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Classification of Arid Geomorphic 
Surfaces Usina Landsat S~ec t ra l  and 
Textural ~eatuyes 

The addition of image texture improves class separability by 
incorporating geornorphic terrain parameters 

INTRODUCTION 

I N TRADITIONAL geologic and geomorphic map- 
ping, interpretation from aerial photography 

and field reconnaissance are the main sources of 
information. When mapping geomorphologic fea- 
tures, the geologist must first determine mapping 
units on the basis of detailed field examination 
involving stratigraphy and soil analysis. After the 
initial classes are defined, the geologist generally 

appear as a repetitive spatial pattern of tonal 
(grey-level) variation (texture) whose characteris- 
tics are controlled by one or more of these param- 
eters. The result is a large variance in class 
grey-level distribution. Compounding the prob- 
lem of tonal variation within geomorphic classes is 
the existence of weathered surfaces or surface 
coatings in many natural environments. These 
tend to reduce spectral differences between geo- 

ABSTRACT: A computationally efficient texture extraction algorithm which 
measures the local edge amplitude and density of an image is used to derive 
textural features from Landsat MSS data. Three of these derived textural features 
are added to the original four Landsat bands in  a multifeature geomorphic 
classification of a natural arid terrain. The addition of textural features signifi- 
cantly improved training class separability when compared to a spectral only 
classijhation. Classification improvement, as determined b y  photointerpreta- 
tion and by comparison to a geologiclgeomorphic map, was signgicant. Dis- 
crimination between classes which have large spectral overlap but are textur- 
ally distinct, such as darkly varnished bedrock slopes and desert pavement 
surfaces, and lightly colored bedrock and alluvial surfaces, was the area of 
greatest improvement. 

maps, both in the field and from air photos, on the 
basis of parameters such as surface topography, 
color, tone, morphology, drainage pattern, and 
vegetation. 
On multispectral satellite imagery, such as that 
from the Landsat Multispectral Scanner (MSS), 
these parameters often contribute heterogeneity, 
rather than homogeneity, to geomorphic class sig- 
natures. For example, many geomorphic classes 

PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 
Vol. 49, No. 3, March 1983, pp. 337-347. 

morphically distinct classes. Consequently, the 
experienced geomorphologist uses textural 
analysis in support of tonal analysis as a key 
photoanalytic tool for the differentiation of geo- 
morphic classes. 

In computer-assisted mapping from such imag- 
ery, classifications based only on spectral features 
are usually insufficient for high-level differentia- 
tion of geomorphic surfaces. Our objective was to 

0099-1 112/83/4903-0337$02.25/0 
@ 1983 American Society of Photogrammetry 



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1983 

develop an improved methodology for the pro- 
duction of geomorphic maps using both spectral 
and textural features as data sources for digital 
image classification. 

In arid terrain, the darkness of a rock surface 
coating called desert varnish creates much of the 
spectral ambiguity between bedrock and desert 
pavement surfaces. Desert varnish is a dark amor- 
phous coating of clays and ferromanganese oxides 
which is found with near ubiquity on any relative- 
ly stable surface in the desert. The chemistry and 
structure of desert varnish has been studied in 
depth (Engel and Sharp, 1958; Hunt, 1961; Hooke 
et al., 1969; Potter and Rossman, 1977; Peny and 
Adams, 1978). However, the exact mechanism in- 
volved in the formation of desert varnish is still 
not well understood. It is generally agreed that 
both clays and oxides are from eolian deposition. 
Potter and Rossman (1977) have argued that the 
clay may act as a manganese fixing agent whereas 
others (Scheffer et al., 1963; Bauman, 1976; Per- 
ry and Adams, 1978; Dorn, 1980) have argued that 
it is a product of biological activity by microor- 
ganisms. u 

One of the darkest geomorphic surfaces in the 
desert is that called desert pavement. Desert pave- 
ment, also called stone pavement or hamada, is 
a stony surface mantle that, when fully developed, 
forms a dark planar surface of size-sorted stones 
so well fitted together that the surface has the 
appearance of a rock mosaic or pavement. Desert 
pavements have been found and described in 
most of the arid regions of the world (Blake, 1904; 
Sharon, 1962; Springer, 1958; Symmons and Hem- 
ming, 1968; Cooke, 1970). Three mechanisms 
have been suggested for the formation of desert 
pavement: water sorting, wind deflation, and up- 
ward migration of stones. Cooke and Warren (1973) 
have reviewed much of the literature on this sub- 
ject. 

