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tical density of the atmosphere as viewed from the 
orbiting platform. 

During the summer of 1978, the use of remote 
multispectral scanning sensors for surveying sub- 
merged marine macroplant distribution was inves- 
tigated. The project was designed to characterize 
the fine-scale features of submerged vegetation in 
St. Joseph Bay, Florida. The general features of the 
bay, including an estimate of bottom coverage of 
Thalassia testudinum, had been determined during 
a survey of the near-shore region of the Gulf of 
Mexico (McNulty et al., 1972) (Figure 1). St. Joseph 
Bay receives negligible fresh water input and con- 
tains very small populations of phytoplankton. The 
sediments are primarily sand, or muddy sand, and 
settle out of the water column rapidly, so the water 
is usually very clear. Broad expanses of nearly 
monospecific stands of Thalassia are located around 
the periphery of the bay. Drift algae accumulate in 
portions of the bay during spring and fall, with some 
stands of attached macroalgae present throughout 
the growing season. 

The goal of this research was to develop methods 
for distinguishing seagrass and macroalgal coverage 
from bare bottom in St. Joseph Bay by computer 
analysis of electronic scanner imagery data acquired 
with a multispectral scanner carried aboard an air- 
craft. We wished to use the methods for assessine 
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FIG. 1. Flight lines and station locations i11 St. Joseph Bay, 
Florida. 

if large ships are used as platforms and if extensive 
areas must be surveyed. The general areal coverage 
of submerged vegetation can be estimated from ae- 
rial photography; however, it is difficult to charac- 
terize and make quantitative estimates of different 
macroplant constituents of the cover from photo- 
graphs. 

With spacecraft scanner data readily available on 
a regular, repetitive basis, it would be highly desir- 
able to develop a technique that would permit a 
uniform, repeatable, objective analysis of this type 
data. A standard technique applied to data acquired 
at intervals over a period of years would make pos- 
sible the evaluation of natural and anthropogenic 
factors causing changes to benthic vegetation. 

A research project was therefore undertaken to 
determine if it were possible to use computer im- 
plemented spectral pattern recognition algorithms 
to distinguish benthic vegetation. The first efforts 
were made with an airborne multispectral scanner 
rather than with satellite data that present the com- 
plexities of relatively coarse resolution, coordination 
of surface-truth data acquisition with fixed space- 
craft schedules, atmospheric considerations relative 
to the schedule of spacecraft passages, and the op- 

A Texas Instruments RS-18 multispectral scanner, 
originally built as a thermal scanner, was modified 
by the addition of four visible and near-infrared 
wavelength bands: 400 to 500 nm (channel 1); 500 
to 600 nm (channel 2); 600 to 700 nm (channel 3); 
and 800 to 1000 nm (channel 4). The instantaneous 
field of view of the scanner was 2.5 milliradians, 
corresponding to a spot 2.5 m wide for an instru- 
ment altitude to 1000 m. The scan width was 10O0, 
giving a total scan of approximately 2400 m at that 
altitude. The signal from the scanner was recorded 
in a pulse code modulation format after digitization. 
The instrument was operated in an uncalibrated 
mode, so that signal level was a measure of relative 
radiance within each spectral band. 

Data for the investigation were acquired at an 
altitude of 1520 m on 19 May 1978. The picture- 
element width was 3.8 m and the total scan width 
was 3630 m. The extreme angles of the scan intro- 
duced problems in analysis caused by geometric dis- 
tortion, variation of target reflectivity, and atmo- 
spheric problems; therefore, only the data from the 
central 70" were used, giving a total scan width of 
2130 m. 

Data were of excellent quality in channels 2,  3, 
and 4, but the information content of channel 1 was 
very low. This was not unexpected and was a con- 
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sequence of inadequate detector sensitivity for that 
channel, leading to a poor signal-to-noise ratio. At- 
mospheric effects for channels 2 and 3 can be sig- 
nificant, but restricting the field of view to 235' 
reduces the variation in optical thickness to less than 
15 percent. The subject data set was acquired on a 
very clear day when effects were minimum. As ex- 
pected, the near-infrared channel provided no in- 
formation related to the submerged vegetation, but 
did provide the capability to discriminate readily 
between water and land or emergent vegetation. 

