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Aerial Survey Design: A 
Systems-Analytic Perspective 

Explicit analysis enables selection of improved survey designs. 

INTRODUCTION 

T HERE ARE MANY articles and texts that introduce 
remote sensing and explain both practical and 

technical aspects of the design and execution of an 
aerial survey. The American Society of Photogram- 
metry's Manual of Photogrammetry and Manual of 
Remote Sensing contain relevant material as do books 
by Lintz and Simonett (1976) and Sabins (1978). 
From time-to-time, articles on the relative costs and 
efficiency of aerial survey and analysis options have 
also appeared (e.g., Ulliman, 1975; Maxim and 
Cullen, 1977; Ferguson et al., 1981; and Stephens 
et al., 1981). However, these papers are highly spe- 
cialized. There is a dearth of material that addresses 

ested in multispectral coverage, and the survey 
sponsors want their questions answered at reason- 
able cost. The key element of a successful survey is 
how these considerations are integrated into an ef- 
fective design. 

In this context the task of the systems analyst is 
to help sort through manifold design options, and 
technological and operational alternatives, etc., in 
order to integrate these into an overall plan that 
accomplishes the survey objectives efficiently. Useful 
general descriptions of systems analysis are those of 
Kahn and Mann (1956), Quade (1967), Quade and 
Boucher (1968), Churchman (1968), Kaufmann 
(1968), Breipohl (1970), and Fisher (1974). 

ABSTRACT: In recent years there has been a progressively greater emphasis on the 
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dates, and (5) selection of a final survey plan. Though both mathematical and 
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provide a conceptual framework for understanding the design process. 

the more general design questions from a systems- STEPS IN THE PROCESS 
analysis perspective (see, however, work of Phil- 
ipson (1980)). This approach can be useful in survey Broadly, the job of the systems analyst in survey 

design. design can be described by the five steps shown 
following: 

At the outset it should be noted that there are 
diverse perspectives to aerial survey design. The 
photointerpreter, for example, might wish multiple 
target images from various access geometries, sun 
angles, stereo coverage, absence of hot spots, etc. 
The survey pilot wants straight flight tracks, con- 
stant and safe altitudes, and flexible "time-windows" 
for imaging. Remote sensing specialists are inter- 
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Identifying the survey objective(s) and stating it 
(these) in precise terms, 
Enumerating the possible alternatives for survey 
design, 
Screening these alternatives to select good candi- 
dates forldetailed analysis and comparison, 
Evaluating these candidates for cost and effective- 
ness, and finally, 
Selecting the best option(s) for consideration and 
implementation. 
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These are discussed below. 

First, the need to identify the survey objective(s) 
is both obvious and important. It is important be- 
cause, along with cost, it is one of the principal cri- 
teria by which a survey design is judged. Survey 
designs that are efficient for some objectives need 
not be efficient for others. In sampling a stratified 
population, for example, if the objective is to max- 
imize the  number of discovered "objects of in- 
terest," only those areas most likely to contain these 
objects should be selected;' yet this design would 
not provide information on other areas nor the pop- 
ulation as a whole. Even when there is general 
agreement on the overall survey objectives, fine 
points can have significant leverage on choice of de- 
sign. Maxim and Harrington (1982a), for example, 
present a discussion of optimal designs for aerial 
surveys taken at two time periods. Designs that 
maximize the precision of these estimated period- 
to-period changes require examination of the same 
(i.e., matched) quadrats in both time periods and 
differ from those designs that maximize the preci- 
sion of the current period's estimate. Other exam- 
ples are presented later. Objectives, therefore, need 
to be stated as precisely as possible; care is required 
in translating broad statements of objectives into 
useful operational criteria or measures of effective- 
ness. 

The definition of objectives is facilitated if the im- 
portant sources of error of the survey are identified 
beforehand. Table 1, for example, shows the general 
types of errors relevant to aerial surveys of agricul- 
ture and how these errors are quantified and mea- 
sured. Some of these errors may be large while 
others may be sufficiently small to be disregarded. 
The contribution of these errors to various survey 
objectives is important. For example, an overall 
survey objective might require high precision for 
the final estimate of regional agricultural produc- 
tion. But often sub-objectives are also relevant, such 
as the precision of estimates for various geographic 
subdivisions. In addition, the precision of interme- 
diate estimates such as hectareage or agricultural 
yield may be relevant to survey goals and, if so, 
should be reflected in the statement of objectives. 

