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The Application of Pseudo-Bayesian 
Estimators to Remote Sensing Data: 
Ideas and Examples 

New estimators may offer improvements over conventional 
alternatives in the analysis of confusion matrices. 

R EMOTE SENSING APPLICATIONS often involve the 
analysis of data from bi- or multivariate con- 

tingency tables. One of the most common situa- 
tions is in the development of "confusion matri- 
ces" to characterize the performance of remote 
sensing systems for detection and identification 
tasks. Table la, for example, shows raw data from 
Ulaby et al. (1980) for crop classification using 
both like- and cross-polarized L-band radar imag- 

classed as type j, xi. = Zj  xXii the total number of 
fields of type i in the sample, x . ~  = Xi the total 
number of fields classified into category j, and N = 
CC. xXii be the total number of fields in the sample. 
These data are used for illustrative purposes 
throughout the paper because they serve as a con- 
crete example and also because the small dimen- 
sionality of the problem (a 4 by 4 matrix) enables 
the reader to follow the computations with ease. 

A related remote sensing application that also 
involves the use of contingency table analysis is 

ABSTRACT: Analyses of data from contingency tables is frequently required in  
remote sensing applications. In conventional procedures, requisite probabilities 
are estimated using the principle of maximum likelihood. There are, however, 
recent improvements to these methods. This paper examines, wi th  several nu- 
merical i l lustrations,  the  application of pseudo-Bayesian methods  t o  
contingency-table analysis of problems in remote sensing. Additionally, a pro- 
cedure is proposed and illustrated for generating reasonable prior distributions 
based upon the maximum-entropy concept. This procedure enables the ex- 
perimentor to reflect partial prior knowledge within a rigorous and (given com- 
puter access) easy-to-use framework. The principal contribution of this effort is 
the organization and presentation in  a unified manner of several methodologies 
which have been developed separately in the literature. 

ery of an area in Huntington County, Indiana. In  
this illustration, radar imagery of fields catego- 
rized as woods, pasture, corn, or soybeans was 
analyzed to develop classification decision rules. 
When applied to a ground truth calibration data 
set, these classification decision rules produced 
the confusion matrix or contingency table shown 
in Table la. Thus, of 105 total fields, four were 
correctly identified as woods, four of 40 soybean 
fields were misclassified as corn, etc. Let i and j (i  
= 1, . . . ,r; j = 1, . . . ,r) be indices representing 
crop type, xXii be the number of fields of type i 
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the problem of evaluating map accuracy. Relevant 
papers that address this application are those of 
van Genderen and Lock (1977), van Genderen et 
el. (1978), Ginevan (1979), Hay (1979), and an ex- 
cellent and rigorous contribution by Card (1982). 
The rows in the contingency table represent the 
true classification of cells/quadrats/pixels/objects, 
while the columns represent the assigned cate- 
gories displayed in the map for these same cells. 
With some obvious adjustments to interpretation, 
all that follows in this paper is relevant to the map 
accuracy evaluation problem. 
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TABLE 1. DATA FROM AN EXPERIMENT BY ULABY et al. (1980) 

ASSIGNED CATEGORY 
Woods Pasture Corn Soybeans Subtotal 

(a) RAW DATA, xu 
Woods 4 0 6 5 15 

TRUE Pasture 0 11 0 2 13 
CATEGORY Corn 0 0 25 12 37 

Soybeans 0 1 4 35 40 
Subtotal 4 12 35 54 105 

(b) CONDITIONAL 
PROBABILITIES, f3*U 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(c) UNCONDITIONAL . . 
PROBABILITIES, pu 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

Topics of analytical interest in  the analysis of 
these data include, inter alia: 

