified. Also ap- 
parent from Figure 2 is the fact that the critical 
error transfers appear between neighboring 
points of low and high redundancy numbers, 
showing an imbalance in the error distribution. 
Ideally, one should strive for a balanced, uniform 
distribution of r values, however, still with a rea- 
sonable, not an excessively high, number of ob- 
served points. Because, by theory, the sum of ri 
values is equal to the number of redundant ob- 

FIG. 2. Redundancy numbers for relative orientation without scale trans- 
fer. 
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FIG. 3. Matrix Q, for point pattern (a) in Figure 2. 

servations in the system, the redundancy num- 
bers average here at r,, = (n - 5)ln = 1 - 51n. 
Pattern (f) is definitely the best configuration in 
Figure 2 as for the reliability of detecting gross 
errors and also rates well in the accuracy assess- 
ment. A very good distribution pattern, not 
shown in the figure, is achieved by measuring 
only 13 points (nine standard positions with four 
doubled comers). It yields ri ranging from 0.58 
to 0.80 with an average r,, = 0.62 and with the 
trace of Q,, equal to 14.3. 

MODELS WITH SCALE TRANSFER IN THREE TIE POINTS 

The analysis of the scale constrained orienta- 
tion of models can be conducted in a similar 
way, however, with taking into account the addi- 
tional collinearity conditions. We will again con- 
sider a few standard point configurations and 
compare their reliability and accuracy potentials. 
The scale transfer is considered to be based on 
the use of three tie points distributed in the nar- 
row overlap of three consecutive photographs. 

Figure 4 illustrates a group of six different 
configuration patterns, each with three tie points 
and with the number of orientation points rang- 

ing from 6 to 13. The redundancy numbers are 
displayed separately for x" observations at tie 
points and y" observations at orientation points. 
Also listed for each pattern are the total number 
of observation points, the average redundancy 
number r,, = (n - 3)l(n + 3), and the trace, tr, of 
the cofactor matrix Q,. 

We have demonstrated in the previous section 
that the standard six- and nine-point patterns are 
not suitable for on-line triangulation because of 
their critical error transfer, which prevents an ef- 
ficient quality control. Nevertheless, they are in- 
cluded in Figure 4 as patterns (a) and (d) to 
allow for a comparison with corresponding pat- 
terns of Figure 2. The y-redundancy numbers are 
slightly increased and the critical transfers re- 
duced due to the strengthening effect of scaling. 
The correlations among redundancy numbers 
within and between groups of observations x" 
and y" are demonstrated for the nine point pat- 
tern (d) by matrix Q, in Figure 5. The first three 
diagonal elements represent r values for observa- 
tions x", and the remaining diagonal elements are 
related to observations y" in the sequence shown 
in Figure 1. The rest of the matrix shows correla- 
tions. For instance, there is no correlation be- 
tween an x error in point 2 and y residuals for 
any other point. 

The reliability of checking errors in y" for pat- 
terns with 10 to 13 points in Figure 4 is gen- 
erally good. However, it is obvious that three tie 
points do not support an adequate control of 
gross errors in the scale transfer. These poor con- 
ditions are practically uneffected by the number 
and configuration of other orientation points. The 

FIG. 4. Redundancy numbers for , scale constrained relative orientation using three tie points. 
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FIG. 5. Matrix Q, for point pattern (d) of Figure 4. 

shift of errors x" from side points to the center, as 
documented numerically in the left upper 3 by 3 
submatrix in Figure 5, remains critical in all pat- 
terns of Figure 4. 

With reference to Figures 4(d) and 5, Figure 6 
illustrates the effect of a gross error in a practical 
example of NRC ANAPLOT operations. The com- 
puter printout shows the way in which the statisti- 
cal evaluation is displayed to the operator for his 
decision on which point should be remeasured. 

111 F Y  LIX DY U/ 
151 5 .  0.  2. 1. 
153 6. 0 .  5. 1 .  
153 I ? +  -0. 5. -2 .  
161 -5 .  
1 6 '  6 .  
1A3 .'. Cross error of 50 rn in 1153 
154 5. misleadingly ahars largest 
155 4.  discrepancy at 1156 
156 -16. ' 

I O  REn -N f AHX EXPD S1GF SNOOPING S T A T I S T I C S  

Stetistically 
151 0 . 2 1  5 .4  5 . 0  1 .09  most lihly 
152 0 . 8 1  -6 .1  8.7 0 .71  error location 
153 0.27 l ? . i  5.0 3.42 

STANNARD ERROR OF ( I N I T  WEIGH1 = 6 . 8  HICHONS 

ANY REJECTION'? ENTER I111 153 

REPLACEMENT? Y 

Discrepancies after 
correcting 1153 

SlANnARD ERROR OF U N I T  WEIGHT = 3 .4  MICRONS 

FIG. 6. Example of ANAPLOT data snooping. 

Parallaxes and tie discrepancies are followed by a 
table which lists, for each measurement, the corre- 
sponding redundancy number (RED-N), x- or y- 
parallaxes both computed (PARX) and statistically 
expected (EXPD), as well as the error significance 
(SIGF) represented by the standardized residual. 
Otherwise, Figure 6 is self-explanatory. 

MODELS WITH SCALE TRANSFER IN FIVE TIE POINTS 

It is logical to expect an improvement in the 
scale transfer reliability by increasing the number 
of the points, from three to five, but not necessarily 
raising the total number of observations in the 
model. The number of 10 to 15 points has already 
proved to be useful. If the distribution of existing 
tie points on the left side of the model is mirrored 
on the right side for future tie points in the next 
model, one can choose one of the patterns de- 
scribed in Figure 7. Values r are graphically dis- 
tributed in the same format as in previous figures 
and complemented by information on n, r,,, and tr. 
Pattern (a) with a regular distribution of ten points 
again displays weak upper and lower sides with a 
critical or serious transfer for three pairs of points. 
An alternate selection of double points in weak 
model parts works very well and all other patterns 
in Figure 7 guarantee a good quality control. Vari- 
ant (c) with 13 points represents an excellent prac- 
tical choice. It almost matches the accuracy and 
reliability of the 15-point pattern while surpassing 
it in efficiency due to the lower number of obser- 
vations. 

The NRC ANAPLOT software for on-line triangula- 
tion is capable of interactive statistical testing for 
the presence and location of potential gross errors 
affecting the scale constrained orientation of con- 
secutive models in bridging. Based on numerous 
on-line simulations and practical experiments, a 
standard configuration of 13 orientation points in- 
cluding 5 tie points is considered best for a practi- 
cal routine use. 
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X " Y " 

I 
0 6 7  

0.56 

C) n=l3 r,, =O 67  tr.140 d l  nzl5 r 0 = 0 7 0  lr:130 

I 
FIG. 7. Redundancy numbers for scale constrained relative orientation using five tie points. 
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