A definition of survey errors (as shown on Table 
1) is often helpful for structuring the search for al- 
ternatives and screening and evaluating these alter- 
natives, the next steps in systems analysis. A common 
mistake in survey design is a premature specifica- 
tion and fixation on only a few alternatives, fore- 
closing consideration of other (possibly more attrac- 
tive) choices. There are almost always alternatives 
to any proposed design and, within limits, the more 
of these considered the better. It is convenient to 
think of alternatives in several functional categories: 
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choice of platforms and sensor(s); exploitation tech- 
nology (e.g., manual versus automated interpreta- 
tion); statistical sampling schemes; statistical esti- 
mation (scale-up or classification) methodology; and, 
finally, such issues as survey timing and other op- 
erational details. Choices within each of these cat- 
egories often have a hierarchical or tree-like struc- 
ture. Figure 1 illustrates this with a partial list of 
statistical sampling options. Similar charts can be 
prepared for options in each of the other functional 
categories. Taken together, these options have a 
multiplicative or combinatorial quality. For ex- 
ample, if there are only six choices within each of 
seven categories, there are 6' or nearly 280,000 
choices in all. It is, therefore, necessary to reduce 
the number of alternatives to a managable set for 
further detailed evaluation. This screening process 
can also be systematized by identifying and applying 
relevant criteria of choice for comparison of alter- 
natives. 

In some cases there are hard-and-fast survey 
specifications that must be met, and these con- 
straints can be used to eliminate certain alternatives 
from consideration. From the viewpoint of the in- 
dividual user, for example, Landsat's frequency of 
access is not a decision variable. If the survey ap- 

plication absolutely required more frequent access 
than is provided by Landsat, this option could be 
deleted (though composite strategies including data 
from several sensors might be viable). Likewise, long 
time lags for image receipt and processing might 
prevent use of a given option, etc. This all falls under 
the rubric of deleting infeasible alternatives. 

Dominance arguments can sometimes be invoked 
to eliminate alternatives. One alternative is said to 
dominate another if, considering all relevant attrib- 
utes, it is at least as good or better in every respect. 
For example, it is generally true that optimal stra- 
tified sampling plans result in a higher survey pre- 
cision than those which use simple random sampling 
(though the differences can sometimes be small; see 
Cochran (1977) for examples where detection and 
identification errors are not considered). If the costs 
of the additional complexity of design and analysis 
are minimal, and if sufficient information is at hand 
to design a stratified plan, it follows that simple 
random sampling can be omitted from consider- 
ation. Likewise, color or color-infrared imagery is 
superior to panchromatic imagery for many appli- 
cations involving detection and identification of veg- 
etation (though costs may differ) and the black-and- 
white alternative can be eliminated. 

I lmi  _ I C Y  W A U  I L L Y S T U T O E  AND NOT N E C E S S U I I I  MITUALLY EXCLUSIVE NOR COLLEmXVELi - U S T n l .  I 
FIG. 1. A partial list of statistical sampling options for survey design. 
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Figure 2 shows the relevant steps in the design 
of an aerial survey, possible criteria for choice, and 
a partial listing of options and other details. The 
inputs shown to the left of the steps also imply rel- 
evant screening criteria. To illustrate, the first step 
given in Figure 2 refers to the specification of a 
sampling plan. Possible options are shown to the 
right, while relevant considerations and inputs are 
shown to the left. One criterion shown on this figure 
is the availability of exogenous information. As noted 
by Maxim (1982) exogenous or prior information can 
be used to develop efficient sampling plans, identify 
improved estimators, determine hybrid estimation 
schemes, and check the plausibility of survey esti- 
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mates. Each sample design (e.g., stratified random 
sampling, two-stage sampling) has unique informa- 
tion requirements, however, and lack of the requi- 
site prior knowledge serves to limit choices. To de- 
velop an optimal stratified sampling plan, for ex- 
ample, requires knowledge of, among other things, 
the areal extent of each stratum and estimates of the 
strata means and variances. If these are not known 
(at least approximately), then a stratified plan cannot 
be employed and the set of options is narrowed. 
Space constraints do not permit an extensive dis- 
cussion of Figure 2, but it summarizes many rele- 
vant considerations in survey design. 

One of the interesting choices highlighted in 
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FIG. 2. A systems-analytic overview of steps in the development and execution of 
an aerial survey. 
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Figure 2 is the question of whether to sample or 
take a complete census of the population; or possibly 
to do both. For many purposes (e.g., mapmaking), 
a complete survey or census is required. For others, 
such as crop production estimates, a sample may 
offer s&cient precision at lower cost. For yet others, 
the choice of sample versus survey cannot be re- 
solved beforehand, and a composite or sequential 
strategy merits consideration. Lamb (in Johannsen 
and Sanders, 1982) provides an example in this latter 
category. Lamb describes the use of low-altitude ae- 
rial photography to identify problem agricultural 
areas in the southern part of the Columbia River 
Basin. Specifically, low-altitude color-infrared aerial 
photographs can be used to detect a variety of prob- 
lems (e. g., irrigation sprinkler malfunction, over- 
fertilization, poor fertilizer distribution, improper 
spraying, soil problems, etc.) in center-pivot irri- 
gated farming areas. Detection of one or more of 
these problems in a given field enables corrective 
action to be taken, preventing later yield losses. In 
a real sense, each detected problem is worth money, 
and a simple model, shown in footnote 2, can be 
used to compute the profitability of an aerial survey. 
The actual survey, incidentally, is a census, not a 
sample. But a key factor in the profitability equation 
is the number of "problem pivots" in the farm-too 
low a number implies that the costs of the survey 
outweigh its savings. This number may not be known 
beforehand-an observation which suggests a com- 
posite or sequential strategy. That is, conduct a pre- 
liminary survey based on only a sample of fields in 
order to estimate this quantity and, if "sufficiently 
high," fly a complete census; otherwise, defer any 
action to a later cycle when this series of actions is 
repeated. Where feasible, such sequential strategies 
merit consideration. 

