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INTRODUCTION 

W ILD DEER are an important economic, aes- 
thetic and cultural resource. Reliable esti- 

mates of the deer population are required for proper 
management, for ascertaining allowable harvest, 
and for assessing environmental impacts. Many re- 
searchers (Gill, 1976; Rue, 1978; Connolly, 1981) 
have remarked about the economic importance of 
deer and the unavailability of reliable deer popula- 
tion estimates for North America. The research re- 
ported in this paper deals with development of tools 
and techniques for the remote detection of mule 
deer (Odocoileus hemionus) on winter ranges of the 
western United States. 

A successful implementation of remote sensing 
methods for any problem requires that the objects 
of interest exhibit unique signatures. These signa- 
tures exist in the domains associated with electro- 
optical sensors. The three domains generally con- 
sidered are spectral, spatial, and temporal (Wyatt, 
1978; Landgrebe, 1981). Recent research reported 
by Trivedi et al. (1982) analyzed spectral signatures 
for deer and a typical habitat scene. The study in- 
dicated that deer and the most commonly occurring 
background objects like snow, green vegetation and 
brush exhibit unique spectral signatures which can 
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be used for remotely identifying such objects. As 
implied in the name "remote sensing," the main 
advantage of such techniques is the capability to 
acquire relevant data from physically distant sensor 
platforms. Thus, the difficulty posed by the gener- 
ally inaccessible terrain of natural deer habitat can 
be overcome. Also, such techniques can acquire 
data at an extremely fast rate, and proper data pro- 
cessing methods can make very efficient tools for 
animal detection. 

The study based on the multispectral approach 
(Trivedi et al . ,  1982) utilized a spectral range of 0.4 
pm to 1.1 p,m to collect reflectance data in the vis- 
ible and near-infrared portion of the electromag- 
netic spectrum. This range was recommended by 
Pate (1979), from laboratory studies, as the one with 
the most promise for the detection of deer in natural 
habitat. The field experiment, in a controlled winter 
setting, was performed to acquire a large multi- 
spectral data set comprising the spectral response 
from deer, snow, green vegetation, brush, and other 
background objects of interest. In the experiment, 
the green vegetation class was represented by ju- 
niper Uuniperus osteospenna) and sagebrush (Ar- 
temisia tridentata), whereas dried brush class was 
represented by rabbitbrush (Chrysothamnus nau- 
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ABSTRACT: The purpose of this paper is to present a design of a prototype system 
for the remote detection of deer in their natural habitat. A multistage pattern 
recognition algorithm which satisfied the requirements of acceptable accuracy, 
high speed of operation, and relatively simple hardware implementation is dis- 
cussed. In order to develop such an algorithm, controlled field data collected in a 
previous study were used. These data were acquired at a research site, in northern 
Utah, typical of a deer winter range in the western United States. The classifier 
utilized four spectral measurements corresponding to 0.672 pm, 0.725 pm, 0.764 
pm, and 0.863 Fm. The classifier provided a deer detection accuracy of 55.2 
percent, with no false counts, in a scene comprised of snow, green vegetation, and 
dry brush. When the dry brush class was excluded, the accuracy increased to 87.6 
percent, with no false counts. These results compared favorably with those ob- 
tained by using a more complex single stage Bayesian classifier (Trivedi et al., 
1982). A hardware implementation of the multistage classifier, which generated 
the deer counts in real-time, was presented. Also, the preliminary results of such 
a prototype system in a field situation were discussed. These results seem to be 
quite promising, and further studies involving more realistic testing were recom- 
mended. 

seosus). The field data were used to formulate and 
apply measurement selection and Bayesian classifi- 
cation algorithms to assess the feasibility of deer de- 
tection. The study recommended wavelengths of 
0.672 pm, 0.725 pm, 0.764 pm, and 0.981 pm for 
a prototype system. It was shown that, by increasing 
the number of spectral bands from three to four, the 
deer detection probability increased from 49.5 per- 
cent to 57.0 percent. For the case where the scene 
was free of dried brush, a remarkable improvement 
in the probability of deer detection was observed; 
here a three band classifier provided 75.7 percent 
and four band classifier provided 84.1 percent ac- 
curate results. Such a case corresponds to a situation 
after a fresh snow-fall has covered low lying basal 
stems. This study made a positive recommendation 
regarding the development of a prototype system 
for deer detection. 

