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An Automated Land-Use Mapping 
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Maximum Likelihood and Linear 
Discriminant Analysis Algorithms 

Linear discriminant analysis proved superior to the Bayesian maximum 
likelihood in accuracy, time, cost of automated land-use mapping, and 
nonsensitivity of the variance and number of mapping variables. 

INTRODUCTION available from the following orbital sensors or sat- 

A s THE USE of aircraft and satellite remote sensing ellites (Spann, 1980): 
data has transitioned from basic research to  ands sat-D (now  ands sat-4); 

both quasi- and fully operational applications, the Gravsat; 

ABSTRACT: The Bayesian maximum likelihood, a widely used parametric class$er, 
was tested against linear discriminant analysis, a data-based formulation, using 
the GLIKE and c u s s r F r  decisionlclassification algorithms, respectively, in the 
Landsat Mapping System at Colorado State University. Identical supervised 
training sets, uscs land-uselland-cover classes, and various combinations of 
Landsat image and ancillary geodata variables were used to compare thematic 
mapping accuracies of GLIKE and CLASSIFY on a single-date summer subscene cov- 
ering the Denver, Colorado metropolitan area. The "'ground-truth" reference was 
a cellularized u s ~ s  land-use map of the same time frame. CLASSIFY, which accepts 
a priori class probabilities, was a more accurate classifier than GLIKE, which as- 
sumes equal class occurrences, for all three sets of mapping variables and both 
levels of detail. Even using the equal class probability assumption of GLIKE, CLAS- 
SIFY was again the more accurate classifier in five of six comparisons with GLIKE. 
These specific results may be generalized to direct accuracy, time, cost, and flex- 
ibility advantages of linear discriminant analysis over the Bayesian maximum like- 
lihood, perhaps the most common machine classification technique used today. 

emphasis on digital data has steadily increased. Ad- Magsat; 
ditionally, digital image processing will expand at a Shuttle Imaging Radar; 
much faster rate than in the past with the increased Shuttle Large Format Camera; 
number of operational satellite programs and the Shuttle Multispectral Infi-ared Radiometer; 
increased volume of remote sensing data soon to be Stereosat; 
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Tethered Magnetometer; maps. Both supervised and unsupervised classifi- 
JEOS (Japan); and cation procedures have evolved to manipulate dig- 
SPOT (France). ital remote sensing data. The supervised method 

requires a human analyst to designate recognizable 
Digital image processing techniques are being in- "training sets" on an image, while the unsupervised 

creasingly applied to Landsat multispectral scanner method utilizes numerical clustering algorithms it- 
(MSS) data to generate thematic land-useAand-cover eratively done by computer. 

TABLE 1. "TURNKEY" HARDWAREISOFTWARE SYSTEMS OVERVIEW. Maximum likelihood classification algorithms were 
available in five of six "turnkey" image processing/multispectral analysis hardwarelsofhKare systems commercially 

available in the United States (Carter et al., 1977). 
- 

Turnkey Source Computer Required Supervised Programming 
System Organization Hardware Memory Classification Languages 

MDAS* Bendix Corp. DEC 131,072 Bayesian max. FORTRAN4 80% 
PDP-11s bytes likelihood, macro 20% 

Gaussian std. 

Vision Comtal Corp. DEC PDP- ? parallelpiped Macro 11 
One120 IlsNAX, 

DG Nova1 
Eclipse, 
H-P 21001 
3000, SEL 

IDIMS Electromag- H-P 131,072 advanced FORTRAN 
netic Sys- 3000 I1 bytes stored table SPL 
tems Labs (Bayesian 

maximum 
likelihood), 

maximum like- 
lihood 
(array pro- 
cessor), 

Euclidean min. 
distance 

IMAGE- General DEC 32,768 parallelpiped, FORTRAN4 90% 
loo* Electric PDP-11s words table lookup, PAL 10% 

Company nonparametric 
maximum 
likelihood, ** 

hardware bulk 
classifier, 
including 
table look- 
up and para- 
metric max. 
likelihood** 

System International H-P 131,072 maximum like- FORTRAN 
101 Imaging 3000 111 bytes lihood, SPL 

Systems parallelpiped, 
table lookup, 
Euclidean min. 

distance 

Earth- Interpreta- DEC 32,768 Bayesian max. FORTH 
view tion Systems PDP-11s words likelihood, hi level 85% 

Inc. parallelpiped, code 15% 
table lookup, 
nonparametric 

production discontinued 
** system option 
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Parametric decisionlclassification algorithms, 
such as Bayesian probabilities andlor maximum like- 
lihood functions, are commonly used in "turnkey" 
hardwarelsoftware systems (Table 1) and "public do- 
main" software systems (Table 2). However, the 
maximum likelihood decision rule requires a large 
number of multiplications and logical comparisons 
for each decision, particularly when many MSS chan- 
nels and mapping classes are used. 