The darkness of desert varnish on both bedrock 
and desert pavement surfaces is a function of the 
physical weathering attributes of the rock material, 
the relative age of that surface, and its particle 
size distribution (Shih, 1982). Rocks that are litho- 
logically similar may have dramatically different 
weathering characteristics and therefore have 
quite different surface spectral signatures. On the 
other hand, rocks that are dissimilar in lithology 
may have similar weathering characteristics and 
similar varnish coatings. These lithologic classes 
are impossible to separate by spectral signature 
alone but could in some cases be separated by 
image textural attributes. 

In digital imagery, texture can be defined as 
patterns of spatial relationships, often quite com- 

plex, among the grey levels of neighboring pixels. 
The importance of image texture in geologic ter- 
rain classification has been demonstrated in ex- 
periments by Haralick et al. (1973) and by Weszka 
et al. (1976). Weszka et al. (1976) were able to 
distinguish three rock types from 180 samples 
with accuracies of up to 95 percent based on tex- 
tural measures alone. 

Although textural features have been increas- 
ingly incorporated into multispectral classification 
(Wiersma and Landgrebe, 1976; Hsu, 1978; Jen- 
sen, 1979; Fasler, 1980; Irons and Petersen, 1981; 
Jensen and Toll, 1982), no single algorithm com- 
bining both efficiency and effectiveness has been 
widely accepted. Numerous textural measures 
have been developed. Literature surveys and al- 
gorithm comparisons are given in Weszka, et al. 
(1976), Haralick (1979), and Conners and Harlow 
(1980). 

Hsu (1979) divided textural measures into two 
broad categories: Fourier-based features and 
statistical features. Weszka et al. (1976) demon- 
strated the superiority of statistical features over 
Fourier-based features. The most commonly used 
set of statistical features are the second-order tex- 
tural measures based on Haralick's grey-tone spa- 
tial dependency matrix (Haralick, 1979). However, 
these textural measures incur large computational 
cost when used on a pixel-by-pixel basis. Mitch- 
ell's max-min textural measures has been shown to 
perform equally well or slightly better but with 
less computational effort (Mitchell et al., 1977). 

The max-min method uses the relative number 
of local grey-level extrema as the principal textural 
measure. In the one-dimensional case, a pixel is 
classified as a local extremum if it is the largest (or 
smallest) value before the values drop (or rise) to a 
value T (Carlton and Mitchell, 1977). 

Local extrema may be divided into specific 
threshold ranges, each defined by a different value 
T. In the case of three thresholds (T,, T,, T3), an 
individual pixel is classified as either not an ex- 
tremum or an extremum of threshold T,, T,,  or T,. 
The texture at any given pixel is defined by the 
number of pixels within each threshold range 
within a given neighborhood. 

Our goal was to devise a relatively simple and 
efficient texture feature extraction algorithm sim- 
ilar to Mitchell's max-min measure that could be 
easily implemented with common image pro- 
cessing software. 

The study area is a 296 square kilometre (110 
square mile) site in the extremely arid Kofa Game 
Range of southwestern Arizona (Figure 1). The 
site, typical of basin and range topography (Fen- 
neman, 1931), includes portions of the Castle 
Dome Mountains, its alluvium mantled pediment, 
and portions of King Valley to the east ofthe range. 
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FIG. 1. Location of study site. 

A generalized geologic/geomorphic sketch map 
of the study area (Figure 2) was interpreted from 
field data and 1:24,000-scale aerial photography. 
The Landsat band 5 image of the same area, ex- 
tracted from scene E-1194-17391, 2 February 
1973, is shown in Figure 3. The site can be di- 
vided into three major regions. From southwest to 
northeast these are mountain range, alluvium- 
mantled pediment plain, and the axial stream 
complex of the basin. 