Once the feasibility of a remote sensing approach 
for deer detection was theoretically justified, the 
next step was to develop data analysis algorithms 
which can be implemented in a practical prototype 
system. The main requirement for such algorithms 
was that they should be able to identify scene ele- 
ments at an extremely fast rate, i.e., within a few 
microseconds. A typical aircraft sensor which might 
be used in animal population surveys would be 
looking at a new scene element every few micro- 
seconds. Because the size of the scene elements is 
extremely small, on the order of 125 by 125 mm, 
storage of such data for a complete mission is prac- 
tically impossible. Also of importance is the factor 
related to the complexity of hardware realization of 
such an algorithm. One would like to make the 
"Deer Detection Device" as simple as possible, a 
device which can be realized at a reasonable cost 
without sacrificing the prescribed accuracy and re- 

liability. It was, therefore, necessary to examine al- 
gorithms which could process and analyze the in- 
formation in a real-time fashion and whose hardware 
implementation would not be excessively complex. 

The objective of the research reported here was 
to develop an algorithm for the detection of deer 
which meets the prototype requirements of accu- 
racy, high speed of operation, and relatively simple 
hardware design. Such an algorithm can be imple- 
mented directly using high speed hardware com- 
ponents. The multistage classification procedure de- 
veloped utilized the ratios of the spectral bands cor- 
responding to 0.672 pm, 0.725 pm, 0.764 pm, and 
0.863 pm. Favorable results of the study prompted 
a hardware implementation of the classification pro- 
cedure. Preliminary results acquired with the pro- 
totype system seem to be as predicted by the com- 
puter studies and appeared promising. 

As mentioned earlier, a multivariate Bayesian 
classification procedure that provided acceptable ac- 
curacy for the remote detection of deer was used by 
Trivedi et al. (1982). It will be shown in this section 
that, although such a technique is accurate and 
theoretically sound, it is not very efficient for im- 
plementation in an operational system. The analysis 
reported here was based on the same data set that 
was used for the development of the Bayesian clas- 
sification procedure for deer detection. It  was, 
therefore, possible to compare the results reported 
in the references with those acquired in this study. 

DATA DESCRIPTION 

The multispectral data in 0.4- to 1.1-pm range 
were collected with a circular variable filter spec- 
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trometer at a research site located in Logan, Utah. 
The site was quite typical of winter deer range in 
the western United States. The experiment was 
conducted over a period of approximately five weeks 
in the months of January and February, 1978. The 
main reason for choosing the winter time for such 
an experiment was that during winter the deer pop- 
ulation is concentrated in open areas with shrub 
growth, upon south facing slopes with little over- 
head tree cover. Also, in the winter most of the 
background is covered with snow, and snow exhibits 
a unique spectral signature. The scene was consid- 
ered to be one which included deer, green vegeta- 
tion, and dormant brush with a background of snow. 
Juniper and sagebrush, a major deer browse and a 
dominant shrub on many winter ranges, were used 
to typlfy green vegetation. Rabbitbrush class was 
included to represent partially defoliated dormant 
brush. Thus, each measurement run consisted of 
the radiant flux measurements of samples from five 
classes: deer, snow, juniper, sagebrush, and rabbit- 
brush. The spectrometer was located on a 15-foot 
tower, which provided an overhead angle of eleva- 
tion for the spectral measurements. The field-of- 
view of the spectrometer covered only the object of 
interest, and any averaging of target and back- 
ground was avoided. Additional details of the field 
experiment are presented in Trivedi (1979) and Tri- 
vedi et al. (1982). 

The data were recorded in analog form and later 
converted into digital form. The digitized scan data 
were processed to provide for discrete spectral 
bands which correspond to the resolution of the 
spectrometer. Each digitized scan was characterized 
by fifty discrete spectral bands (measures). 