Many alternative classifiers have been tested be- 
cause of the considerable amount of machine time 
consumed using maximum likelihood procedures. 
These studies have used a composite sequential 
clustering (Su et a d . ,  1972), an elliptical boundary 
condition model (Richardson et a l . ,  1971), and a 
lookup table procedure 30 times faster than the 
Bayesian maximum likelihood and broadly as accu- 
rate (Eppler et a d . ,  1971). 

Another multivariate classifier is linear discrimi- 
nant analysis. A priori data, in the form of selected 
samples of known land-uselland-cover types, are ex- 
tracted from the pictorial scene and used as training 
sets to structure the discriminant function of the 
form 

where x,, x,, . . . , x,  are the imagelgeodata vari- 
ables, and a , ,  a,, . . . , a, are coeacients computed 
to determine a single value for Y, the linear com- 
pound, that minimizes misclassifications. Therefore, 
linear discriminant analysis telescopes a multivar- 
iate problem down into a linearly ordered situation 
(Tom and Miller, 1982). 

Linear discriminant analysis computes a trans- 
form which gives the minimum ratio of the differ- 
ence between a pair of class means to the multivar- 

TABLE 2. "PUBLIC DOMAIN'' SOFTWARE SYSTEMS OVERVIEW. Maximum likelihood classification algorithms were featured 
in four of seven "public domain" image processing/multispectral analysis software systems available through the 
Univ. of Ga. COSMIC software clearinghouse (Carter et al., 1977; Univ. of Ga. Computer Center, 1981). The 

Bayesian maximum likelihood algorithm tested in this study was directly derived from the 
PurduelLARSYS software system. 

Software Source Computer Required Supervised Programming Cosmic 
System Organization Hardware Memory Classification Languages Reference 

ASTEP NASNGSFC Univac 40,960 maximum like- FORTRAN5 M75-10114 
1108 words lihood assembly 

CAMSP IBM Corp. IBM 307,200 maximum like- assembly 100% MSC-14979 
360s bytes lihood 

CLASSPAK NASNGSFC DEC 131,072 maximum like- FORTRAN GSC-12374 
PDP-11s bytes lihood assembly 

- -- - 

ELLTAB NASNJSC Univac ? table lookup FORTRAN5 100% MSC-14866 
1108 

LARSY S Purdue IBM 524,288 maximum like- FORTRAN4 90% MSC-14823 
111.1 Research 360s bytes lihood, assembly 10% 

Foundation sample (per 
field) 

classifier, 
multiimage 

layered 
classifier* 

MAXIAX NASNERL Varian 71,680 table lookup FORTRAN4 ERL-10007 
V-70 words assembly 

VICAR/ C d  TecWJet IBM 153,600 Bayesian*, FORTRAN4 70% NPO-14893 
IBIS ~ropulsion &s bytes parallelpiped assembly 30% 

Laboratory table 
lookup*, 

parallelpiped 
table lookup 
with Bayesian 
secondary 
classifier*, 

stored table 
Bayesian* 

* not available in COSMIC program library version 
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iate variance within the two classes in the simple 
linear case. Visualizing these two classes as con- 
sisting of two swarms of data points in two-spectral 
space, the one optimum orientation is derived along 
which the two groups have the greatest separation 
while simultaneously minimizing the internal 
spread or inflation of the distribution of each group. 
An adequate separation between groups A and B 
cannot be made using either variable x, or x, (Figure 
1). However, it is feasible to find an orientation 
along which the two groups are separated the most 
and inflated the least, with the coordinates of this 
axis of orientation being the linear discrimination 
function. 

The Bayesian maximum likelihood and linear dis- 
criminant analysis algorithms have been both im- 
plemented in the Landsat Mapping System (LMS), 
a second-generation multispectral analysis hard- 
warelsoftware package developed at Colorado State 
University. The LMS package is structured to ac- 
cepted both digital Landsat imagery and other spa- 
tial data for input, preprocessing, supervised feature 
extraction, decision/classification, and display 
output (Miller et al.,  197713). 