Within the study area, the mountain range is 
composed primarily of Tertiary volcanic rocks but 
also contains two large areas of Mesozoic 

sedimentary and metamorphic rocks. In a standard 
Landsat false color composite, the Mesozoic rocks 
are spectrally distinguished from other rocks by 
their blue color. Within the mountain range are 
patches of elevated Q2a and Q2b geomorphic 
surfaces, which are formed on a now dissected 
Middle Pleistocene fan (Table 1). Geomorphic 
terms and classification systems used in our tables 
and maps were adapted from a manuscript by Bull 
(in preparation). In the Landsat image, the low re- 
flectance caused by desert varnish coatings on 
most of the volcanic rocks (Tvf, Ta, Trt) and desert 
pavement surfaces (Q2a, QZb, Q2c) makes it dif- 
ficult to distinguish these classes by spectral re- 
flectance alone. 

EXPLANATION 

FIG. 2. Geologic/geomorphic sketch map. (Refer to Table 1 for 
description of geologic units.) 
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FIG. 3. Landsat Band 5 extracted image. 

The alluvium-mantled pediment plain, the sec- 
ond region, is composed of inselbergs (bedrock 
outliers surrounded by alluvium), alluvial sur- 
faces, and ephemeral washes. Late Pleistocene 
dark pavement surfaces (Q2c) are quite wide- 
s ~ r e a d .  although Holocene fluvial activity has re- 
duced the once continuous fan of dark stible des- 
ert pavement into a complex of interdigitated sta- 
ble desert pavements ( Q ~ c ) ,  vertically degraded 
desert pavements (Qepd), and modern erosional 
surfaces (Q4JQ3). Degraded pavements are those 
surfaces which are recognized as vertically eroded 
desert pavements by diagnostic horizons in their 
truncated soils and by stratigraphic considera- 
tions. Modern erosional surfaces have no evidence 
of soil development and show signs of recent 
fluvial erosion. Ephemeral washes are recognized 
by channel type deposits and by their associated 
riparian vegetation. 

Desert varnish makes both bedrock inselbergs 
and desert alluvial pavements dark. These classes 
are differentiated on satellite images by the 
shadowed and illuminated slope textures as- 
sociated with inselbergs and a grainy mottled 
texture associated with dark desert pavements. 
Dissected desert pavements have a grainy mot- 
tling texture along with numerous fine filaments 
created by dissection channels. Degraded pave- 
ments have an even light tone whereas erosional 
surfaces are recognized by uneven light tones. 

The axial stream complex, the third region, is 
composed of anastomosing sand and gravel chan- 
nels and dense riparian vegetation. Between the 
channels are flat overbank deposits of sand and 
silt, often covered with creosote bush (Larrea di- 

Class Description 

Q4Q3 Modern alluvium, stream channels. 
flood plains, overbank deposits. 

Q2pd, Q4/Q3 Complex of Pleistocene and Moden~ 
alluvium: stable and partially or 
fully degraded or dissected pave- 
ment. 

Q2c Late Pleistocene alluvium. Flat, stable, 
desert pavement. 

Q2b Middle Pleistocene alluvium. Moder- 
ately dissected desert pavement. 
ridge, and ravine topography. 

Middle Pleistocene alluvium, highly 
dissected, with remnants of desert 
pavement. Hill and valley topog- 
raphy. 

Acid to Acid-intermediate volcanic 
flows and pyroclastics. 

Basaltic andesites. 
Rhyolitic ash-flow tuffs and banded 

rhyolites, faulted and tilted. 
Sedimentary and low-grade metamor- 

phic rocks of sedimentary origin 
(slates, limestones, conglomerates. 
sandstones, and quartzites). 

Msch Mesozoic schists. 

Tvf 

Ta 
Trt 

veracata). The entire region is generalized in the 
sketch map as Q4lQ3. 

An algorithm that measures local edge ampli- 
tude and density (LEAD) was developed and used 
to extract texture features from the Landsat data. 
This texture algorithm is similar to the local max- 
min extrema measure described by Mitchell et  al. 
(1977) and by Carlton and Mitchell (1977). The 
main difference between our algorithm and that of 
Mitchell et al. is that ours measures all local pixel 
deviations within a specified threshold range and 
does not look for local extrema only. The ease of 
computation, efficiency, and reported success of 
local extrema textural measures (max-min) (Mitch- 
ell et  al., 1977) were the reasons for using this 
approach. 