Sun elevation and azimuth are important consid- 
erations when collecting imaged data over water 
bodies. Specular reflection of the solar disk (sun 
glint) may be orders of magnitude greater in inten- 
sity than the light reflected from the bottom or from 
vegetation covering the bottom of the water body. 
The ideal situation for remote sensing with a scan- 
ning sensor is for the sun to be directly in front of, 
or directly behind, the aircraft, at a maximum ele- 
vation determined to some extent by surface rough- 
ness (and, therefore, windspeed), but generally 
time of data collection was less than optimum and 
severe sun-glint contamination made some of the 
data on the eastern side of the bay unusable. 

A 9-inch format Zeiss R M K  15/23 camera 
equipped with a 6-inch lens and 2A and AV filters 
was flown on the data acquisition mission. The Zeiss 
photography, using standard color film S0397, pro- 
vided a record of almost the entire scene imaged by 
the RS-18 scanner and included nearly the entire 
area of the bay having significant bottom vegetation 
cover. Variations in depth and density of vegetation 
could be observed in the photographs (Plate l), so 
photography was used to extend the observations 
made at various sampling locations by divers to al- 
most all the area imaged with the electronic sensors. 
This method extended the ground-truth data pri- 
marily for the purpose of evaluating the classifica- 
tion. 

Locations at which ground-truth data had been 
acquired by the divers were easily identified in the 
aerial photographs and in the scanner data when the 
latter were displayed on the image-processing 
system. Sheets of Styrofoam (1.22 by 2.44 m) de- 
ployed at these locations were visible at each sam- 
pling station. Training samples were selected from 
the imagery only at these locations so that spectral 
signatures could be associated with the ground- 
truth information. When the scanner image near the 
marker appeared heterogeneous, care was taken to 
include only the area in the direction from the 
marker at which the ground-truth sampling was 
done. Picture elements (pixels) that appeared in- 
consistent with the truth information were elimi- 
nated. For example, if the ground-truth data indi- 
cated a dense growth of Thalassia and if there were 
several bright pixels in contrast to the darker pixels 
typical of dense benthic vegetation in the imagery, 
the bright pixels were identified as bare sand spots 

and were excluded from the training data being de- 
veloped for dense vegetation. Channels 2 and 3 
were used to select the training fields at 20 ground- 
truth stations. When a sampling station was imaged 
under two flight lines, training fields were selected 
for that location from both imagery data sets and 
were coded by station number and flight line (east, 
south, and west). 

The relative mean radiance upwelling and stan- 
dard deviation were computed for each spectral 
channel for each training field. Standard deviations 
were examined to determine whether a training 
field was contaminated by variation of the bottom 
cover, or whether an electronic problem had caused 
recording of erroneous data. If the deviation ex- 
ceeded 10 percent of the mean, the training field 
was again viewed, any "spuriousn points were elim- 
inated, and the statistics were recomputed. 

After analysis of the training field statistics, it be- 
came evident that there were features along the 
flight lines that were not represented in the ground- 
truth data. Consequently, additional training fields 
were taken in areas identified from the photographs. 
These areas were located in deep water where the 
bottom was not visible and in intermediate-depth 
areas (approximately 2 to 4 m) where the bottom 
was visible but had no significant vegetation cover. 
No vegetated areas were involved in the expanded 
set of training data. 

Two analytical techniques were used to process 
the scanner data. The first used spectral information 
from the training fields and a discriminate function 
analysis computer program (Dixon, 1977) to develop 
algorithms for use in a supervised pattern-recogni- 
tion approach. The second technique consisted in 
using spectral data from the training fields com- 
bined with unsupervised data groupings in a hybrid 
supervised/unsupervised maximum-likelihood pat- 
tern-recognition approach. 