The maximum likelihood algorithm is FORTRAN- 
coded in LMS as GLIKE, a Bayesian maximum like- 
lihood classifier taken directly from the Purdue 
LARSYS package (Smith et al.,  1972). The linear dis- 

FIG. 1. Simple linear discriminant analysis diagram. This 
plot of two bivariate distributions shows an overlap be- 
tween groups A and B along both variables xl and x2. An 
orientation is computed along which the two groups are 
separated the most and inflated the least. The coordinates 
of this orientation are the linear discriminant function, and 
the clusters become distinguishable by projecting mem- 
bers of the two groups onto the discriminant function line 
(after Davis, 1973). 

criminant analysis algorithm is embodied in LMS as 
CLASSIFY, and is the modified verion of B M D 0 7 M  
from the UCLA biomedical statistical package 
(Dixon, 1967). Both of these LMS classifiers are 
broadly representative of their respective tech- 
niques, and any functional differences in these spe- 
cific formulations can also be attributed to the gen- 
eralized procedures. A detailed overview of the LMS 
GLIKE and CLASSIFY algorithms is presented for 
greater understanding (Table 3). 

The general hypothesis of this research was that 
linear discriminant analysis would offer speed and 
cost advantages over the Bayesian maximum likeli- 
hood at little or no sacrifice of accuracy in automated 
land-uselland-cover classification of Landsat MSS 
data, as demonstrated by controlled tests of the LMS 
GLIKE and CLASSIFY algorithms on a moderate-sized 
subscene with independent ground-truth data. A 
secondary hypothesis was that spatially registered 
Landsat image and ancillary geodata (excluding 
land-use data) could materially increase automated 
land-uselland-cover classification accuracy when 
used together. The prospect of combining both 
image and nonimage forms of digital spatial data be- 
comes increasingly attractive with the advent of au- 
tomated geographic information systems. 

The Denver, Colorado Metropolitan Area was 
designated as the study area for this comparative 
pattern recognition algorithm research. The study 
used the 15 August 1973 Landsat-1 scene identified 
as path 36, row 32. A digital landscape model was 
created to organize and overlay spatial data from 
satellite imagery, existing maps, and census tables 
into a computer framework (Tom and Miller, 1980b). 
This assemblage provided a multivariate, multitem- 
poral mathematical model which represented the 
landscape much as a three-dimensional model of the 
physical terrain is represented by a topographic map 
(Miller et al., 1977a). 

Ground control consisted of a 1:100,000-scale 
U.S. Geological Survey (USGS) land-use map of 
Denver encoded in the USGS Circular 671 classifi- 
cation system (Anderson et al., 1972). The original 
USGS map was manually compiled from 1:121,000- 
scale, high-altitude NASA U-2 color infrared aerial 
photos of 1972-1973 (Driscoll, 1975), and was sub- 
sequently cellularized as 4-ha (10-acre) squares for 
machine analysis (Table 4). 

The 15 August 1973 Landsat-1 scene was geo- 
metrically corrected to yield a north-south-oriented 
square of 38.6 km (24 statute miles) on a side and 
centered on the Denver Metropolitan Area. The re- 
sultant subscene contained 576 rows and 576 col- 
umns of 0.45-ha (1.11-acre) square pixels. A nearest- 
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TABLE 3. OVERVIEW OF THE "GLIKE" (BAYESIAN MAXIMUM LIKELIHOOD) A N D  "CLASSIFY" (LINEAR DISCRIMINANT ANALYSIS) 
ALGORITHMS. These two supervised machine classifiers, part of the LMS multispectral analysis package, were tested 
for comparative land-uselland-cover mapping accuracy on a single-date LANDSAT-1 summer subscene, using the 

same training sets, USGS classes, and mapping variables. 

Data Re- 
quirements 

Analysis 
Methods 

Limitations 

"Glike" 
Characteristics (Bayesian Maximum Likelihood) 

Capabilities Categorizes digital multispectral image 
data into predefined land-uselland-cover 
classes of interest, using supervised pat- 
tern recognition processes on n training 
set class means and n class variance-co- 
variance matrices. 

A priori identification of training areas for 
each specific mapping class in order to 
compute sample field statistics to serve 
as estimators of population parameters. 