Texture feature extraction by the LEAD method 
was done in three steps (Figure 4). The first step 
was the convolution of the band 5 Landsat image 
with a 3-by-3 high pass spatial filter. As illustrated 
in Figure 4, Step 1, this produced a high pass 
image with an approximately normal grey-level 
distribution about a mean of zero. High pass fil- 
tering removes low frequency background varia- 
tions and only allows the high frequency image 
information to remain. The rationale for using a 
high pass filter follows from the intuition that tex- 
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OPERATION GREY LEVELTRANSECT HlSTOGRAM each range) of image activity; that is, edges, lines, 
points, and other elements of texture within the 
neighborhood defined by the window. 

- ------ -- - --- 
, 

Our choice of window sizes was guided by em- 
pirical information. Window sizes of 5-by-5,9-by-9, 

0 
Original Image Data and 11-by-11 pixels were used because we had ob- 

STEP 1. SPATIAL CONVOLUTION WITH HIGH PASS WINDOW 
served from the Landsat image that the most sig- 
nificant textural variations were of this scale. For 

Hlgh Pa81 Image 

STEP 2. HISTOGRAM EQUALIZATION AND THRESHOLDING 

- - - - -  
l a  

12 

$1 
% 

Ta 

Thresholded Image 

STEP 3. COUNT WINDOWS WITH CONVOLUTION 

THREE 
TEXTURE TI Count Image 
IMAGES - 
PER WINDOW 
SIZE 

I T2 Count Image 
4 I 

1- T3 Counl bnage 4 
FIG. 4. Texture feature extraction. 

tural information is primarily found in local con- 
trast variations; that is, the human eye recognizes 
similar textures regardless of average background 
grey level. Sharp transitions in radiance levels 
(edges) in the original image become spikes in the 
high pass image, with the sharpness and ampli- 
tude of the spikes dependent on the width and 
contrast of the transitions in the original image. 

In the second step (Figure 4, Step 2), two abso- 
lute value thresholds were applied to the high 
pass image so that each pixel was classified into 
one of three mutually exclusive threshold ranges. 
These threshold ranges are analogous to the TI, T2, 
T, grey-level distances of Carlton and Mitchell 
(1977). Because no a priori arguments exist for the 
placement of threshold boundaries, it was decided 
that these thresholds would be set by an equal 
probability rule that could be implemented auto- 
matically. The procedure was simply to perform a 
contrast stretch which equalized the grey-level 
probabilites (histogram equalization) in the high 
pass image. Thresholds were chosen at points that 
divided the resulting uniform histogram into three 
equal areas. 

In step three (Figure 4, Step 3), a count image 
was produced by convolving the thresholded high 
pass image with a window that counts the number 
of pixels in each threshold range within the win- 
dow area. The number of pixels within each range 
is a measure of a specific amplitude (TI, T2, and T3 
range limits) and density (number of points within 

example, the texture of shadowed and illuminated 
slopes of bedrock has a spatial frequency of one 
cycle per 5 to 11 pixels, with a cycle consisting of 
one shadowed and one illuminated slope. The tex- 
ture of a moderately dissected desert pavement, 
consisting of dark grainy flat areas with fine fila- 
ments and mottles, has several cycles per 5 to 11 
pixels. Each combination of window size and 
threshold range produced one textural feature. 
Three window sizes and three thresholds were 
used, so that a total of nine features were derived 
from the original Landsat band 5 data. 

CLASS~F~CATION A N D  FEATURE SELECTION 

All classifications were performed using a 
supervised classification program employing the 
Bayesian maximum-likelihood rule. Twelve 
spectral/geomorphic classes (Table 2) were de- 
fined on the basis of extensive field investigation 
and interpretation of Landsat images and aerial 
photos (Shih, 1982). Their defining characteristics 
are based on reflectance data as well as geomor- 
phic data. Bedrock classes, which are differ- 
entiated lithologically in the geologic/geomorphic 
system, are grouped by reflectance in  the  
spectraVgeomorphic classes. Alluvial classes are 
more refined in the spectraYgeomorphic system. 
They are classified on the basis of reflectance, age, 
and relative erosional activity or stability of the 
surfaces. The complex of surfaces in the pediment 
and basin regions, regions 2 and 3, which are 
generalized in the sketch map, is divided into two 
pavement classes, two erosional classes, and three 
vegetation and (active) fluvial classes. 