Data reduction. How can these data be effi- 
ciently summarized? As one example, Table l b  
shows the conditional identification probabilities 
denoted by %", the relative frequency that a field 
of type i is classified as type j. In Table lb, the 
Ou's are given by their usual estimates, xuIxt . As 
a second example, Table l c  shows the uncondi- 
tional probabilities pu, that a field selected at 
random from the population is of type i and clas- 
sified as type j. Here also these values are given 
by their usual estimates, x~,lN. (These are 
maximum likelihood estimates under certain as- 
sumptions, as discussed in Kendall and Stuart 
(1967, Vol. 11, p. 548), and are the unique 
minimum variance unbiased estimates in any 
event (see Bishop et al. 1975, p. 407).) Note that 
these unconditional probabilities are of value only 
if the ground truth fields are chosen at random or 
adjustments are made in the case of a stratified 
sample. See Card (1982) for discussion of these 
and related issues. Ulaby et al. (1980) unfortu- 
nately do not specify the sampling procedure 
used. 

A related problem that arises often in  connec- 
tion with automated decision rules, such as pro- 
duced b y  linear discriminant analysis, is that of 
estimating the  error rates t o  be expected i n  prac- 
tice rather than those observed on training data. 
See the work of Glick (1978) for useful discussion 
and background. 

Hypothesis testing. Do these data differ signifi- 
cantly from another set? For example, in the same 
reference Ulaby et al. present classification re- 
sults developed using like- or cross-polarized 
data alone. Does the use of both types of polariza- 

tion significantly improve classification accuracy? 
If these data come from different areas, or were 
taken at different time periods, or using alterna- 
tive sensors, are the observed differences statis- 
tically significant or could they have come about 
by chance alone? In these latter situations the 
data would be presented as a multivariate con- 
tingency table and additional subscripts defined 
to represent season, area, sensor type, etc. Rele- 
vant literature on the general problem of analysis 
of categorical data includes works of Fleiss 
(1973), Bishop et al. (1975), Fienberg (1977), and 
Kendall and Stuart (1967). 
Estimation-Given imagery over a new area with 
observed numbers of fields x.,, what are the best 
estimates of the true number of fields of each 
type in the new area? Relevant analytical models 
can be found in Maxim et al. (1981) and Bauer et 
al. (1978). 

There are two characteristics of these data worth 
noting in  the present context: 

These matrices often contain a fairly "large" 
number of cells (though only 16 in this example) 
with a "small" number of observations per row 
(from 13 to 40 in this example). 
In consequence, the density of cells with zero 
counts is often quite high. In Table la, for exam- 
ple, six out of 16 cells (about 38 percent) contain 
zero counts. Such zeros may truly reflect zero 
~robabilities, but can also reflect "sampling 
zeros"--cells which have a non-zero probability 
but are nonetheless empty due to sampling vari- 
ability. In truth, not all zeros are alike; some 
zeros may be "smaller" than others. The rate of 
misclassification of soybeans as woods (zero out 
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of 40), for example, may be smaller than the frac- 
tion of woods classified as pasture (zero out of 
13), but these differences are not reflected in the 
maximun-likelihood estimates of the conditional 
probabilities shown in Table lb. 

(1975) note the difficulties occasioned by sam- 
pling zeros in model-fitting using the method of 
weighted least squares. Finally, the use of cer- 
tain transformations of the data, e.g., the logarith- 
mic, may be impossible if there are zeros in 

The probability of a sampling zero can be quite 
high, particularly if the true conditional probabil- 
ity is low and the number of observations is small. 
For example, there are 20 to 1 odds for a sampling 
zero if the true probability is 0.005 and the same 
size is 10, and the odds of a sampling zero are 
greater than 2 to 1 even if the sample size is as 
much as 80. The probability of a sampling zero out 
of N independent trials with true probability 0 is 
(1 - 0)". 

Another useful question to ask is, how large a 
sample size is necessary to have a specified prob- 
ability, g, that no sampling zero will result? For 
one cell the minimum sample size is 

where In is the log to the base "e." Thus, for 
example, the sample size must be at least 460 to 
have a 90% chance of avoiding a sampling zero 
when the true cell probability is 0.005. This 
minimum sample size rises steeply as 0 ap- 
proaches zero. Moreover, even these computa- 
tions underestimate the actual likelihood because 
only one cell is considered here and confusion 
matrices typically contain many cells. To judge 
from published data, sample sizes for row totals in 
confusion matrices are seldom of sufficient mag- 
nitude to reduce the likelihood of sampling zeros 
to "tolerable" values when 0 is small. 