A parametric approach which uses a like- 
lihood ratio decision rule based on the 
Bayesian formulation and conditional 
multivariate Gaussian probability densi- 
ties (Smith et al., 1972). 

1 Statistical 

Possible 
Consequences 
Of Statistical 
Violations 

Ramifications 

Individual dispersion matrices tend to be- 
come singular when numerous mapping 
classes are used; and it is more time-con- 
suming computationally to use individual 
dispersion matrices (Hsu, 1978). 

The training data for each mapping class 
adequately represents the actual class; 

A priori class probabilities assumed to be 
equal (Maxwell, 1976); 

The data are multivariate normally distrib- 
uted (Smith et al., 1972); 

The data are independent and have equal 
variances (Mendenhall and Scheder, 
1973). 

Classification accuracy is not very sensitive 
to even a moderately severe violation of 
the normality assumption (Swain and 
Davis, 1978). 

Transformation may be used on original 
"raw" data to generate normally distrib- 
uted data sets; or multimodal classes may 
be separated into more normally distrib- 
uted subclasses (Smith et al., 1972). 

"Class%" 
(Linear Discriminant Analysis) 

Categorizes digital multispectral image 
data into predefined land-uselland-cover 
classes of interest, using supervised pat- 
tern recognition processes on n training 
set class means and a single, within- 
groups variance-covariance matrix. 

A priori identification of training areas for 
each specific mapping class in order to 
compute sample field statistics to serve 
as estimators of population parameters. 

A data-based formulation which calculates 
functions which discriminate between 
mapping classes in an optimal manner. 
The discriminant functions determine 
boundaries which produce a set of sub- 
spaces, one subspace for each class. The 
location of the boundaries is such that a 
minimum of misclassifications (i. e. ,  in- 
dividual points lying in the incorrect sub- 
space) occur (Jordan et al., 1978). 

The linear discriminant approach reduces 
a multidimensional problem to a more 
manageable linear problem. This many- 
to-one mapping, a t  least in theory, 
cannot reduce the minimum achievable 
error rate. However, some of the theo- 
retically attainable accuracy can be sac- 
rificed for the advantages of working 
solely with a linear model (Duda and 
Hart, 1973). 

The training data for each mapping class 
adequately represents the actual class; 

A priori class probabilities may be speci- 
fied, or assumed to be equal otherwise 
(Dixon, 1967); 

No underlying statistical model is assumed 
(Duda and Hart, 1973); 

The data are independent and have equal 
variances (Mather, 1976). 

Discriminant analysis is not seriously af- 
fected by limited departures from nor- 
mality or limited inequality of variances 
(Davis, 1973). 

The Bayesian maximum likelihood and 
linear discriminant analysis procedures 
yield the same results if the data sets are 
independent, normally distributed, and 
have equal variances (G. H. Rosenfield, 
unpublished data, 1983). 

neighbor restitution algorithm with Earth rotation, with ancillary land-use, physiographic, transporta- 
scanline skew, nonlinear mirror velocity, frame ro- tion access, and socio-economic geodata (Table 5). 
tation, and pixel resampling without ground control A one-ninth subscene was generated by rectilin- 
points was used to generate the spectral data set early resampling every third row and third column 
(Tom and Miller, 1980a). This rectification allowed for a total sample of 192 rows and 192 columns from 
the spatial registration of digital Landsat image data the original 576- by 576-element composite land- 



TABLE 4. HIERARCH~CAL USGS CIRCULAR 671 LAND-USEILAND-COVER CLASSIFICATION SYSTEM USED FOR THE DENVER 
METROPOLITAN AREA. Only the first- and second-order mapping classes are standardized for aircraft and/or satellite 

image class&cation/interpretation. The detailed third-order classes are completely user-defined. A 1972-1973 USGS 
photointerpreted land-use map (Driscoll, 1975) was used as the ground-truth reference against which all the 

machine classifications were compared for mapping accuracy at a given hierarchical level of detail. 