Twenty-five training sites were selected to rep- 
resent these spectraYgeomorphic classes. Because 
of the limited spatial extent of many of the classes, 
some of the training sites were by necessity very 
small. However, all training classes were defined 
by at least nine samples (per feature). The larger 
sites usually consisted of 25 samples, with the 
largest having 64 samples. The final pixel coordi- 
nates of all sites were located interactively on a 
video color display. 

Training site statistics were generated for all 
nine textural features. The between-class di- 
vergence (Swain and Davis, 1978) was calculated 
for all pairs of classes and textural feature combi- 
nations. This was used as a criterion to reduce the 
number of features to only the most useful ones. 
The combination of three features that produced 
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TABLE 2. SPECTRAL/GEOMORPHIC CLASS DESCRIPTIONS USED I N  LANDSAT CLASSIFICATION 

Equivalent Geologic- 
No. Name Description Geomorphic Classes 

ROCKL 

ROCKD 

ROCKB 

9 C EROS 

Bedrock 

Rock hills and hillslopes with no desert varnish-light- 
colored irregularly weathered surface. Mostly tuffs 
and flow-banded rhyolites. 

Dark rock hills and hillslopes, with composition ranging 
from rhyolitic to basaltic andesitic volcanic rocks-all 
heavily coated with desert varnish. 

Rock hills, hillslopes, and associated alluvium of Meso- 
zoic sedimentary and metamorphic rock, generally 
weathered to a grey green color and having a blue 
color in the Landsat standard false-color composite 
images. 

Highly dissected alluvial surface of early Middle Pleisto- 
cene age. Limited in extent, rounded hill and valley 
morphology (forming smooth concave and convex sur- 
faces), a few remnant dark desert pavement surfaces, 
and exposed caliche clasts. 

Dissected alluvial surface of Middle Pleistocene age; 
flat top ridges and concave valley morphology. Dark 
desert pavements on ridge. 

Darkest desert pavement of Late Pleistocene age, very 
flat with darkly varnished rock armor; moderate dis- 
section. Darker due to enhanced varnish on more basic 
volcanic rocks (quartz latite, basaltic andesite, etc.). 

Dark desert pavement of Late Pleistocene age but light- 
er than Class 6. Surface is flat, with limited dissection. 
Varnish dark but lighter than Q2cd in part due to more 
acidic rock composition. 

Eroded Desert Pavement 
PAV DIS Desert pavement vertically degraded by sheetwash ero- 

sion; a very flat planar surface which is light in color 
due to exposed sand, silts, and clays, with caliche 
clasts on surface. In areas, alternating with patches of 
Q2cd, Q2c1, and C EROS. 

Coarse erosional surface, a gravelly modern surface 
mostly composed of coarse unvarnished rocks of mixed 
lithology and reflectances, with no soil development 
and sparse vegetation; low relief and undulating sur- 
face morphology. 

10 SAND 

11 WRP 

Trt 

Trt, Ta, Tvf 

Ms, Msch 

Modern Fluvial Deposits and Vegetation 
Overbank deposits of fine sand and silt with varying 

amounts of creosote bush in pure stands. 
Relatively unchannelized wide ephemeral floodway 

composed of sand and gravels with open clustered 
riparian vegetation. 

12 DRP Major incised ephemeral stream channels with dense Q4/Q3 
riparian vegetation. 

t he  highest average between-class divergence was 
found to  be the  high threshold 5-by-5 window size 
(TH 5-by-5), high threshold 9-by-9 window size (TH 
9-by-9), and  the  low threshold 11-by-11 window 
size (TI, 11-by-11). These  textural features were  
t he n  merged with t he  four Landsat spectral bands. 
Of all seven features, the  best  combination of four 
f e a tu r e s  ( h i g h e s t  a v e r a g e  be tween -c l a s s  d i -  
vergence) was Landsat MSS bands 5 a n d  6, and  
textural features TH 5-by-5 a n d  TI, 11-by-11. 