Of course, the observed zeros in the table might 
well reflect a genuine zero probability (though 
upon reflection, a probability that is exactly zero 
seems unlikely in this context), so a more descrip- 
tive term for the cell zeros is "problematic zeros," 
a term suggested by Fienberg and Holland (1970). 

There are several reasons why sampling zeros 
constitute a problem in the analysis of contin- 
gency-table data. These include: 

The phenomenon noted above that "not all zeros 
are the same." In some applications, for example, 
studies on health effects of smoking, alternative 
surgical procedures, etc., small differences in 
probability can be highly important and, there- 
fore, every effort should be made to extract the 
most information possible from the data. (See 
Bishop and Mosteller (1969) for one illustration.) 
In some hypothesis testing or model develop- 
ment situations, zeros significantly complicate or 
even prevent the use of certain analytical tech- 
niques. For example, Quirk and Scarpace (1982) 
note the difficulty of using chi-square tests when 
some cells have zero frequencies. Bishop et al. 

the data. 
In "scaling-up" experimental results w~th mis- 
classification errors, use of a sampling zero in 
place of the correct non-zero probability can sig- 
nificantly affect numerical results. Maxim et al. 
(1981), for example, provide the following esti- 
mate of the true number of fields of "type 1," y , ,  
from the observed number of fields of type 1 and 
type 2, x ,  and x,, misclassification probabilities 
denoted by a and P,  respectively, and the de- 
tection probability p as 

If the values for x , ,  x,, p, a, p were 90, 460, 0.5, 
0.2, and 0, respectively, y ,  would be about 225. 
But what if p were really 0.1 rather than 0, as 
assumed? The corresponding y ,  would be only 
100, less than one-half of the previous value. The 
sensitivity of the estimate to p arises because x ,  
is large relative to x, .  This condition may not 
have occurred in the ground truth sample-par- 
titularly if the ground truth sample was pur- 
posive rather than random. (It is a well-known 
result that the discrimination power of a com- 
parative test is maximized if equal sample sizes 
are chosen (see Fleiss (1973).) 

For these and other reasons, investigators have 
sought plausible ways to deal with the problems of 
sampling zeros. Many of these approaches appear 
to have a distinctly ad hoc character. For example, 
sparce rows are often combined to eliminate zeros 
(or even small values). Fienberg and Holland 
(1970) and Good (1965) summarized various other 
suggestions. Several of these approaches avoid 
zero counts by the simple expedient of adding 
"pseudo counts" to the cells; illustrative proce- 
dures include adding 1 count to all cells, 114 count 
to only the empty cells, 112 count to all cells, or to 
only the empty cells, etc. 

One class of approaches that has some proven 
theoretical as well as practical merit is the use of 
so-called pseudo-Bayesian estimates. Operation- 
ally, the use of pseudo-Bayesian estimators can be 
succinctly described by the following steps: 

Select a set of r2 prior unconditional probabilities 
h, for all i andj. These h, values may be specified 
exogenously, be data dependent, or developed 
by a procedure described later in this paper. 
Compute/estimate/specify a weighting factor, K. 
Options for estimation of K are described in the 
following section. 
Compute "smoothed cell estimates 
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Smoothed conditional probabilities Bij* or un- 
conditional probability follow directly from the 
smoothed cell estimates. 

Estimates, pi,*,  derived from Equation 3 are 
weighted linear combinations of the maximum- 
likelihood estimates of the unconditional prob- 
abilities, pij = xij/N, and the A,, values, i.e., 

N p * . .  = - K 
N + K  Pi, + - + X i j .  

From Equation 4 it can be seen that whenever K > 
0 and A, > 0, then p*ij > 0 even if p ,  = 0, i.e., cell 
zeros will be removed. (As a technical point, esti- 
mates given by Equations 3 or 4 are termed 
pseudo-Bayesian because, while the form of 
Equation 4 is similar to a Bayesian estimator, the 
parameters K and A,. are replaced by point esti- 
mates rather than distributions and the values may 
be data dependent.) Numerical examples will fol- 
low, but first it is appropriate to comment on the 
parameters K and A,.. 