Extensive measurement selection and classifica- 
tion studies using this data set had shown that wave- 
lengths 0.672 pm, 0.725 pm, 0.764 Fm, and 0.981 
pm provide best results for the deer detection 
problem (Trivedi et al., 1982). Also, it was observed 
that spectral bands corresponding to 0.603 pm and 
0.863 pm offered useful discriminatory information. 
Therefore, in this research the above six measures 
with a total of 525 multispectral data samples (105 
of each of the 5 classes) were examined. 

COMMENTS ABOUT BAYESIAN CLASSIFICATION APPROACH 

The objective of a classification procedure is to 
identify the spectral measurements as associated 
with either deer or one of the "not-deer" objects 
like snow, green vegetation, or brush. One would 
like to perform such a classification as accurately as 
possible. The Bayesian classification procedure al- 
lows us to classify the data such that the overall 
probability of error is minimized (see Duda and 
Hart (1973), Tou and Gonzalez (1974), Devijver and 
Kittler (1982) where the complete development of 
Bayesian classification procedure is presented). Tri- 
vedi et al. (1982) have utilized such a procedure. 

Their formulation utilized normalized measures de- 
rived from the uncorrected flux measurements in 
various spectral bands. It  was observed that the 
magnitude of the measurement vectors was depen- 
dent to a great extent on the illumination condi- 
tions. However, the angular specifications of the 
vectors, given by their direction cosines, corre- 
sponded to the spectral properties of the scene (the 
direction cosine measurements are discussed in the 
following section). Therefore, the classification pro- 
cedure utilized the direction cosines as the normal- 
ized measures. 

The hardware implementation of such a detection 
scheme would require a system similar to that 
shown in Figure 1. Let MI,M2,M,, and M, represent 
the spectral measurements made by four detectors, 
each corresponding to an appropriate spectral band. 
The first block processed these measurements to 
compute the direction cosines. The decision func- 
tion, d,, corresponding to class oi was derived by 
performing the following computation: 

d.  , = - 1~21nliil - '12 {(X - i;' (X - ti,)) + lnP(oi), i = 1 , .  . . , c 

where X = measurement vector in R4, 
ti, = estimate of the mean vector for class 

w,. ei = estimate of the covariance matrix for 
class oi, 

P(wi) = a priori probability for class mi, and 
c = number of classes in the scene. 

It should be noted that the above computation 
involves matrix subtractions and multiplications and 
scalar additions and subtractions. This form can be 
rearranged to make it somewhat simpler for evalu- 
ation, but even in such simplified form matrix mul- 
tiplication and scalar additions are required. Also, 
this approach requires the storage of the value for 
each covariance matrix determinant, their inverses, 
mean vectors, and a priori probabilities for each 
class which were described in the training. Finally, 
the last block in the system compared these decision 
functions and classified the vector, X, to the class 
corresponding to the largest decision function value. 
The operational system requires only the deer 
counts and, therefore, a counter can be incre- 
mented by the signal generated on the line indi- 
cated as deer. 

MULTISTAGE CLASSIFICATION: APPROACH A N D  DESIGN 

Approach. The problems associated with the 
hardware implementation of the decision proce- 
dure, described above, can be alleviated by consid- 
ering a multistage approach. The following defini- 
tions are useful for later discussions: 

Single stage classification: A classification procedure 
where all available measures are si~nultaneously uti- 
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FIG. 1. Single stage, four measure classification scheme. 

lized to evaluate the decision boundaries for classifi- stage classifier the miss and false alarm errors are 
cation. generally affected simultaneously, and it is more 
Multistage classification: A classification procedure difficult to fine-tune the classifier. 
where different sets of measures are utilized to make Efficiency considerations: It has been shown in 
several "sub-decisions," leading to the final classifi- some studies that a classification performed by 
cation. multistage classifiers, termed as "decision tree clas- 

The Bayesian decision procedure discussed earlier 
was a single stage classification method. The ulti- 
mate goal of any scheme is to classify the scene into 
the appropriate classes. The main advantages for 
considering a multistage approach are 