Three  classification maps were  made; t he  first 
from the  four Landsat bands (spectral); t h e  second 

from the  best  combination of four features, two  
spectral and  two textural features (best four); and  
t he  third from all seven features, t he  four Landsat 
bands and  the  best  se t  of three textural features 
(spectral plus textural). I n  all cases, "best" was 
defined as t he  combination of features that yielded 
t h e  highest average between-class divergence.  
Training site statistics a re  shown for all three clas- 
sifications i n  Table 3. T h e  "best four" classifica- 
tion was intermediate i n  class separability to t he  
other two and, overall, showed little improvement 
over  the  "spectral" classification because t he  in- 
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Percent Correct 

Spectral 
plus 

Class (# Pixels) Spectral Best Four Textural 

1 ROCKL 
2 ROCKD 
3 ROCKB 
4 Q2A 
5 Q2B 
6 Q2cd 
7 Q2cl 
8 PAV DIS 
9 C EROS 

10 SAND 
11 WRP 
12 DRP 
AVERAGE 

clusion of two textural features was insufficient to 
compensate for the deletion of two spectral bands. 
Therefore, the remainder of the discussion in this 
paper will be related to the "spectral-only" and 
the seven-band "spectral plus textural" classifica- 
tions. 

Classification with the addition of textural fea- 
tures was better than expected considering the 
geomorphic complexity of the site and the fine- 
ness of the spectral-geomorphic class divisions 
(Table 2). The inclusion of textural features sig- 
nificantly improved overall classification accuracy 
within the training sites. Accuracies improved 
from an average of 73 percent in the "spectral" 1 classification to 96 percent in the "spectral plus 
textural" classification (Table 3). Improvements 
were especially significant in the separation of 
class 2, dark bedrock, from the desert pavement 
classes 4, 5, 6, and 7 (Figure 5). 

As illustrated in the grey-level plots (Figure 5), 
textural, not spectral, features separate the dark 

FEATURES 

LANDSAT SPECTRAL LANDSAT TEXTURAL 

CLASSES 

bedrock class, 2, from pavement classes 4,5,6, and 
7. Because class 2 is composed of hillslopes, the 
radiance range of this class is large in each of the 
Landsat bands, as illustrated by the grey-level 
standard deviation of spectral bands. But textural 
features separate class 2 from the pavement 
classes because of its larger number of high 
threshold pixels (TH 5-by-5, TH 9-by-9) and smaller 
number of low threshold pixels (TL 11-by-11). TWO 
of the textural features also separate classes 5 and 
6, which are not separable in the original spectral 
bands (Figure 5). Class 5 (Q2b) has dark pavement 
but is characterized by greater relief than class 6 
(Qecd), which is equally dark. Because of this re- 
lief, textural features produced with larger win- 
dows (TH 9-by-9, TL 11-by-11) have a larger count of 
high threshold pixels (TH 9-by-9) and a smaller 
count of low threshold pixels (TI, 11-by-11) for class 
5 as compared to class 6. It is interesting to note 
that classes 6 (Q2cd) and 7 (Q2cl), which are dark- 
er and lighter desert pavement classes of the same 
age, cannot be separated by the textural features 
(Figure 5), because of their similar topographic 
and drainage characteristics. However, the spec- 
tral bands accomplish the separation. 

Significant improvements were also found in 
the separation of class 1, light bedrock, from the 
light-colored sands and silts of class 10 (Figure 6). 
Class 1 (ROCKL) and class 10 (SAND), both high re- 
flectance classes, are inseparable in the Landsat 
bands, but once again are differentiated by texture 
(Figure 6). Thus, it appears that the inclusion of 
textural features improves the separation of spec- 
trally similar but texturally dissimilar bedrock and 
alluvial classes. 