Once the screening step has been completed, 
more detailed evaluation of the remaining survey 
alternatives can be undertaken. Mathematical and 
statistical models of the estimation logic and survey 
error propagation are essential for this detailed eval- 
uation. Work by Bauer et al. (1978), Frazier and 
Shovic (1980), Todd et al. (1980), Hixson et al. (1981), 
Maxim et al. (1981 a, b, c, 1982 a, b), Maxim (1982), 
and Cochran (1977) serve as examples. Several uses 
of such models are illustrated here. The next sec- 
tions cover some important issues to be examined 
as part of the evaluation step. 

A basic question to be answered early in the de- 
sign of any aerial survey is, "How much precision 
is required?' Generally, the precision of an aerial 
survey can be increased if more resources are ex- 
pended. More and better sensors can be employed, 
sophisticated image-enhancement techniques can be 
used, the scale of the imagery can be altered, the 
size of a statistical sample can be increased, etc. 
However, a basic principle governs these choices: 

Increases in survey effort or expenditure often bring 
about less-than-~ro~ortional increases in survey 
precision. This is a well known result for sampling: 
Figure 3 illustrates this square root dependence. In 
this illustration, "objects of interest" are being 
counted in an area subdivided into 1000 quadrats- 
identification errors are neglected and curves are 
presented for two assumed values of the detection 
probability. For the numerical assumptions shown, 
a sample size of 40 quadrats is sufficient to estimate 
the total number of objects in the ~ o ~ u l a t i o n ,  T, to 
within about 25 percent (i.e., aTIT = 12.5%) if the 
detection probability p = 0.2 and there is no mis- 
cla~sification.~ Doubling the sample size increases 
the precision to within about 18 percent-an im- 
provement to be sure, but not a doubling of preci- 
sion (halving of the standard error of the estimate). 
Economists term this "diminishing marginal re- 
turns'' (DMR). Experience suggests, however, that 
this DMR effect is not limited to sampling laws alone, 
but applies more broadly (see also Slater (1980) for 
additional perspective). Thus, it is of central impor- 
tance to establish targets for survey precision early 
in the design effort. 

Setting targets for survey precision requires careful 
thought about the objectives of the survey and the 
consequences of imprecise estimates. It is often a 
matter of judgment, though explicit models can be 
used in some cases (e.g., discussions on "the value 
of information" in texts on decision theory such as 
Raiffa (1977)) to structure this judgment. At a min- 
imum, it is worthwhile to compute curves, such as 
those shown in Figure 3, to enable "the price of 
precision" to be known. This is a convenient starting 
point for thinking about how much precision is re- 
quired, particularly when the x axis is converted to 
units of survey cost rather than sample size. 

It is often true that survey precision per se is not 
the relevant measure of effectiveness. Rather, the 
value of the information is what is really at issue. 
Nelson (1981), for example, did an interesting study 
of the use of Landsat (specifically the ratio of band 
7 to band 5) for monitoring forest canopy defoliation 
by gypsy moths. A major research question was the 
optimal time for such a survey. If the survey was 
conducted "too early" in the season, little detectable 
defoliation had occurred. If the survey was "too late," 
refoliation may have occurred and infestation was 
again difficult to detect. Nelson found that June was 
an optimal time for detection. But suppose that, 
following the survey, some corrective action (e.g., 
spraying) was planned. It is reasonable to suppose 
that the benefits of spraying would be greater if the 
infested trees were detected earlier. This consid- 
eration might alter the optimal survey timing sub- 
stantially. The survey user might well prefer a less 
precise answer earlier in the season than a highly 
accurate estimate after considerable damage had 
been done. These statements are not intended to 
be critical of Nelson's analysis. If no corrective ac- 



. U - 1WO Q M W S  I N  TEE 
r n P W 1 O N  . - -EX OF QMWS m 
BE EXUIlsBD. A DECISION 
VMIASLB . " - 22 OhlECTS PEP. Q M W  . 0 - 14.7 . FINITE r n P m T I o n  ~ W C T I O W  . m MSCll88IFICATION Enms . D ~ E C T I O N  P B o w n l n E s  AS 

0 5 0  1 0 0  

S M L E  SIZE BBQUIRXD 
TO PROVIDE EQUIVALENT 
PUCISIOII TO a*se WE 

FIG. 3. A basic characteristic of sampling problems--di- FIG. 4. Parametric Analysis characterizes trade-off possi- 
minishing marginal returns. bilities. 

tion is contemplated or if timely information is not 
essential, then maximizing detection probabilities is 
a reasonable basis for survey scheduling. 