From examination of Equation 4 it can be seen 
that K functions as a weighting coefficient. Spe- 
cifically, the estimate p*" given in Equation 4 is 
exactly what would be obtained if X, were an in- 
dependent estimate of the cell probability based 
on a sample size of K. K is thus the "pseudo sam- 
ple size" associated with the prior estimates A,,. A 
large value for K (in comparison to N) causes the 
prior information to be heavily weighed relative to 
the experimental data; small values the opposite. 

Mathematically, any value of K 2 0 is admissi- 
ble, and indeed several more or less ad hoc 
suggestions for choice of K have been ventured; 
among these K = K = r2/2 (see Bishop et al.  
(1975)). One  particular choice that has both 
theoretical and practical merit is 

(For the technically minded, f( as defined in 
Equation 5 is the maximum-likelihood estimate of 
the value of K that minimizes the quadratic risk 
function of the estimator Equation 4. See Bishop 
et al., 1975, for a discussion of risk functions and 
the derivation of Equation 5. Estimates given by 
Equation 4 using f( given by Equation 5 may be 
biased, but, depending upon the choice of A,, and 
the p, values, of these estimates can be a "sub- 
stantial improvement" in terms of the quadratic 

The A, values represent the a priori estimates of 
the p,. values. While any sequence of & values that 
satisfy the basic conditions of a probability dis- 
tribution (viz. 0 s k,, s 1.0 and ZZ h,. = 1.0) are 
mathematically acceptable, the objective is to 
select values as close to the true but unknown 
probabilities as possible. 

In the specific context of the remote sensing il- 
lustration identified in Table l ,  there is often ex- 
ogenous information available that can be used to 
estimate or at least to narrow the domain of rea- 
sonable choices for A,.. For example, 

Data may be available from another experiment 
that is expected to yield similar classification 
probabilities. 
If the present sensor is designed to be an im- 
provement over an earlier design or sensor and 
image-enhancement technology combination, 
earlier data might be used to set bounds upon the 
performance of the present sensor. 
Prior land use maps or other aerial survey data 
may enable estimation of the row totals pi. if the 
fieldslcells/quadrats are selected at random. (See 
Card (1982) for a discussion of this idea in a dif- 
ferent context.) 

What is needed is a systematic technique for in- 
corporation of all available prior information in the 
selection of the X, values. Our proposed choice is 
described below. 

A concept that is highly useful in many areas of 
statistics, information theory, communications 
theory, statistical thermodynamics, etc., is that of 
entropy. In the specific context of a bivariate con- 
tingency table, the entropy, E, of the prior esti- 
mates is defined by the equation, 

and depends upon all the prior cell probabilities. 
Loosely, the entropy is a measure of the "random- 
ness" of the assignment. As noted, because the A,. 
come from a probability distribution, they must 
also satisfy the constraint that the sum of the cell 
probabilities is unity (i.e., ZZ A,, = 1.0). Absent 
detailed knowledge, it is reasonable to select a 
prior distribution that maximizes the "random- 
ness" of the assignment. The distribution that 
maximizes the entropy can be found by solving the 
optimization problem, 

Max E = - CC A,, ln  X,. 
risk (see ~ i s h o ~  et al. ,  1975, p. 407) over the tradi- Subject to ZZ X, = 1.0. 
tional estimate.) Yet other estimates of K have (8) 
been proposed and are appropriate under certain The solution to the above problem is well known 
circumstances; however, k, as defined above, is and requires setting the h,. all equal to a common 
often a reasonable choice and, in any event, had value, l / r2  in the case of an r x r matrix (see Jaynes 
received the widest attention. (1957a, 195713, 1963) or Kullback (1967)). In other 
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words, this prior distribution is uniform and re- Table 2b shows the smoothed conditional prob- 
flects the principle that, absent other knowledge, abilities, given by the equation 
all cells should be assumed to be "equally likely." 
Thus, this prior distribution has equal pseudo- o*. .  = m*ij/m*i.; (10) 

counts in each cell. The following example illus- and finally, Table 2c displays the smoothed un- 
trates requisite computations for pseudo-Bayesian conditional probabilities, given by the equation 
estimates using this result. 