The first step in this process was the grouping of 
training fields into meaningful classes. The initial 
grouping was subjective, based on uniformity of 
ground-truth information about vegetation density, 
the presence or absence of algae, the depth ofwater, 
and the uniformity of the remotely measured up- 
welling light radiance. The ground-truth informa- 
tion separated into eleven classes. Four depth 
ranges were identified: very shallow (less than 1 m), 
shallow (1-2 m), deep (2-3 m), and very deep 
(greater than 3 m). The rooted-vegetation density 
was partitioned into four classes: bare (no appre- 
ciable Thalassia), sparse (less than 20 percent 
cover), medium (20 to 40 percent cover), and dense 
(greater than 40 percent cover). The floating algal 
associations were identified as dense red algae, 
sparse red algase, cream algae, and no algae. 

The first approach was to classify data for each of 
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TABLE 1. TRAINING SAMPLE CLASSES OBTAINED FROM GROUND TRUTH INFORMATION AND TRAINING SAMPLE SPECTRAL DATA FOR 

DISCRIMINANT FUNCTION CLASSIFICATION 

Class Description 
Training Samples 

(No. of pixels used) 

Flight Line 1 
Dense Grass 
Medium Grass 
Sparse Grass 
Bare Bottom Visible 1 
Bare Bottom Visible 2 
Bare Bottom Visible 3 
Bottom Not Visible 
Red Algae 

Flight Line 2 
Dense Grass 
Medium Grass 
Sparse Grass 
Bare Bottom Visible 1 
Bottom Not Visible 

Flight Line 3 
Dense Grass 
Medium Grass 
Sparse Grass 
Bare Bottom Visible 1 
Bottom Not Visible 

the three flight lines, using training-field data from 
the corresponding line. Flight line 1 (west side of 
St. Joseph Bay) was selected to be classified first 
because of the diversity of water depths, vegetation 
types, and vegetation densities. Statistics used to 
classlfy the data from flight line 1 came from this 
line, except for one dense-grass training field from 
flight line 3 (east side of St. Joseph Bay) that was 
included to complete the vegetation range. Means 
of radiance intensity values from channels 2 and 3 
for each training field for each class and flight line 
(Table 1) were used as input to the discriminant 
function program, providing an analysis of indi- 
vidual training-field separability and producing a 
classification algorithm for each final class. Classifi- 
cation algorithms were of the form Ai C, + B, C, = 
C, where i = 1, the number of classes. The A,'s, 
B,'s, and C,'s were the coefficients for channel 2, 
channel 3, and constant terms generated for each 
class. Training-field statistics from channel 1 and 
channel 4 were not included because of the low in- 
formation content revealed in the initial data re- 
view. 

The next step in the process was to combine al- 
gorithms, produced by the discriminant function 
software for each class with a landlwater classifier, 
in order to classlfy the RS-18 data from each flight 
line. A classification program was developed to 
check the data from each flight line. A classification 
program was developed to check the data value from 
channel 4 to determine if the pixel contained land 
or water. If the pixel contained land (if the radiance 
intensity value level for water was exceeded), it was 
classified as land and the program proceeded to the 

next pixel. If the pixel contained water, then the 
data from channel 2 and channel 3 for that pixel 
were processed through the classification algorithms 
and it was put into one of the remaining classes. 
The resulting classifications for the three flight lines 
are shown in the color-coded computer-generated 
image (Plate 2). The area for each class in each line 
was computed and is shown in Table 3. The most 
dramatic problem in the classification was the con- 
fusion of the classes Red Algae and Botton Not Vis- 
ible. While the Red Algae class was separable from 
the various densities of seagrass (Thalassia) and the 
different Bare Bottom Visible classes, it appeared 
to have an overlapping spectral signature with the 
deep water (Bottom Not Visible). This caused a sig- 
nificant part of the deep-water area on the west side 
of the bay to be classified as Red Algae, a feature 
clearly evident in Plate 2. An additional problem 
was the classification of the area to the left on the 
east line as Bare Bottom Visible 1. This area is pri- 
marily deeper water and should have been classified 
as Bottom Not Visible. Severe sun glint in the area 
raised the recorded radiance intensities in each 
channel, making it appear as a Shallow Bare Bottom 
class. A review of the signatures in all four channels 
for all training fields, grouped into eight classes, was 
made to see if further separability could be achieved 
by using channels 1 and 4. Channel 1 and channel 
4 were limited with respect to separability of any of 
the classes (Figure 2). A display of class means, lo- 
cated as center points and vertical and horizontal 
lines depicting plus or minus one standard devia- 
tion, shows that Red Algae and deep water (Bottom 
Not Visible) data overlap in a part of the data range 
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FIG. 2. RS-18 multispectral scanner channel spectral 
characteristics. 