A comparison of classification maps "spectral" 
and "spectral plus textural" (Plates 1 and 2) to the 
geologic/geomorphic sketch map and the Landsat 
image shows marked improvement in the "spec- 
tral plus textural" map. For example, the promi- 
nent inselberg in the north center of the image is 
nearly obscured by misclassified pixels in the 
"spectral" map, but is clearly differentiated in the 
"spectral plus textural" map. Likewise, the transi- 
tion from rock mass to pediment along the south- 
ern margin of the image is not evident in the 

FEATURES 

LANDSAT SPECTRAL LANDSAT TEXTURAL 

4 5 0 7 Tn6x5 TnOxS T L l l x l l  
0 

CLASSES 

ROCKL ; 1  

FIG. 5. Grey-level plots for classes 2,4,5, 6, and 7. Bars FIG. 6. Grey-level plots for classes 1 and 10. Bars repre- 
represent + 1 standard deviation. sent & 1 standard deviation. 
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"spectral" map but is clearly delineated in the 
"spectral plus textural" map. 

Random, single pixel misclassifications in the 
"spectral" map are greatly reduced in the "spec- 
tral plus textural" map. Pavement classes are 
clearly defined and separated in the "spectral plus 
textural7' map whereas, in the "spectral" map, 
random pixel misclassifications are so frequent 
that class boundaries cannot be clearly defined. 

1 Problems in classification with textural features 
could arise when a class is spectrally determined 
but contains several textures or a texture similar to 
other classes, and where class spatial boundaries 

1 are narrower than the window size used in the 
textural processing (e.g., class 12, DRP). In  the lat- 
ter case, thin linear, ephemeral channels appear 
somewhat discontinuous and blocky in the "spec- 
tral plus textural" map. The effect of this tendency 
is most clearly seen in the axial stream complex, 
which is composed (on the image) of many thin 
filaments corresponding to stream channels and 
riparian vegetation. For class 12 in this region, the 
"spectral" map may be more spatially accurate. 

The spectral classification showed low accuracy 
in the mapping of the Q2a and Q2b alluvium. 
These classes are difficult to map because they are 
spatially small, are situated in the mountainous 
regions, and also have significant topographic re- 
lief. However, the "spectral plus textural" map 
separates these surfaces well. Also, the "spectral 
plus textural" map constrains the Q2a and Q2b 
classes largely to the mountainous region whereas 
in the "spectral" map, because of considerable 
spectral overlap with other pavement and bedrock 
classes, misclassification results in these two 
classes appearing throughout the pediment and 
basin regions. 

Most previous remote sensing applications of 
textural features in computer classifications have 
been attempts to improve identification of urban 
land-uselland-cover classes (Jensen, 1979; Fasler, 
1980). Little has been published on the use of 
textural processing in a geologic mapping appli- 
cation. Our experiment indicates that texture may 
be extremely valuable for classifying geologic1 
geomorphic surfaces. The overall benefit is the 
separation of classes that show spectral overlap 
but are texturally distinct. Also, random pixel mis- 
classification, characteristic of spectral-only clas- 
sifications, is reduced by the amount of textural 
homogeneity in a given area. Other classification 
improvement techniques, such as stratification, 
require the input of additional data, usually digital 
terrain data or geographical map base type data. 
One advantage of the use of derived textural data 
is that more useful information is extracted from 
the original data without the requirement of other 
additional data sets. 

To permit a clear comparison of "spectral" with 
"spectral plus textural" classifications, we did not 
apply class thresholding or postclassification 
smoothing techniques. The use of these tech- 
niques with particular attention to the spectral 
versus textural qualities of individual classes is 
likely to further improve classification results. 

The inclusion of Landsat derived textural fea- 
tures with spectral features can improve computer 
classifications of natural areas without great addi- 
tional computational costs. The algorithm that was 
used is more sophisticated than a local variance- 
type textural descriptor but is comparable to it in 
cost. The algorithm's effectiveness when com- 
pared to more complex procedures, such as those 
based on Haralick's spatial dependency matrix 
(Haralick, 1979), is yet to be determined. It ap- 
pears to be at least an order of magnitude less ex- 
pensive when both are applied on a pixel-by-pixel 
basis. 