p*ii = m*ijlN. 
EXAMPLE 1 

(11) 

Table 2 shows results of the use of the maximum 
entropy prior on the data of Ulaby et al. (1980) 
given in Table 1. In this example, r = 4 and the hij 
values are, therefore, all equal to llr2 or 1/16. The 
calculated value of i? from Equation 5 is 5.7824, 
small in comparison to N, and thus the weighting 
coefficient for the actual data, (NI(N + K)), is 
0.9478. Such a weighting is in accord with intu- 
ition, because if little is known a priori, it is rea- 
sonable that the raw data should figure signifi- 
cantly in the final results. The value of the entropy 
of the prior, - 22 hij In Aii is 2.77, while that ofthe 
smoothed data - 22 p*ij In p*ij is 1.98. Thus, as 
might be expected, the structure of the actual data 
reduces the entropy of the resulting distribution. 

Table 2a contains the smoothed cell counts 
(note that these are no longer necessarily inte- 
gers), given by the equation 

N m*.. = N p..* = - 
N + K  

(x i j  + K Xu); (9) 

(Throughout this paper, several places of accuracy 
will be retained. This is done both to facilitate the 
reader following the computations and to avoid 
round-off errors in these calculations. Final 
smoothed estimates can be adjusted as desired.) 
Referring first to Table 2a, note that, after 
smoothing, the cell counts no longer sum to the 
original row totals. This is because no such con- 
straint was placed upon the prior. Indeed, as 
noted, the prior "pseudo data" have all row and 
column totals equal.  I t  is only because the  
smoothing coefficient (NI(N + K)) weights the ac- 
tual data so heavily that the smoothed row totals 
are so similar to the values of the original data set. 
Secondly, note that the smoothed counts are all 
greater than zero. (This is true whenever it is also 
true of the prior distribution.) Note also that all 
cells that originally had zero counts, now have 
non-zero counts which are equal to a common 
value N Kl(r2) (N + K); the same is true for the p*" 
values (which differ only by the scaler 1/N), 

ASSIGNED CATEGORY 
Woods Pasture Corn Soybeans Subtotal 

(a) SMOOTHED 
COUNTS m*, 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(b) SMOOTHED CONDITIONAL 
PROBABILITIES, OCii 

Woods 0.265 
TRUE Pasture 0.025 

CATEGORY Corn 0.009 
Soybeans 0.009 
Subtotal 0.308 

(c )  SMOOTHED UNCONDITIONAL 
PROBABILITIES, P * ~  

Woods 0.039 
TRUE Pasture 0.003 

CATEGORY Corn 0.003 
Soybeans 0.003 
Subtotal 0.049 

ADJUSTMENT PARAMETERS: 
K = 5.7824 Aii = 1/16 V i,i 

OTHER COMPUTATIONS: - 

- x x X , l n h , = 2 . 7 7  - C x p * i i l n p * , = 1 . 9 8  



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1983 

though not of the O*ij as the smoothed-row totals 12.69, compared to 5.78 in the first example. Still, 
differ. even in this case, actual data are highly weighted 

Thus, these pseudo-Bayes estimates remove the (3922) in comparison to the prior, reflecting the 
(presumed) sampling zeros. However, though im- lack of certainty of the a priori information. 
proved, these estimates are still not entirely satis- The smoothed counts will now sum to the row 
factory. Some specific objections that can be raised and column totals of the original data, a direct con- 
include: sequence of the additional constraints placed on 

There is no particular reason to alter the original 
row totals of the data; indeed, perhaps these 
should be retained. 
Though the raw estimates need improvement, 
the choice of the "equally likely" hypothesis may 
be equally unsatisfactory-the experimenter 
may know more about the situation than this dis- 
tribution would indicate. 
Adjusted cell counts of cells with "original zeros" 
are all identical. 