in channels 2 and 3 (Figure 3). Rather than ex- 
pending further computer time to select and refine 
classification statistics for the Bottom Not Visible 
and Red Algae classes, the problem was addressed 
in the hybrid supervised/unsupervised classification 
effort without using additional training statistics. 
The supervised classification effort was redirected 
to classifying the data from each of the three flight 
lines using algorithms developed with class statistics 
from a composite of all training fields, excluding the 
Red Algae training field. This approach permitted 
the development of more information on the im- 
portance of training-field variability from one flight 
line to another caused by aircraft flight path relative 
to sun position, vegetation bottom-cover heteroge- 
neity along flight lines, difference in aircraft altitude 
between flight lines, and the relationship of training 
variability to classified scene results. 

It was not clear whether better results would be 
achieved by grouping training fields into composite 
classes for use in classifying all lines or by using 
classes developed from training fields from each line 
to class~fy the data from the same line. A composite 
training-field set (excluding Red Algae) was pre- 
pared with the procedure described earlier to an- 
swer that question. The classdication obtained with 
the composite training-field set (Plate 3) yielded a 
more uniform classification from one flight line to 
another, as can be seen by comparing the west and 
south lines with corresponding flight-line classifi- 
cation in Plate 2. Classifications obtained with 
training fields from individual flight lines provided 
more detail in specific areas, as demonstrated in the 
medium seagrass line that ran almost the full length 
of the east line and in the breakdown of the seagrass 
beds into medium and sparse grass in the lower 
section of the west line (Plate 2), a feature that did 

DENSE GRASS 

3 SPARSEGRASS 
BARE BOTTOM VISIBLE 1 

5 BARE BOTTOM VISIBLE 2 
BARE BOTTOM VISIBLE 3 

BOTTOM NOTVISIBLE 
RED ALGAE 

CHANNEL 3 IRADIANCE IN COUMS) 

FIG. 3. RS-18 multispectral scanner response to different 
bottom classification types in St. Joseph Bay, Florida. 

not appear in Plate 3. Both of these details were 
present in St. Joseph Bay and were verified by 
ground-truth operations. The best classification re- 
sults can be achieved by selecting from each flight 
line a set of training fields which completely defines 
all classes found on that line and then classifying the 
data from that line with the unique set. 

The hybrid analysis of RS-18 sensor data used sta- 
tistics computed from training-field imagery taken 
at the surface-truth locations together with results 
of a statistical analysis of the entire data set. The 
two sets of statistics were merged and the entire 
data set was classified with the merged set. 

The training fields were grouped into classes sim- 
ilar to those developed previously, but varied in 
number and definition as established by a second 
analytical team. The ground-truth information was 
separated into 12 classes. Three depth ranges were 
identified: shallow (less than 1 m), deep (1 to 2 m), 
and very deep (over 2 m). The rooted-vegetation 
density was broken into bare (no appreciable Thal- 
assia), very sparse (less than 10 percent cover), 
sparse (10 to 25 ~ercent),  medium (25 to 35 per- 
cent), and dense (over 35 percent). The floating 
algal associations were identified as dense red algae, 
sparse red algae, cream algae, and no algae. The 
classes derived from grouping the spectral data from 
the RS-18 training-field statistics, based on the 
signal level in channels 2 and 3, were similar, but 
not identical, to classes derived from visual exami- 
nations of benthic characteristics. 

The final choice for classes was made considering 
both the imagery data and ground-truth data. 
Classes were chosen separately for each of the three 
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flight lines are listed in Table 2. A class corre- 
sponding to bare bottom was not developed at this 
stage of analysis. 