Dimensionality Considerations: In the pattern rec- 
ognition literature it is a well known observation 
that by increasing the dimensionality of the mea- 
surement space one does not necessarily improve 
the classification accuracy. In fact, in most real 
world situations the classification accuracy deteri- 
orates as additional measures are considered (Duda 
and Hart, 1973). This effect is mainly due to the 
finite sample size used in the training of the clas- 
sifier. A commonly used engineering rule of thumb 
is to use enough training samples so that the ratio 
of number of samples to the dimensionality of the 
measurement space is at least ten (Foley, 1972; 
Swain, 1978). In a single stage classification, all the 
measures useful for discrimination of two particular 
classes may not be so useful for some other classes. 
Therefore, eventually in single stage classification 
one tries to include a large number of measures. 
In multistage classification, on the other hand, each 
stage can be designed so that it is useful for dis- 
criminating a smaller number of classes, and when 
all stages are considered globally, the scene can be 
classified into all the available classes. By dividing 
the classification task into stages, one can design 
each stage with a smaller number of measures, and 
its performance for discriminating two classes could 
be even better than that of a single stage classifier. 
Hardware simplicity: As mentioned earlier, indi- 
vidual stages in the multistage classifier require a 
fewer number of measures than the decision 
module of a single stage classifier. Generally, the 
more the number of measures involved in decision 
logic, the more complex the design becomes. Thus, 
a multistage classifier would require simpler hard- 
ware logic. Also, in the multistage classification 
scheme, each module is designed to perform a se- 
lected task most efficientlv. For exam~le, the first 

sifiers," requires a lesser number of calculations 1 
than the single-stage classifier (Swain and Hauska, 
1977; Meisel and Michalopoulos, 1973; Wu et al., 
1975). 

Design. The previous study (Trivedi et al., 1982) 
had found that the magnitude of the measurement 
vector was dependent upon the solar illumination 
conditions. On the other hand, the angle of the mea- 
surement vector was basically a characteristic of the 
spectral properties of a particular scene element. 
Therefore, direction cosines were used as the mea- 
sures in the classification studies. Another measure 
of the angle made by a measurement vector is the 
tangent of the angle. Figure 2 illustrates that for a 
two-dimensional case; the ratio of the spectral mea- 
surements in the two bands corresponds to the tan- 
gent of the measurement vector in R2. Also, any 
scheme that utilizes ratios of the measurements has 
the characteristic that it can cancel the common 
mode variations such as overhead illumination ef- 
fects, some atmospheric effects, andlor instrument 
noise, etc. This observation is particularly true if the 
wavelengths of the spectral bands are close to each 
other (Slater, 1980). In addition, implementation of 
a hardware ratioing logic (or an equivalent thereof) 

stage can be designed in-a two-stage classifier to a I 

minimize the "miss" type errors. These are errors RADIANT FLUX MEASURED IN BAND I 

caused by misclassifying deer into notdeer class. 
The second stage can be designed to minimize the 0 = s 4  " &) - ta$(?) 

"false alarm" type errors. These are caused by mis- ((x: + x: 1 

classifying notdeer objects into the deer class. The FIG. 2. Angular specification of a measurement vector in 
performance of the classifier can be examined in a a two-dimensional measurement space. The correspon- 
test environment, and the appropriate module can dence between the direction cosine and the arctangent of 
be adjusted to obtain the best results. In the single- the angle 0 is also shown. 
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is easier and more common than the implementa- 
tion of direction cosine evaluation unit. Therefore, 
the normalized measures utilized in this research 
for multistage classification are ratios of spectral 
measurements. 8 

Recall that the following six bands were consid- 4 
ered as the most suitable for classifying deer: 0.603 2 
pm, 0.672 pm, 0.725 pm, 0.764 pm, 0.863 pm, and 5 
0.981 pm. This led to (:) = 15 possible ratios. The 
basic statistical properties-mean, standard devia- '?. 
tion, and coefficient of variation-were evaluated for 2 the 15 ratios. The inverse ratios (i.e., x,lx, instead 
of xdx,) were believed to have the same information E regarding the characterization of a class. Consider- 
ation of a ratio over its inverse can be justified if it L 
has a smaller coefficient of variation. For the data 5 
under examination, the ratios and their inverses did 2 not produce a corresponding coefficient of variation 2 
difference of more than 3 percent. The statistical g 
properties for the five classes are summarized in u 
nble  1. A remark about the notation used in the E 
paper is in order. The value of a spectral measure- d ment corresponding to wavelength i will be denoted , , 
as [i]; thus, [illk] would represent the ratio of mea- 8 $ 
surements made in the spectral bands corre- 2 g 
sponding to wavelengths i and j, respectively. 5 iii 