As a second example, the United Nation's Food 
and Agriculture Organization has initiated a pilot 
project on the use of remote sensing to detect areas 
where locusts might breed. As a recent article (The 
Economist, 1982) notes, "There is no mystery in 
predicting where and when locusts are going to 
breed: dry areas where there has just been heavy 
rainfall. But speed is essential. Locusts start breeding 
within days of a triggering fall of rain." Both re- 
sponse time and accuracy are important in this ap- 
plication. 

These are examples of the sense in which the 
~ h r a s e  "information worth versus lead time" is used 
in Figure 2. 

Setting forth information as shown in Figure 3 
suggests other relevant issues. This figure details 
replicate computations at two assumed detection 
probabilities, p = 0.2 and p = 0.5. As noted for p 
= 0.2, a sample size, n, of 40 quadrats result in a 
precision of about plus or minus 25 percent. But, if 
p were raised to 0.5, as a result of some technolog- 
ical improvement, a sample size of only slightly more 
than 30 would produce equivalent precision. It ul- 
timately becomes a matter of relative cost which of 
the two alternatives is more efficient. Here savings 

in sampling effort are balanced against the (presum- 
ably) higher cost of employing a technology with a 
higher detection probability. Sample size is being 
"traded-off' against detection probability. While the 
existence of this trade-off is independent of other 
factors, the magnitude of the exchange depends upon 
the characteristics of the population: in this case 
specifically, the ratio of u2/p. Here u2 is the variance 
in number of objects per quadrat and p the mean 
number of objects per quadrat. If the population is 
more homogeneous (i.e., u2/p is smaller), sampling 
errors (which can be reduced by examining more 
quadrats) are less important than detection errors. 
This is shown in Figure 4 by plotting the detection 
probability sample size trade-off for various values 
of the ratio u2/p. Note that as u2/k &creases, the 
potential sample size savings associated with higher 
detection probabilities increases. This example also 
shows why it is difficult to establish rules-of-thumb 
that are sufficiently general to be useful; efficient 
survey design is often "application-specific." 

A second example of a trade-off is furnished by 
an application studied by Best et al. (1982). They 
considered the problem of estimating the number 
of Canada geese on the mainstem reservoirs of the 
Missouri River in central South Dakota during the 
annual fall migration. Low-altitude daylight aerial 
photography offered high detection probabilities for 
geese, but the birds feed in agricultural areas sur- 
rounding the reservoirs during the day, increasing 
the aerial coverage necessary for estimation pur- 
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poses (and possibly lowering bird-concentration-de- 
pendent detection probabilities). At night the geese 
rest on the reservoirs, and thus present a more at- 
tractive "target" for imaging, but only by less ca- 
pable sensors (thermal imaging). This application 
likewise requires a trade-off to find the right com- 
promise between detection and sampling errors. This 
example is also instructive because it shows an in- 
teraction between the characteristics of the popu- 
lation being studied and the array of feasible sensor 
systems. 

The first example directly above illustrates the 
utility of simple calculations, and their underlying 
mathematical statistical models. The problem de- 
scription implied that technological alternatives with 
higher detection probabilities were available. In 
practice, it might not be known what these are or 
even if they exist. Still, it is instructive to ask "what 
if?' For the problem posed originally, these com- 
putations would save a fruitless search for improved 
sensors. If the population parameters were dif- 
ferent, however-say a ratio a2/p of 2.5 or less-the 
potential gains of high detection-probability options 
would be more attractive and the search for such 
options may be justified. 

The term "sampling error limited" is used to de- 
scribe this situation. Loosely, this means that the 
contribution of sampling error to total error is high. 
In other surveys, detection or identification may be 
the critical process; these are said to be "detection 
limited" or "identification limited." Note that this 
condition is a function of the values of all of the 
variables. In the example's base case, the detection 
probability is only 0.2; yet sampling error and not 
detection error is controlling because of the large 
value for a2/p. 

The example shown in Figure 4 illustrates trade- 
offs among error sources. Here detection error is 
being exchanged for sampling error. This is a 
common (though not always recognized) situation in 
aerial survey design. Lillesand et al. (1981), for ex- 
ample, investigated various approaches for detec- 
tion of Dutch Elm disease. Their approach was to 
use 1:6,000 scale imagery taken in early May (when 
leaves were off the trees) to identify elm trees and 
prepare a base map. This was compared with im- 
agery taken in mid-season (25 July) when the health 
of these trees was inferred from various photo- 
graphic signatures. Mid-season photography was not 
used for identification of elms because "accom- 
plishing these tasks with leaf-on images is much more 
difficult given overlap between crowns and the sim- 
ilar appearance of elms and other species." For a 
fixed imagery budget, however, using observations 
at two time periods might not be possible or the 

size of the sample that can be taken in mid-season 
might have to be reduced. That is, identification 
error is reduced but sampling error is increased- 
another trade-off between errors in an aerial survey. 
In their published work Lillesand et al. did not 
present data showing the merits of this trade-off, 
presumably because the answer was believed self- 
evident. The objective of this example is not to take 
a contrary position, but rather to indicate the per- 
vasive, and sometimes subtle, nature of possible 
trade-offs or "latent options." 