The RS-18 data were also subjected to statistical 
analyses using an unsupervised training-field selec- 
tion algorithm implemented in the computer pro- 
gram named SEARCH (Junkin et al., 1980). This tech- 
nique scanned the data set (or subset as specified) 
with a six-element scan-line window and located all 
areas of that size that met specified criteria for ho- 
mo~eneitv. The standard deviation and coefficient " 
of variation were computed for each spectral 
channel in each 36-element area and were com- 
pared with a specified criterion for homogeneity. 
These 36-pixel areas were grouped into classes 
based only on spectral separability, regardless of the 
physical characteristics leading to the spectral sig- 
natures. The classes represented spectrally sepa- 
rable combinations of depth, water color, surface 
reflection, and vegetation density, type, and color. 
Land features were included in two of the flight 
lines and were therefore included in the statistical 
analysis for those flight lines. No land was included 
in the analysis of the remaining flight line, although 
some land appeared in the imagery. 

While the unsupervised training-sample selection 
provided a statistical analysis of a major subset of 
the data, the supervised training-field statistics rep- 
resented a narrow range of well-determined surface 
characteristics in terms of water depth ranges and 
benthic characteristics. Consequently, the unsuper- 
vised data set was merged with the supervised data 
set before calculation of classification statistics. Each 
of the three flight lines was then classified on the 
NASA Earth Resources Laboratory image-processing 
system, using a maximum likelihood classifier, 
MAXL4 (Savastano et al., 1981). The resulting 
product was analyzed to identify the classes devel- 

oped by SEARCH. Initially, the SEARCH classes were 
categorized on the basis of surface-truth information 
and aerial photography. The unsupervised training- 
field analysis subdivided the desired categories too 
finely, identifying classes that could not be identi- 
fied based on existing information. To correct this 
problem, less detailed information over more of the 
study area was collected in a second visit. Using 
these data, the initial classes were grouped into 
larger groups that more closely met the study ob- 
jectives, namely, to map the density of benthic veg- 
etation and discriminate between dense algal com- 
munities and seagrasses. The individual classes re- 
sulting from the SEARCH spectral analysis subdi- 
vided the general classes by depth, water color, and 
surface reflection. The additional ground-truth data 
made it possible to weight the SEARCH analysis 
so that class provided an accurate map of the bay 
(Plate 4). 

The final classes for each flight line formed by 
combining training-field classes and unsupervised 
classes are listed in Table 3, along with the area in 
each class. The overlap between flight lines was 
eliminated from the area computation, so the figures 
represent the actual area in each category of vege- 
tation density in the surveyed portion of St. Joseph 
Bay. 

Quantitative evaluation of classification accuracy 
is a difficult problem, both conceptually and tech- 
nically. It is neither clear how to unambiguously 
define accuracy criteria, nor how to measure such 
criteria. It is not usually feasible to obtain ground- 
truth information with spatial resolution that will 
provide information as dense as the remote imagery. 
Use of photography to test the classification results 

TABLE 2. TRAINING SAMPLE CUSSES OBTAINED FROM GROUND TRUTH INFORMATION AND TRAINING SAMPLE SPECTRAL DATA FOR 

HYBRID CLASSIFICATION 

Class Description 
Training Samples 

(No. of pixels used) 

-medium grass, no algae 12s (29), 14W (31) 
W2 Shallow, dense grass, dense red algae 13W (40), 16W (48) 
W3 Deep, sparse grass, dense algae 17W (37) 
W4 Intermediate depth, medium grass, some algae 5E (212), 6E (121), 8E (144), 19W (58) 
W5 Deep, medium grass, dense red algae ZOW (74) 
W6 Shallow, sparse grass, no algae 10s (27) 
Fli t Line 2 
&medium grass 
S2 Deep, sparse grass 
S3 Shallow, very dense grass 
S4 Shallow, sparse grass 
Fligh; 3 , 

El S al ow, medium crass 
E2 Intermediate depth, medium grass 
E3 Shallow, very dense grass 

I, .r 
E4 shallow, sparse 
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TABLE 3. CLASSES AND AREAS OBTAINED FROM CLASSIFICATIOKS 