Information in Eble 1, is shown graphically in 3 $ 
Figure 3. Here D = deer, S = snow, J = juniper, 
Sb = sagebrush, and R = rabbitbrush. The dark J * 
dots with an identifying symbol correspond to the ' 6 6 2 mean ratio value, and the horizontal lines represent 
+ one standard deviation spread. Note that, for the g 
sake of clarity and brevity, only ten ratios from a 2 
total of 15 were depicted. Juniper and snow can be 0 - 
distinguished from other classes by several difTerent 2 
ratios. Sagebrush and rabbitbrush were more diffi- , 5 
cult to discriminate from the deer class. By careful - 

3- evaluation of coincident measure plots and the coef- ; 0 
ficients of variation, ratios [0.725 pm]/[0.672 a ' 
pm], 10.863 pm]I[0.764 pm], and [0.764 pml1[0.672 
pm] were selected for further analysis. Note that 3 g the 0.981 pm wavelength, which was recommended L 

in the previous study (Trivedi et al., 1982), was not 3 utilized; instead, the 0.863 pm wavelength was se- 
lected because the ratio computed using the mea- : 
surements corresponding to the 0.981 pm wave- 2 
length were judged to be relatively noiser (as can w 
be observed by examining the coefficients of varia- 
tions given in Table 1). These ratios, for the 105 8 
samples of all the five classes, were reported by 5 Trivedi (1981). z 

The decision functions generated by the Bayesian 2 
classification scheme with the normality assumption 
are nonlinear in form. Actual hardware implemen- i 
tation of such decision functions is much more com- 3 
plex than that of linear decision functions. The non- 3 
linear decision functions generate hyperellipsoids in 
the measurement space corresponding to each class. 
It is possible to simplify the design procedure sig- 
nificantly by approximating the hyperellipsoids by 
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VALUE 

I I 

FIG. 3. Coincident measure plots derived from the 
training samples of the five classes. In this, D = deer, S 
= snow, J = juniper, Sb = sagebrush, and R = rabbit- 
brush class. The dots identify the mean ratio value and 
the horizontal lines represent one standard deviation 
spread. 

RATIO 1 t S . S S l .  

appropriate parallelopoids. Here, the class bound- 
aries in the measurement space are lineraly speci- 
fied. Landgrebe (1981) has remarked that the prag- 
matic value of similar algorithms makes them useful 
in commercially available systems. As an illustra- 
tion, consider the two-dimensional measurement 
space shown in Figure 4. Let the two axes corre- 
spond to the ratios of detector outputs; then the 
problem of deer classification can be stated: when- 
ever the detector outputs produce a vector falling 
in the shaded region, it signifies detection of a deer. 

A two-stage classification scheme can be imple- 
mented as shown in Figures 5a and 5b. Figure 5a 
represents a two-stage parallel realization of the 
classifier. The upper stage detects points falling be- 
tween the threshold values of (TI),, and (TI),, for 
the M d M ,  ratio, whereas the lower stage detects 
pixels that fall between the (T,),, and (T,),, thresh- 
olds for the M,/M3 ratio. A deer count pulse is gen- 
erated whenever constraints imposed by both stages 
are satisfied. 

BmhSUBES 
10.672 urn1 
(0.603 r l  

w 
10.764 url 
[0.603 prnl 

FIG. 4. Decision boundaries in a two-dimensional mea- 
surement space. Measurement vector falling in the shaded 
region is labeled as deer. Thus, vectors XI and X3 corre- 
spond to nondeer samples, whereas X2 represents a deer 
sample. 
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Figure 5b illustrates a serial realization of the two- 
stage classifier. Notice that stage two is not enabled 
until the stage one constraint is satisfied. This re- 
alization may be slower than that of Figure 5a, but 
a possible advantage is that the second stage is ac- 
tivated for a small fraction of the time that stage one 
is in operation. If stage one is designed to discrim- 
inate deer from snow and juniper and stage two to 
discriminate deer from sagebrush and rabbitbrush, 
then it is possible that stage two will be operational 
for approximately 1 to 5 percent of the time that 
stage one is in operation, because most of the back- 
ground objects are snow and juniper on a winter 
range. 