Yet, the maximum entropy approach has a certain 
intuitive appeal as well as theoretical justification. 
Can these deficiencies be remedied? 

Referring to the first of the above objections, a 
natural extension to the method is to impose addi- 
tional constraints upon the prior. If row (and col- 
umn) totals are believed correct, for example, then 
a prior distribution can be selected that maximizes 
the entropy of the prior, but subject to the con- 
straint that row and/or column totals match those 
for the experimental data. This requires solving a 
new optimization problem, 

MaxE = - SZ In hij 

Subject to 

= p i  (row totals maintained) (13) 

x i  )C, = p j V j  (column totals maintained) (14) 

(probabilities sum to unity). (15) 

It can be shown that the resulting prior distribu- 
tion is given by (see Good (1965)), 

a distribution identical to the independence hy- 
pothesis in contingency table analysis. This, too, 
has been suggested as a candidate prior (see 
Bishop et al. (1975) and indeed employed in a re- 
cent remote sensing study (see Quirk and Scar- 
pace (1982)), but it is interesting to note that, 
rather than being another arbitrary (albeit simple) 
choice, it can be developed by a direct extension 
of the maximum entropy idea. 

For the case where the prior is given by Xij = pi. 
P .~,  the entropy ofthe prior E is 2.35. Note that this 
value is less than that for the equal-probability 
case, reflecting the additional information con- 
tained in the row and column totals. Likewise, 
computations indicate the value of K is higher, 

t h e  prior. As well, the smoothed counts corre- 
sponding to cells with "original zeros" are now 
positive and non-zero; however, unlike the  
smoothing shown in Table 2, the smoothed values 
for these cells are not all identical; another conse- 
quence of the row and column constraints. These 
are all improvements to the original smoothing of 
Example 1. Even so, the assumptions that underlie 
the smoothing given by this model can still be 
challenged. Perhaps of most controversy are the 
classification (conditional) probabilities implied 
by the maximum entropy solution. For if hij = 
pi.p.,, then the corresponding Bij (given by hjlpi.) 
is simply the column total P .~ .  In other words, the 
classification probabilities do not differ row-to- 
row (although they do differ column-to-column) 
and are numerically equal to the column proba- 
bility sums-a dubious assertion when applied to 
a photo-classification matrix. Thus, though the 
prior resulting from solution of Equation 12 im- 
proves upon that of Table 2, it is still not an en- 
tirely satisfactory reflection of likely prior knowl- 
edge. 

Further improvements can be effected by the 
same mechanism used above-adding constraints 
to the maximum entropy formulation. Considera- 
tion of the expected properties of misclassification 
matrices in remote sensing applications suggests 
that 

The probability of correct classification, Bii, or 
the diagonal elements of the conditional proba- 
bility matrix ought to be "higher" than off- 
diagonal elements. Absent other specific knowl- 
edge, it is reasonable to assume initially that 
these diagonal elements are all equal, and given 
this assumption, a natural estimate of their com- 
mon value is the observed proportion of cells cor- 
rectly classified. For the data given in Table 1, 
this proportion is (4 + 11 + 25 + 35)/105 or 
0.7143. A constraint that specifies this is 

Absent knowledge to the contrary, it is also rea- 
sonable to assume that misclassification is sym- 
metric. Thus, for example, if 10 percent of 
cornfields are misclassified as soybean fields 
then, under the symmetry assumption, 10 percent 
of the soybean fields are misclassified as 
cornfields (later this condition is relaxed). Math- 
ematically, 
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As before, it is reasonable to require that the prior 
proportion of fields in each category match the 
observed proportion in the data 

% bi = Pi., (19) 

i.e., the row-sum constraint, though in our view 
there is no compelling reason to impose a 
column-sum constraint. 

combfning the above constraints and recasting 
them in X, form, the maximum entropy optimiza- 
tion problem becomes, 

Maximize E = - 1 1 h l n  x,, (20) 

subject to CAii = pi. Vi (row-sum constraint) 
(21) 

A,, = pi.  (x x,JN)  Vi diagonal 
element constraint 

(22) 

hi = X, i f j symmetry constraint 
Pi. 