Class Description 

Hybrid 
Classification 

Area (hectares) 

Supervised 
Discriminant Function 

Classification 
(Individual Line 
Training Fields) 
Area (hectares) 

Flight Line 1 
Dense Grass 
Medium Grass 
Sparse Grass 
Bare Bottom Visible 1 

(Sand shallow) 
Bare Bottom Visible 2 
Bare Bottom Visible 3 
Bottom Not Visible 
Land 
Red Algae 

Flight Line 2 
Dense Grass 
Medium Grass 
Sparse Grass (deep water) 
Sparse Grass 
Very Sparse Grass 
Bare Bottom Visible 1 

(Sand shallow) 
Bare Bottom Visible 2 
Bottom Not Visible 

Flight Line 3 
Dense Grass 
Medium Grass 
Sparse Grass 
Very Sparse Grass 
Bare Bottom Visible 1 
Bare Bottom Visible 2 
Bottom Not Visible 
Land 
Severe Glint Contamination 

introduces uncertainty caused by subjectivity in the 
photointerpretation process. We have evaluated the 
quality of maps generated from the classification 
process by comparing field observations at ground- 
truth sample locations with corresponding benthic 
projections for those locations on the maps. Plate 5 
shows an example of a classification evaluation. In 
the discriminant function classification, location 1 
(emergent marsh grass) was classified as a vegetated 
area and was not broken out as a separate class of 
vegetation because no training fields were selected 
from this area. Location 2 was found to be sparse 
Thalassia and was classified correctly. Location 3 
(classified correctly) was discolored sand with no 
vegetation. Location 4 was a small stand of dense 
Thalassia located in a larger stand of sparse Thal- 
assia and was classified correctly. Location 5 was a 
broad band of sparse Thalassia and was classified 
correctly. Location 6 was a band of medium-density 
Thalassia, classified as sparse Thalassia in the com- 
posite class-discriminant function classification and 
as medium-density Thalassia in the within-line 
class-discriminant function classification. Location 7 

was a wide area of very dense, tall Thalassia, and 
Location 8 was at the edge of a bare spot in the 
midst of the dense Thalassia. Both 7 and 8 were 
classified correctly. 

In the hybrid classification, Location 1 was an 
area of very shallow water with marsh grasses (not 
Thalassia), and was classified as a vegetated area. It 
was not broken out as separate class of vegetation 
because the unsupervised training sample selection 
was not performed on this part of the flight line, 
and given the signatures developed over only the 
bay itself, the most likely classification of the emer- 
gent grasses was an intermediate-density Thalassia. 
The misclassification of the land evident in the 
product also results from limiting the SEARCH anal- 
ysis of the flight line to the bay area. Location 2 was 
found to be sparse Thalassia and was classified cor- 
rectly. Location 3 had no vegetation, but was dis- 
colored sand; this area was correctly classified as 
well. Location 4 was a small stand of dense Thalassia 
located in a larger stand of sparse Thalassia. Loca- 
tion 5 was a broad band of sparse Thalassia, Loca- 
tion 6 was a band of medium density Thalassia, and 
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PLATE 5. Various bottom featur f St. Joseph Bay, Florida, used in classifications together with their relative locations 
in submerged vegetation maps of the bay produced with the classification process. 

Location 7 was a wide area of very dense, tall Thal- 
assia. Location 8 was at the edge of a bare spot in . 
the midst of dense Thalassia. Locations 4 through 
8 were correctly identified in the remotely sensed 
product. 

Qualitative comparison of the classification results 
with ground-truth information shows the classifica- 
tion maps to be both detailed and generally accu- 
rate. Details such as holes in the seagrass beds along 
the eastern shore were detected and their bare or 
sparsely vegetated states were correctly identified. 
There were some imperfections in the maps. Dense 
seagrass, which also contained large quantities of 
red algae, was confused with deep relatively clear 
water where the bottom was not visible. The very 
turbid water in the deep channel behind Pig Island, 
at the southwest corner of the bay, was misclassified 
as shallow water over dense vegetation. Sun-glint 