The suitability of a multistage classifier for a deer 
detection system was evaluated by performing sev- 
eral experiments. A description of these experi- 
ments and their results is presented in this section. 
Also, a hardware design for a prototype system is 
discussed, and preliminary results acquired in a 
field study are presented. 

For the purposes of designing a deer detection 
system, the following two criteria were considered 
important: 

the classifier decision-making scheme should max- 
imize the probability of deer detection, and 
the probability of false alarms, due to not-deer ob- 
jects being incorrectly called deer, should be min- 
imized. 

It should be noted that, in an operational system, 
detection of a deer pixel by the sensor is a rather 
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COMPARATOR 

PARALLEL CLASSIFICATION SCHEME 

ENABLE 

RATIO 
COMPARATM 

SERIAL CLASSIFICATION SCHEME 

Fir:. 5. Two-stage classification schemes. (a) represents a parallel impletnentation, whereas (b) shows a serial ilnple- 
mentation for the same classificatiot~ task. 

rare event, i.e., most of the pixels seen would be- 
long to background objects. Therefore, it is essential 
to have a very low, allnost zero, false alarm error 
rate. 

CLASSIFICATION USING F O U R  SPECTRAL BAND 

MEASUREMENTS 

Classification results of a two-stage classifier are 
presented in Table 2. Using the notation defined 
earlier the parameters used in the decision process 
can be summarized as: 

The spectral bands were 0.672 pm, 0.725 pm, 
0.764 pm, and 0.863 pm; 

the ratios considered were 

T ,  = 
[O. 725 ~ m ]  [O. 863 p n ]  
[0.672 pm] 

and T - " 10.764 pm] 
; and 

the thresholds used for making the decision were 

( T I ) , ,  = 1.29, (Tl)\lax = 1-62, 
(T2),,i, = 1.041, and (TJ,,, = unspecified. 

As shown in Table 2a, in stage one only those sam- 
ples were called deer for which the ratio was greater 
than 1.29 and smaller than 1.62. Such a test elirni- 
nated all juniper and snow salnples from further 

consideration. This was an important result because 
on a typical winter deer range approximately 90 to 
95 percent of the actual scene would have either 
snow or green vegetation cover. 

The second stage classified samples as deer for 
which the ratio T2 was greater than 1.041 (Table 2b). 
The probability of deer detection with such a clas- 
sifier was 55.2 percent with no false counts. This 
figure compares favorably with the 57.0 percent 
deer detection accuracy achieved using the more 
complex single stage Bayesian classifier for similar 
conditions (Trivedi et al., 1982). 

Next, consider the perforlnance of a two-stage 
classifier where only four classes were included in 
the scene. The classes were deer, snow, juniper, 
and sagebrush. The rabbitbrush class, which cor- 
responds to the dried brush on the winter range, 
was excluded from consideration in this experiment. 
This corresponds to a case soon after a fresh snow- 
fall. The results of such experiments are presented 
in Table 3. The first stage, which employed the ratio 
10.725 pm]/[0.672 pln], eliminated the green veg- 
etation samples for which the value of the ratio was 
greater than 1.49, i.e., (T,)  ,,,,, = Unspecified and 
(T,),, = 1.49. The second stage of the classifier 
discriminated deer from the snow and remaining 
four sagebrush samples. The ratio considered was 
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TABLE 2. (a) FIRST STAGE CLASSIFICATION USING [0.725 pm]/[0.672 pm] RATIO. SAMPLES WERE CLASSIFIED AS DEER 
WHENEVER THIS RATIO WAS BETWEEN 1.29 AND 1.62. (b) SECOND STACE CLASSIFICATION USING [0.863 pm]/[0.764 pml] RATIO. 