In agricultural surveys the trade-off between er- 
rors in estimating hectareage and yield may be worth 
exploring. Total production of a crop is the product 
of the number of hectares with the yield per hec- 
tare. The variance of the estimate of total production 
is a function of the variances of each of the estimates 
of hectareage and yield. In some cases, agricultural 
yield is exogeneous to the survey and, therefore, 
not a design option. If the uncertainty in this exo- 
geneous yield estimate is known, it can be used to 
compute the resulting uncertainty in production. 
But, in other cases yield estimation is an integral 
part of the survey effort. If yield measurement is 
part of the survey, then it consumes resources which 
might be otherwise allocated, and the concept of a 
trade-off between yield and hectareage errors is rel- 
evant. Overall, survey precision can be improved 
by increasing the precision of either the hectarage 
or the yield estimate. The trade-off occurs because, 
if total survey effort is held constant, any increase 
in the precision of one estimate may only come about 
at the expense of a decrease in the precision of the 
other. 

In the trade-offs presented thus far, it is possible 
(in principle at least) to select a best design by eval- 
uating the costs of various alternatives described by 
the trade-off curves (survey precision held con- 
stant). There are circumstances, however, where this 
is more complex. Such is the case if there is more 
than one survey objective. As noted earlier, survey 
designs that are optimal for one objective often differ 
from those that are optimal for another, and thus 
the objectives themselves need to be balanced in 
survey planning. 

Table 2 shows an example of a stratified sampling 
plan that illustrates this point (Maxim, 1982). The 
plan in this illustration was designed to select the 
number of quadrats to be sampled in each of three 
strata in order to maximize the precision of the es- 
timated total number of objects in the survey pop- 
ulation. For a sample size of 100 quadrats, the re- 
sulting precision of the estimate of the population 
total (as measured by the proportional error, ~ ~ 1 2 ' )  
is 5.5%.4 (Note the improvement offered by this 
sampling plan over simple random sampling of the 
same population shown in Figure 3.) 

Column 10 of Table 2 shows the proportional error 
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for estimation of each stratum total. In particular, 
the proportional error for stratum 3 is 18.3 percent. 
Holding the design, strata definitions, and number 
of strata fixed, the proportional error in stratum 3 
can be reduced by increasing the number of quad- 
rats sampled from this stratum, denoted by n,. But 
this choice increases the proportional error in the 
other strata, as well as that of the estimated popu- 
lation total. Figure 5 shows these points graphically. 
If, for example, n, were to be increased to from 36 
to 60, the optimal values for nl and n2 would shift 
to 19 and 21, respectively; the proportional error in 
stratum 3 would be reduced to 14.2 percent, but 
those for strata 1 and 2 would increase to 13.8 per- 
cent and 7.4 percent, while the overall proportional 
error would increase by nearly 11 percent, from 5.5 
percent to 6.09 percent. Which plan is best depends 
upon how the various objectives are weighted-a 
trade-off not resolved by cost considerations directly 
because survey effort is held constant among these 
options. This example further illustrates the impor- 
tance of precise stipulation of survey objectives and 
measures of effectiveness. 

The above advice to specify objectives carefully 
is sound and important, particularly if survey efi- 
ciency is critical. But, as a practical matter, it is not 
always possible to be so explicit. Many surveys have 
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FIG. 5. Trade-offs in stratified sampling. 
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a strong research component, and survey objectives 
are less clear cut and emerge only gradually as the 
data are analyzed. In terms of the above example, 
stratum 3 may only become "interesting" after some 
of its characteristics are discovered. A better ap- 
proach in this case is to abandon the search for a 
"perfect" survey design (in terms of any one objec- 
tive) and settle instead on a survey design which is 
acceptable for many objectives. Robust designs, as 
they are called, reflect exactly this idea. Central to 
the construction of robust designs are a series of 
computations to evaluate the design efficiency in 
terms of several candidate objectives. This is an- 
other way in which the computations summarized 
in Figure 5 can be used. According to these com- 
putations, "small" increases in the precision of the 
estimate for stratum 3 can only be purchased at the 
expense of "large" decreases in the precision of other 
estimates (when survey effort is held constant); per- 
haps an unacceptable exchange. Graphs such as 
Figure 5 help the analyst to see the consequences 
of these options and make informed choices. 

Many structural, logical, and numerical assump- 
tions underlie the choice of survey design and anal- 
ysis techniques. Logical assumptions about the na- 
ture of measurement error, for example, affect the 
appropriate models for analysis (independencelde- 
pendence of detection outcomes, whether or not 
detection or identification are size-dependent, how 
detection probabilities increase with the number of 
looks, etc.). Numerical assumptions often underlie 
the choice of sampling design (e.g., population sta- 
tistics and u2 are used directly in determination 
of the optimal sample size for each stratum if a strat- 
ified sam~le  is selected extra~olation methodoloev) -, , 
and specLfic scale-up equatioAs (e.g., detection and 
identification probabilities as used in scale-up for- 
mulas), to cite just two instances. Some of these 
inputs may be known exactly, but most have varying 
degrees of uncertainty. As well, not all assumptions 
are of equal importance to the choice of survey de- 
sign or analysis technique. 