The need for further research into the deriva- 
tion, meaning, and usage of textural features is 
evident from this paper and studies published by 
other authors. Specifically, training sites need to 
be chosen with regard to their textural neighbor- 
hood. Because texture is by definition a neighbor- 
hood function, texture training sites also include 
data from the buffer zone of pixels around the ac- 
tual site. Deciding what is the largest site needed 
to define a texture class and yet not include other 
neighboring textures is one problem which needs 
to be addressed. 

The specifications of textural feature parameters 
such as thresholds and window sizes are usually 
based on empirical assumptions because few 
theoretical guidelines exist. Yet, the choice of 
histogram thresholds or window sizes may signifi- 
cantly affect the classification. Guidelines need to 
be developed for the optimum specification of 
these parameters, preferably based on intrinsic 
measurable quantities of the imagery. 

Also unresolved is the problem of textural heter- 
ogeneity at complex class boundaries, which can 
cause misclassification if the resultant textural 
signatures are similar to those of other classes. 
This is analogous to the "mixed reflectance" pixel 
problem, where more than one class is repre- 
sented within a pixel. 

Class separability based on training site classifi- 
cation accuracies, not overall map accuracies, have 
been determined for the maps in this paper. The 
selection of appropriate test sites or other quan- 
titative map accuracy measurements must be 
made in future applications. While separability 
between classes improved significantly, map ac- 
curacy is dependent on fully understanding which 
combination of field parameters controls textural 
and spectral signatures so that classes and clas- 
sifier can be tailored (e.g., class weighting, feature 
weighting, etc.) to the most significant controlling 
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parameters. It is important to remember that, 
while classes are defined descriptively by the in- 
terpreter, they are defined only statistically for the 
computer classifier. Apparent errors in computer 
classification are often due solely to these differ- 
ences. 

Finally, application of this technique to a bed- 
rock geologic or geologic resource problem is an 
obvious area of further research. The application 
of textural features to the Thematic Mapper bands, 
in conjunction with spectral ratio images, should 
significantly improve geologic mapping capabili- 
ties of automatically classified remotely sensed data. 
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Announcement and Call for Papers 
Specialist Work Shop 

Pattern Recognition in Photog rammetry 

Graz, Austria 
27-29 September 1983 

The Work Shop is being organized by Working Group IIU5 of the International Society for Photo- 
grammetry and Remote Sensing, the Austrian Working Group on Pattern Recognition, the Graz Re- 
search Center, the Technical University Graz, and the Austrian Computer Society. The main topics 
of the Work Shop will include 

Reconstruction of three-dimensional object space. Parallax detection, shape from shading, determination of 
sensor orientation, image transformation (rectification, etc), aircraft and satellite images, radar, medical and 
industrial, etc. 
Knowledge-based image analysis and image understanding. Knowledge models and digital maps, image- 
based information systems, map-guided image analysis, computer-assisted photointerpretation, use of ter- 
rain data and of image simulation, etc. 
Data structures and conuersions. Line following, vectorization in scanned cartographic images, editing of 
vectorized data, effect of data structures, data compression, etc. 

For further information and for submission of extended abstracts (two pages, by 30 April 19831, 
please contact 

Dr. F. Leberl 
Techn. Univ. Graz 
Wastiangasse 6 
A-8010 Graz, Austria 
Tele. (0316) 82531-0 

Dr. M. Faintich 
DMA Aerospace Center 
St. Louis Air Force Station, MO 63118, USA 
Tele. (314) 263-4937 

Optical Science and Engineering Short Course 

Doubletree Inn, Tucson, Arizona 
16-27 May 1983 

The purpose of the Short Course is to acquaint both the specialist and the non-specialist engineer or 
scientist with the latest techniques in the design and engineering of optical systems. The Course 
comprises 18 three-hour lectures; detailed notes will be  supplied. The registration fee is $1000. 

The wide range of topics that will be  covered includes geometrical and physical optics, optical system 
layout and design, Fourier methods, polarized light, radiometry, image quality, interferometry and 
optical testing, lasers, thin films, photodetectors, and visible and infrared systems. 

Address inquiries to 

Philip N. Slater 
Optical Systems & Engineering Short Courses Inc. 
P.O. Box 18667 
Tucson, AZ 85731 
Tele. (602) 885-3798 