SAMPLES WERE CLASSIFIED AS DEER WHENEVER THIS RATIO WAS GREATER THAN 1.041. 

COMPUTER CLASSIFICATION 

z 
0 
E 

W *  ,g 
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U 
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w * 
s Y 
eG L4 
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3 
U 

(b) 
Probability of Deer Detection = 55.2% 

[0.863 Fm]/[0.764 pm] and the thresholds were 
(T,),, = 0.95 and (Tz),, = Unspecified. The deer 
detection probability was 87.6 percent, with no false 
counts, which was better than the 84.1 percent ac- 
quired with the single-stage classifier for similar 
conditions (Trivedi et al., 1982). 

An important result about the performance of the 
two-stage classifier in a special case can be men- 
tioned. It was observed that two rabbitbrush sam- 
ples (out of 105 total) were quite dSicult to discrim- 
inate from the deer class. (Incidentially, these sam- 
ples were acquired in consecutive runs during the 
field experiment, which might suggest some "error" 
in the data acquisition.) If one allowed the false 
counts due to these samples, then the deer detec- 
tion accuracy using different thresholds but the 
same decision logic would increase to 63.8 percent 
with 0.5 percent false alarm rate. This result high- 

lights the utility of the simple threshold-setting de- 
cision logic of the proposed approach which would 
allow the fine tuning of the hardware for special 
requirements. 

CLASSIFICATION USING THREE SPECTRAL 

BAND MEASUREMENTS 

Additional experiments were conducted to eval- 
uate the effect on the deer detection accuracies of 
utilizing only three spectral band measurements. 
Because elimination of a spectral band directly af- 
fects the hardware complexity of the operational 
system, such a study seemed important. Only a 
brief summary of results is presented in this sub- 
section. Detailed results are presented in a report 
by Trivedi (1981). 

The three spectral band measurements utilized 
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correspond to 0.672 pm, 0.764 pm, and 0.863 pm. 
For a scene containing all five classes-deer, snow, 
juniper, sagebrush, and rabbitbrush-the first- 
stage classification was based upon the [O.  764 pm]/ 
i0.672 pm] ratio and the second-stage classification 
utilized the [0.863 pm]/[0.764 ym] ratio. A deer 
detection probability of 43.8 percent was achieved 
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with no false counts. For a similar scene Trivedi et 
al. (1982) reported a detection probability of 49.5 
percent using a single-stage classifier. Thus, it 
seems that elimination of the fourth spectral band 
affects deer detection more severly using the two- 
stage approach than the single-stage one. 

For a scene without the rabbitbrush class, how- 
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FIG. 6. Prototype system functional block diagram. 



FIG. 7. Prototype system during the preparations for a 
field test. 

ever, the same ratios as above provided a deer de- 
tection accuracy of 80.0 percent with no false 
counts. This figure was much better than the 75.7 
percent accuracy achieved by a single-stage classi- 
fier. 

OPERATIONAL PROTOTYPE: PRELIMINARY EVALUAllON 

The results presented above prompted a hard- 
ware implementation of the decision logic for de- 
tailed testing. The complete details of such a unit 
are presented by Voorheis (1982). The design was 
based on the following specifications: 

Focal length, f-number 50 mm, 2.0 
Aircraft altitude above ground 1330 feet 
Pixel width on ground 4.8 inches 
Aircraft speed 100 mph 
Scan frequency 367 Hz. 
Computation time per pixel el330 nanoseconds 

A functional block diagram of the prototype system 
is given in Figure 6. The sensor box contained the 
band pass filters, lenses, photodiode arrays, and 
signal processing cards. The signals from the array 
boards were amplified and transmitted to the An- 
alog-to-Digital (A/D) converter cards in the processor 
box. The outputs of AID cards were paired and each 
pair was input to a processor card. The processing 
algorithm was realized using Arithmetic Logic Units 
(ALU), comparators, multipliers, and supporting 
logic circuitary. The dynamic range of the system 
was increased by subtracting the fixed pattern noise 
form the signals. Total time required by this pro- 
totype to process a pixel was 1206 nanoseconds, well 
within the specifications. 