Numerous computer codes exist which can solve 
non-linear optimization problems such as that 
posed above and (provided feasible solutions 
exist) the problems are well-behaved; that is, the 
domain of feasible solutions is convex, the objec- 
tive function is concave and smooth (see Fiacco 
and McCormick (1968) for one method of solu- 
tion). 

Table 3 shows the solution to the above optimi- 
zation problem in terms of both conditional and 
unconditional probabilities. Shown also are com- 
putations of the maximum entropy and k. Table 4 
shows the resulting smoothed estimates based 
upon the data. Several points are noteworthy: 

In terms of conditional probabilities, the 
maximum-entropy prior allocates the misclassifi- 
cation probability equally among the non- 
diagonal elements. Coupled with the symmetry 
constraint, the effect is to set all non-diagonal 
elements to a common value (0.0952 in this in- 
stance). Diagonal elements are, of course, con- 
strained to be eaual to the common estimate 
0.7143. (See  able 3a.) 
The h, values for the prior sum to specified row 
totals, though column totals differ from the ex- 
perimental data. The entropy of the prior, 2.1843, 
is smallest of all the priors advanced, reflecting 
the additional structure imposed by the con- 
straints. (Note that a prior consisting of only one 
non-zero element, and that equal to unity, would 
have zero entropy.) The R value, 35.3, is largest 
among the priors considered-indeed, the R 
value is negatively associated with the entropy of 
the prior. 
Referring to Table 4, note the effect of the 
smoothing. The conditional probability matrix 
(Table 4b) retains much of the structure of the 
original data matrix (Table lb), but the effects of 
smoothing are also evident; zeros are removed 
and the diagonal elements smoothed towards the 
average fraction correctly classified. 

ASSIGNED CATEGORY 
Woods Pasture Corn Soybeans Subtotal 

(a) CONDITIONAL 
PROBABILITIES, 19, 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(b) RESULTING 
UNCONDITIONAL 
PROBABILITIES, = pi.%, 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(c) ANCILLARY 
COMPUTATIONS 
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Of the  estimates presented thus far, Table 4 ap- 
pears the  most reasonable. But, can  the smoothing 
of Table 4 be further improved? T o  d o  so would 
require more technical knowledge about  the  char- 
acteristics of t he  radar system and  the  response of 
t h e  c rops .  Ce r t a in ly  t h e  m a x i m u m  e n t r o p y  
framework is sufficiently flexible t o  incorporate 
additional prior knowledge. This  is conveniently 
done  with the  constraint set. Several illustrations - - 

are provided below; 

If it were known, a priori, that there were 
"structural zeros" or "logical zeros" in the data 
matrix (e.g., that is was impossible to misclassify 
crop k as crop I ) ,  constraints of the form 41 = 0 
will ensure this result in the smoothed values, if 
true for the data. The objective function (Equa- 
tion 20) is modified by deleting the klth term. 
If misclassification probabilities were known not 
to be symmetric, constraints can be devised to 
incorporate this knowledge. 
Suppose it were known that a confusion potential 
existed within a certain set of crops denoted by 
the symbol A, and within yet another set denoted 
by the symbol B, but that misclassification be- 
tween sets was not possible. Constraints of the 
form, 

would impose this logical structure. Again, the 
objective function is altered to delete requisite 
terms. 
Inequality constraints can also be used to model 

a priori knowledge. If discrimination between 
crops i andj  were known to be at least as difficult 
as between crops k and 1, for example, a con- 
straint of the form 