Sensitivity analysis is the name given to a system- 
atic procedure for evaluating the leverage of uncer- 
tain assumptions on the decisions at hand. In its 
simplest form a sensitivity analysis can be conducted 
by varying each of the numerical inputs by a stated 
amount (e.g., 10 percent, 20 percent) and noting 
the changes in the relevant decision variables or 
measure(s) of effectiveness. In this way, assumptions 
can be rank-ordered in terms of importance. Special 
attention can be accorded critical assumptions and, 
in some cases, validation experiments can be in- 
cluded as part of the survey plan. Alternatively, 
survey designs and analysis techniques can be se- 
lected that, though not necessarily optimal given 
complete information, are more robust to misinfor- 

mation. The importance of sensitivity analysis cannot 
be overstated. 

The last step in the survey planning process is the 
selection of the final survey and analysis plan from 
among the best alternatives. This work includes the 
obvious tasks of translating the survey data into req- 
uisite estimates and their associated precision. But 
it should also include a program of monitoring the 
results as they become available. Monitoring activ- 
ities often include: 

Validation checks of important assumptions where 
these can be made. For example, a simple scale- 
up rule for crop estimation in a multi-crop envi- 
ronment might assume that there are only two 
crops; the crop of interest and "4 others." If mis- 
classification probabilities among these other crops 
are constant and/or if the mix of other crops is 
constant, the two-crop representation is adequate 
and subsequent interpretation effort can be sim- 
plified. The adequacy of the two-crop representa- 
tion can be tested as part of the survey. 
Exploiting early returns to sh$t collection em- 
phasis. Unexpected rainfall or temperatures during 
the growing season of a crop, for example, may 
result in a different geographic distribution of crop 
production for that year and hence a need to re- 
evaluate sampling plans. The discovery of a prom- 
ising mineral "target" in an area to be explored 
might alter the subsequent search strategy. Ob- 
viously, the feasibility and utility of sequential 
strateg~es varies among specific applications but (as 
noted earl~er) these are worthy of consideration. 
Exploiting early returns to sh$t analysis emphasis. 
There are circumstances where the imagery ac- 
quisition plan cannot readily be altered (e. g., with 
Landsat). but the exploitation and analysis plan can 
be adjusted in response to the survey data-1n two- 
stage sampling, for example, the sampling frame 
may consist of "large" quadrats which can be fur- 
ther divided into several "small" quadrats. If data 
analysis indicates that the objects of interest are 
fairly evenly distributed over small quadrats within 
a large quadrat, but appreciable differences exist 
among large quadrats, then it may be optimal to 
select only a few small quadrats within each large 
quadrat. The exploitation effort "saved by this 
cluster sampling procedure can be better "spent" 
by examining a greater number of large quadrats. 
(See Cochran (1977) for applicable models absent 
detection or identification errors.) 

Though unexpected results can always occur in the 
survey-analysis phase, it is wise to do as much pre- 
planning as possible. A well-structured analysis plan 
can anticipate many contingencies. 

Key features of the approach described here in- 
clude: 
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Explicit-Models that underlie analysis often force 
consideration of relevant issues. Assumptions are 
made explicit and can be more readily examined 
and challenged. 
SystematicThe process of structured search for 
improved design alternatives is highly systematic. 
This lowers the likelihood that efficient alterna- 
tives will be overlooked. 
Efficient-The systems analysis approach cap- 
tures, however imperfectly, both the benefits and 
costs of design alternatives. There is at least a guar- 
antee of efficiency over the set of alternatives con- 
sidered (sub-optimization). 
Verifiable-Some of the analytic computations are 
verifiable. Explicit computation of the final preci- 
sion (or other measure(s) of effectiveness) of the 
survey is possible. The sensitivity of the computed 
measure(s) of effectiveness to various assumptions 
can be evaluated and many of these assumptions 
can be tested. 

George S. Morrison, in discussing the planning 
for the so-called Culebra Cut, a famous and difficult 
part of the Panama Canal, remarked that: "It is a 
piece of work that reminds me of what a teacher 
said to me when I was in Exeter over forty years 
ago; that, if he had five minutes in which to solve a 
problem, he would spend three deciding the best 
way to do it," (see McCullough, 1977)-a sentiment 
echoed here. 

Notwithstanding the above, the relative text area 
allocated to the design and execution phases of the 
survey shown on Figure 2 reflects the emphasis of 
this paper, not an estimate of the resources that 
should be allocated to each phase. As with other 
activities, the depth and extent of analysis is subject 
to trade-offs. An elaborate and expensive survey may 
justify substantial planning and analysis in search of 
efficiency gains, but it must be remembered that 
these activities are a means to an end-and not ends 
themselves. Such effort need not be elaborate in 
order to be useful, and it is important not to confuse 
the scale of analysis with the content of analysis. 
Even simple analyses can address the relevant is- 
sues. 