effects were particularly strong offshore on the east 
flight line. The hybrid classification was performed 
on data not significantly contaminated with sun 
glint. Using the model developed by Cox and Munk 
(1956), one can estimate the contamination of the 
data via emergent, upswelling radiance, by specular 
reflection of the solar disc from the surface. At- 
tempts have been made to reduce the effects of glint 
on scanner data by subtracting from the measured 
upwelling radiance a term which is a function of scan 
angle based on the probability of the sea-surface 
slope being such that the specular reflection of the 
sun would be seen by the scanner, but the data 
processed here were not so corrected. When con- 
tamination was not negligible, the data were 
omitted; in the case of the discriminant function 
analysis, the data were misclassified. 

Seagrasses are perennial in St. Joseph Bay and 
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TABLE 4. SUMMARIZED COVERAGE CLASSIFICATION RESULTS OBTAINED WITH DIFFERENT CLASSIFICATION TECHNIQUES 

Supervised Supervised 
Classification Classification 

(Composite Training (Individual Line Hybrid 
Fields) Training Fields) Classification 

Class Description Area (hectares) Area (hectares) Area (hectares) 

A. Subcategories 
Land 
Dense Grass 
Medium Grass 
Sparse Grass 
Very Sparse Grass 
Bare Bottom Visible 1 
Bare Bottom Visible 2 
Bare Bottom Visible 3 
Bottom Not Visible 
Red Algae 

B. General Categories 
Land 
Vegetation 
Bare Bottom Visible 
Bottom Not Visible 

local observers report that seagrass distribution ap- 
pears not to have changed for many years. To test 
that hypothesis, we compared the area of vegetated 
bottom observed by McNulty et al. (1972) with the 
area obtained from this analysis. 

The area in each class for the three flight lines 
computed by the three classification techniques are 
different because the number of classes differed 
among classification techniques (Table 4a). The 
major difference was that elimination of the Red 
Algae class in the supervised classification, using 
composite training fields, caused a decrease in veg- 
etation coverage and an increase in water coverage. 
A general summary, which combined all plant 
types, indicated reasonable agreement on vegeta- 
tion coverage for the individual-line training field 
and hybrid classifications (Table 4b). There were be- 
tween 2300 and 2400 hectares of vegetation cov- 
ering the part of St. Joseph Bay surveyed in this 
investigation. Some of the bay was excluded in this 
study; there was no flight-line coverage of the ex- 
treme northern area along the west shoreline and 
the northeastern portion of the bay (Figure 1). Sea- 
grass beds and attached algal stands are not as well 
developed in these areas in the part of the bay 
through which the flight line passes, but they are 
present. Therefore, the results of this investigation 
would be expected to ~ i e l d  a lower estimate of the 
area covered by vegetation coverage than the esti- 
mate of 2560 hectares by McNulty et al. (1972). The 
vegetation map prepared by these investigators also 
showed simplified vegetation distribution patterns, 
probably a consequence of problems in interpreting 
the aerial photography used in that investigation. 
The similarity in vegetation coverage observed 
during 1972 and during 1978 supports local impres- 

sions about the stability of bay macroplant com- 
munities. 

The successful mapping of the St. Joseph Bay 
benthic vegetation demonstrates the capability of 
automated analysis of remotely sensed data. The 
Landsat multispectral scanner includes sensors at 
approximately the same wavelengths as the RS-18 
bands 2 and 3. The results of the project, therefore, 
indicate that the more complex task of satellite map- 
ping of submerged vegetation for trend analysis 
should be investigated. 

The analysis of the scanner data by computer has 
several advantages over classical photointerpreta- 
tion. First, and perhaps most important, discrimi- 
nation is objective, although density slicing of mul- 
tispectral photography does provide a means for 
achieving objectivity. However, normal photointer- 
pretation with as fine a resolution as is available in 
aircraft and spacecraft scanner data is not always 
practical, and use of density slicing techniques re- 
duces the practicality further. Finally, the avail- 
ability of Landsat MSS,  and possibly Thematic 
Mapper data on regular intervals, should make fea- 
sible short- and long-term analysis of the trends of 
change of benthic vegetation. 
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