9, 2 e,, (26) 

would ensure that the prior reflected this knowl- 
edge. If experience suggested that this misclas- 
sification was twice as likely, then the ap opri i! - ate constraint would be OU 3 20k1, etc. Re rring 
to the observed matrix of conditional prob- 
abilities (shown in Table lb), the high misclas- 
sification probabilities for woods as corn or soy- 
beans compared to woods classed as pasture 
might be thought genuine, rather than simply an 
artifact of the data. If so, the misclassification 
probabilities of the prior could be constrained to 
accommodate this belief. 
Prior experience might be limited to more aggre- 
gated knowledge, such as overall estimates of 
misclassification rates expressed as errors of 
comission or omission). For example, the error of 
commision is the probability that a cell is classi- 
fied as type j when it is not j. This quantity is 
given by, 

r r 

1 h, or equivalently 1 OU p,. 
i = l  i = 1  

(27) 

in i  +J 

Constraints that specify upper bounds for Equa- 
tion 27 can be added to the optimization problem. 
Finally, it is possible to place constraints upon 
the final smoothed estimates themselves, i.e., the 

ASSIGNED CATEGORY 
Woods Pasture Corn Soybeans Subtotal 

(a) SMOOTHED 
COUNTS, m*U 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(b) SMOOTHED CONDITIONAL 
PROBABILITIES, 0, 

Woods 
TRUE Pasture 

CATEGORY Corn 
Soybeans 
Subtotal 

(c) SMOOTHED UNCONDITIONAL 
PROBABILITIES, p * ~  

Woods 0.054 
TRUE Pasture 0.003 

CATEGORY Corn 0.008 
Soybeans 0.009 
Subtotal 0.074 

ADJUSTMENT PARAMETERS: 
I? = 35.266 h, as shown in Table 3 



APPLICATION OF PSEUDO-BAYESIAN ESTIMATORS 

m*, values, if appropriate. Incorporation of these 
constraints, however, complicates the mathe- 
matics of the optimization problem because of 
the appearance of K in the constraints. (No such 
problem emerges if K is specified in advance, but 
if K is computed by Equation 5 the constraints 
will contain quadratic forms.) 

All that is necessary to incorporate these is a suffi- 
ciently flexible non-linear optimization computer 
code, prior knowledge, and some imagination. 

UNKNOWN STATISTICAL PROPERTIES OF 

THESE ESTIMATES 

At present, the statistical properties of the re- 
sulting pseudo-Bayesian estimators have only 
been rigorously explored for selected cases. These 
cases, for the most part, are highly idealized and 
simple (see Bishop et al .  (1975))-and, moreover, 
results tend to depend upon the true (but un- 
known) population parameters. In particular, little 
is known about the properties of the constrained 
maximum-entropy priors; though logic suggests 
that if the prior knowledge is accurate, then the 
properties of the estimates ought to compare fa- 
vorably with conventional alternatives. Moreover, 
results from the simple cases examined to date are 
encouraging and suggest that further examination 
will prove fruitful. Of particular interest is the ob- 
served property that the  risk of the  pseudo- 
Bayesian estimates is often appreciably less than 
that of conventional estimates when probabilities 
are significantly different from unity and when the 
dimensionality of the tables increases (Fienberg 
and Holland, 1970). So, even though the original 
rationale for these estimates centered on the dif- 
ficulties occasioned by zero counts, these es- 
timators may be much more broadly useful. In any 
event, few would argue against the wisdom of re- 
flecting all prior knowledge in the development of 
these estimates. 

The ideas advanced herein for generating prior 
distributions have theoretical and practical justifi- 
cation and, at least with the aid of computers, are 
easy to implement. But only time and further work 
will prove the worth of these estimators. In partic- 
ular, it would be interesting to compare the meth- 
ods suggested here with some of those suggested 
in Glick (1978 and referenced papers). It is partic- 
ularly appropriate to close with a quote from this 
paper, 

"The task of estimating probabilities of correct clas- 
sification confronts the statistician simultaneously 
with difficult distribution theory, questions in- 
tertwining sample size and dimension, problems of 
bias, variance, robustness, and computation costs. 
But coping with such conflicting concerns (at least 
in my experience) enhances understanding of many 
aspects of statistical classification-and stimulates 
insight into general methodology of estimation." 

Remote sensing specialists are encouraged to ex- 
amine these ideas and follow developments in this 
area. 
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