The authors wish to thank Ms. Mary Kennedy, 
Dr. Nancy David, and Dr. James Campbell for stim- 
ulating discussions and comments on this topic. Fi- 
nally, the reviewers offered many constructive com- 
ments that improved the focus and clarity of this 
paper. 

1. This assumes that the sample size is smaller 
than the number of quadrats in the richest stratum, 
and that detection probabilities are constant across 
all strata. If not, other strategies may be best. Prob- 
lems of this sort are in the domain of what is called 
"search theory"-a sophisticated and well-devel- 
oped branch of operations research. For interesting 

geological examples see Koopman (1956-1957), 
Brown (1960), and Koch and Link (1980). 

2. Let N be the number of center-pivot irrigated 
fields in a region, f the number of frames of imagery 
required for a census, p the average number of 
problems per field (presumably significantly less than 
l) ,  o the "worth" of a detected problem, F the fixed 
cost of a photo-mission, and c the average acquisi- 
tion and exploitation cost per frame. Then, the 
"profit" of an aerial census, H, is 

n = "Revenues" - Costs 

A necessary and sufficient condition for H to be pos- 
itive is 

F + cf 
07. 

It should be noted that the sequential option dis- 
cussed in the text is only one strategy for estimating 
p. Over time, historical data may be used to esti- 
mate p or alternatively to estimate survey timing. 
Lamb (1982) apparently chose the latter approach, 
flying photo-missions every week during the growing 
season. Depending upon the values of the various 
cost factors and the size of the farm, this may be a 
preferred strategy; models can describe this choice. 

3. The equation for the variance of the estimated 
total, ui2, is given by 

where N = number of quadrats in the population, 
n = number of quadrats in the sample (as- 

sumed small relative to N), 
p = mean number of objects per quadrat, 
u2 = variance of the number of objects per 

quadrat, and 
p = detection probability. 

Several assumptions underlie this model (Maxim et 
al . ,  1981b). 

4. The variance of the estimated total, uT2, from 
a stratified sampling plan (given some simplifying 
assumptions) is 

where the subscript j refers to the stratum. Other- 
wise, the terms are as defined in footnote 2. The 
design that minimizes this variance for a fixed 
number of quadrats to be sampled, n, is given by 

See Maxim et al. (1981~) for details. 

Bauer, M.  E., M. M. Hixson, B. J. Davis, and J. B. Eth- 
eridge, 1978. Area Estimation of Crops by Digital 



AERIAL SURVEY DESIGN: A SYSTEMS-ANALYTIC PERSPECTIVE 

Analysis of Landsat Data, Photogrammetric Engi- Maxim, L. D., L. Harrington, and M. Kennedy, 1981a. 
neering and Remote Sensing, Vol. 44, No. 8, pp. 1033- A Capture-Recapture Approach For Estimation of 
1043. Detection Probabilities in Aerial Surveys, Photogram- 

Best, R. G., R. Fowler, D. Hause, and M. Wehde, 1982. metric Engineering and Remote Sensing, Vol. 47, No. 
Aerial Thermal Infrared Census of Canada Geese in 6, pp. 779-788. 
South Dakota, Photogrammetric Engineering and Re- Maxim, L. D., H. D. Weed, L. Harrington, and M. Ken- 
mote Sensing, Vol. 48, No. 12, pp. 1869-1877. nedy, 1981b. Intensity Versus Extent of Coverage, 

Briephohl, A. M.,  1970. Probabilistic Systems Analysis, Photogrammetric Engineering and Remote Sensing, 
John Wiley and Sons, New York. Vol. 47, No. 6, pp. 789-797. 

Brown, A. A., 1960. Search Theory and Problems of Ex- Maxim, L. D., L. Harrington, and M. Kennedy, 1981~. 
ploration ~ ~ i l l i ~ g ,  ~ ~ l l ~ t i ~  of the ~ i ~ ~ ~ ~ l  zndustries Alternative Scale-Up Estimators for Aerial Surveys 
Experimental Station, Pennsylvania State University, Where Both Detection and Classification Errors Exist, 
No. 72, pp. 33-37. Photogrammetric Engineering and Remote Sensing, 

Churchman, C. W., 1968. The Systems Approach, Dell Vol. 47, No. 8, pp. 1227-1239. 

Publishing Company, New York. Maxim, L. D., and L. Harrington, 1982a. Scale-Up Es- 
Cochran, G., 1977. Sampling Techniques, Third Edi- timators With Size-De~endent 

tion, John Wiley and Sons, New York. Detection, Photogrammetric Engineering and Remote 
Sensing, Vol. 48, No. 8, pp. 1271-1287. 