Preliminary tests for the prototype system were 
performed in field studies. In Figure 7, the system 
hardware is shown during the preparations of one 
of the tests. The deer and other background objects 
were placed at a distance of about 1500 feet from 
the sensor. The results indicated that deer detection 
accuracies of approximately 80 percent with false 
alarm rates of about 0.01 can be attained with prop- 

erly selected threshold values. In preliminary tests 
the sensor viewed the objects from the side instead 
of from above, as would be the case in an operational 
system. This simplification in the experimental set- 
up was done primarily due to the concerns for prac- 
ticability. In order to examine the effects of the dif- 
ference in viewing angle on deer detectability, fur- 
ther experimentation may be required. However, it 
is believed that, by a trial and error approach with 
an operational system, one can minimize any per- 
formance deterioration. The above results were 
promising and agreed with the results of the pre- 
vious subsections. This agreement in the results of 
two field tests, which were conducted at an interval 
of about four years, could be interpreted as an in- 
dication of the consistent performance that can be 
obtained with the ~nultispectral approach. 

The prototype system was designed in such a way 
that with minor lnodifications some spatial domain 
information can be incorporated in the decision pro- 
cess. Future studies would address classification 
procedures based on the spectral-spatial informa- 
tion. 

CONCLUSIONS 

Remote sensing techniques offer an attractive tool 
for the detection of deer in their natural winter hab- 
itat. An operational system for deer detection must 
satisfy the requirements of accuracy, high speed, 
and relatively simple hardware design. In this paper 
a two-stage classification scheme which meets the 
above requirements was developed. Each stage of 
such a classifier required two units: one to evaluate 
the ratio of the two spectral measurements and an- 
other to compare this ratio with a preselected 
threshold. The two stages of the classifier can be 
arranged in a serial or parallel mode. 

The classification scheme utilized four spectral 
band measurements, corresponding to the 0.672 
pm, 0.725 pm, 0.764 pm, and 0.863 pm wave- 
lengths. For the five class scene, the two-stage clas- 
sifier provided a deer detection accuracy of 55.2 
percent, with no false counts. If the dry brush class 
was eliminated (such may be the case after a fresh 
snowfall), the deer detection accuracy increased to 
87.6 percent, with no false counts. These figures 
compared quite well with the results reported by 
Trivedi et al. (19821, where a more complex single- 
stage Bayesian classification approach was utilized. 
The main advantages of the two-stage approach was 
real time processing capability and its relatively 
simple design. The classifier performance can be 
easily modified by adjusting vaIues for the thresh- 
olds. A prototype system was designed based upon 
the above computer results. The preliminary results 
acquired with the system were promising and in 
agreement with the study. 
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RECOMMENDATIONS 

The results of this study indicate a definite 
promise for an operational system for remote deer 
detection and similar applications. It should, how- 
ever, be emphasized that further research is re- 
quired before a final assessment for the wide spread 
utility of such a tool can be made. The following 
topics need to be addressed: 

Methods for incorporating spatial domain infor- 
mation in the decision process. Such information 
would enhance detection accuracies. Acquisition 
and analysis of spatial data increases the complexity 
of the hardware. A careful evaluation of these vari- 
ables is required. 
Improvement of detection accuracies by using 
somewhat more involved statistical analysis tech- 
niques. Methods based on capture-recapture 
theory (White et al., 1982) seem to offer some ways 
to reduce false counts while still being able to es- 
timate the number of deer. 
Methods for handling "mixed pixel" problems need 
to be evaluated. This problem arises when the 
sensor averages pixels composed of Inore than one 
class. Statistical decision theory methods, similar 
to those developed for image segmentation task, 
might provide some insight. 
Development of a stable platform, and methods for 
correcting the registration errors due to the aircraft 
motion and vibrations. 
Methods for estimating total population size by 
conducting aerial surveys over selected animal hab- 
itats need to be examined. Statistical techniques 
based on strip transect sampling (Jolly and Watson, 
1979) seem to offer an approach for the estilnation 
task. 

Funding for this research was provided, in part, 
from the wildlife conservation agencies in Arizona, 
Oregon, and Utah, through the Utah State Univer- 
sity. 
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