Ferguson, E. L., D. G. Jorde, and J. J. Sease, 1981. Use 
of 35-mm Color Aerial Photography to Acquire Mal- - , 198213. To Mix or Match: Quadrat Selection in 

lard Sex-Ratio Data, Photogrammetric Engineering and Aerial Surveys, Photogrammetric Engineering and 

Remote Sensing, Vol. 47, No. 6, pp. 823-827. Remote Sensing Vol. 48, No. 12, pp. 1863-1868. 

~ ~ ~ h ~ ~ ,  G, H., 1974, Cost Considerations in Systems McCullough, D., 1977. The Path Between the Seas, Simon 

Analysis, American Elsevier, New York and Schuster, New York, New York, p. 314. 

Frazier, B, E., and H, Shovic, 1980. Nelson, R. E,  1981. "Defining the Temporal Window for 

for Determining Land-Use Change with Aerial pho- Using 

tographs, Photogrammetric Engineering and Remote LANDSAT," Technical Papers, The American Society 

Sensing, Vol. 46, No. 8, pp. 1067-1077. of Photogrammetry, 47th Annual Meeting, Wash- 
ington, D.C., pp. 367-382. 

Hixson? M. M' ,  B' J' Davis, and M' E' Bauer, lg8'' Sam- philipson, W, R,, 1980. problem Solving by Remote Sens- pling Landsat Classifications for Crop Area Estima- 
tion, Photogrammetric Engineering and Remote Sens- ing, Photogrammetric Engineering and Remote Sens- 

ing, Vol. 47, No. 9, pp. 1343-1348. ing, Vol. 46, No. 10, pp. 1335-1338. 

~ ~ h ~ ,  H, ,  and I. Mann, 1956, Techniques Systems Qua& E. S .  (Editor), 1967. Analysis For Military Deci- 

Analysis, The Rand Corporation, RM-1829-1 (DDC sions' Rand McNally & CO', Chicago' 

NO. AD-123512), Santa Monica, California. Quade, E. S . ,  and W. I. Boucher (Editors), 1968. Systems 

Kaufmann, A., 1968. The Science of Decision Making, Analysis and Policy Planning: Applications in De- 

McGraw-Hill, New York. fense, American Elsevier, New York. 

~ ~ ~ h ,  G, S, ,  Jr,, and R, F, Link, 1980, Statistical Analysis Raiffa, H. 1970. Decision Analysis; Introductory Lectures 

of Geological Data, Vol. 11. Dover Publications, New O n  Choice Under Uncertainty7 Addison-Wesley, 

York, p. 223 et seq. Reading, Massachusetts. 

Koopman, B, 0., 1956-57. The Theory of Search, Journal Sabins, " ", lg7" Remote and Inter- 

of the operations Research Society ofAmerica, Val, pretation, Remote Sensing Enterprises, La Habra, 

4, pp. 324-346, pp. 503-531, Vol. 5, pp. 613-626. California. 

Lamb, E G., 1982. Agricultural Uses of Low Altitude Ae. 'later, P' N',  Sensing-O~tics Optical 
rial Photography, in Chapter 34 of C,  J, Johannsen AddisOn-Wesle~ 

and J. L. Sanders, Remote Sensing for Resource Man- Reading' Massachusetts, p' 14' 

agement, Soil Conservation Society of America, An- Stephens, P. R., D. L. Hicks, and N. A. Trustrum, 1981. 
keny, Iowa. Aerial Photographic Techniques for Soil Conservation 

Lillesand, T. M., D. E. Meisner, D. W. French, and W L. Research' Photogrammetric Engineering and 
Johnson, 1981. Evaluation of Digital Photographic Vol' 472 pp' 79-87' 
Enhancement for Dutch Elm Disease Detection, pho- The Economist, 1982. Spying Locusts by satellite, ~ o l .  
togrammetric Engineering and Remote Sensing, Vol. 284, No. 7254, P. 82. 
48, No. 11, pp. 1581-1592. Todd, W. J., D. G. Gehring, and J. F. Haman, 1980. 

Lintz, J., and D. Sirnonett (editors), 1976. Remote Sensing "Landsat Wildland Mapping Accuracy, Photogram- 
of the Enuironmnt, Addison-Wesley, Reading, Mas- metric Engineering and Remote Sensing, ~ o l .  46, NO. 
sachusetts. 4, pp. 509-520. 

Maxim, L. D., 1982. Some Uses of Exogenous Informa- Ulliman, J. J., 1975. Cost of ~ e r i a l  ~ h o t o g r a ~ h ~ ,  photo- 
tion in the Design and Conduct of Aerial Surveys, grammetric Engineering and Remote Sensing, ~ o l .  41, 
Proceedings of the Second Technology Exchange Week, No. 4, pp. 491-497. 
Panama City, Republic of Panama, pp. 438-467. 

Maxim, L. D., and D. E. Cullen, 1977. A Cost Model for 
Remote Inspection of Ground Sites, Photogrammetric 
Engineering and Remote Sensing, Vol. 43, No. 8, pp. (Received 23 March 1982; revised and accepted 2 May 
1009-1025. 1983) 