Multilevel 
Digital 
Codes 

First-Order Land-UselLand-Cover Type 
Second-Order Land-UseILand-Cover Type 

Third-Order Land-UseILand-Cover Type 
-- 

1 Urban and Built-up Land 
11 Residential 
12 Commercial and Services 

Recreational 
13 Industrial 
14 Extractive 
15 Transportation, Communications, and Utilities 

Utilities 
16 Institutional 
17* Strip and Clustered Development 
18* Mixed Urban 
19 Open and Other Urban 

191 Solid-Waste Dump 
192 Cemetery 

2 Agricultural Land 
21 Cropland and Pasture 

Nonirrigated Cropland 
Imgated Cropland 
Pasture 

Orchards, Groves, and Other Horticultural Areas 
Feeding Operations 
Other Agricultural Land 

Rangeland 
Grass 
Savannas 
Chapparal (taken as brushland) 
Desert Shrub 

Forest Land 
Deciduous 

DeciduousIIntermittent Crown 
Evergreen (Coniferous and Other) 

ConiferousISolid Crown 
ConiferousIIntermittent Crown 

Mixed Forest Land 

5 Water 
51 Streams and Waterways 
52 Lakes 
53 Reservoirs 
54* Bays and Estuaries 
55* Other Water 

6* Nonforested Wetland 
61* Vegetated 
62* Bare 

7 Barren Land 
71* Salt Flats 
72* Beaches 
73* Sand Other Than Beaches 
74 Bare Exposed Rock 

741 Hillslopes 
75* Other Barren Land 

8* Tundra 
81* Tundra 

9* Permanent Snow and Icefields 
91* Permanent Snow and Icefields 

* Land-usenandcover type not found in the Denver Metropolitan Area. 



TABLE 5. LIST OF 48 SPATIAL LANDSC~PE MODELING VARIABLES. The 38.6-km by 38.6-km (24-statute-mile) Denver 
Metropolitan Area was imaged by ten LANDSAT-1 channels and channel ratios, as well as 38 collateral geodata 

planes. Each landscape data plane represented a spatially distributed, single-variable image or map 
in a fully registered stack. 

Landscape Variable 
Submodel Landscape Variable Source of Data Type 

Landsat-1 
Image 

MSS-4 (visible green) 
MSS-5 (visible red) 
MSS-6 (solar infraredl) 
MSS-7 (solar infrared2) 
MSS-51MSS-4 ratio 
MSS-WMSS-4 ratio 
MSS-7lMSS-4 ratio 
MSS-51MSS-6 ratio 
MSS-7lMSS-5 ratio 
MSS-7lMSS-6 ratio 

15 Aug 73 Landsat-1 digital tape ,, 

Computed as MSS-51MSS-4 ratio 
Computed as MSS-6lMSS-4 ratio 
Computed as MSS-7lMSS-4 ratio 
Computed as MSS-5lMSS-6 ratio 
Computed as MSS-7lMSS-5 ratio 
Computed as MSS-7lMSS-6 ratio 

Numerical 

Land-Use 1963 photo land-use 1:20,000-scale BiW aerial photos Categorical 
1970 photo land-use 1:24,000-scale BiW orthophotos I 

1972-1973 USGS photo land-use 1:100,000-scale USCS land-use map ,, 
1963-to-1970 land-use changes (from) Computed from 1963 and 1970 land-use ,I 

1963-to-1970 land-use changes (to) ,, 
1963-to-1970 alphanumeric land-use I 

changes (from) 
1963-to-1970 alphanumeric land-use I ,  

changes (to) 

Physiographic Topographic elevation 1:24,000-scale USGS topographic maps Numerical 
Topographic slope Computed from topographic elevations I 

Topographic aspect , , 
Surficial geology 1:62,500-scale USGS geologic map Categorical 
LANDSAT image insolation Computed from elevation, slope, aspect Numerical 
LANDSAT MSS-4linsolation ratio Computed as MSS-4linsolation ratio t 

LANDSAT MSS-Slinsolation ratio Computed as MSS-Slinsolation ratio ,, 
LANDSAT MSS-GIinsolation ratio Computed as MSS-Winsolation ratio 
LANDSAT MSS-7linsolation ratio Computed as MSS-7linsolation ratio b 

Road Composite minor road minimum Computed from 1:45,000-scale state Numerical 
Transpor- distance (MD) highway department map 
tation Composite major road MD " , 
Access Freeway MD 0 

Freeway interchange MD , 
Built-up urban area MD , 

Socio-Economic Total population 

Total families 
Total year-round housing units 
Total vacant housing units 
Total occupied housing units 
1969 mean family income 
Median housing-unit value 
Median housing-unit rent 
Total one-car families 
Total two-car families 
Total three-lthree-plus car families 
Total census tract acreage 
Population density per acre 

Average number of cars per family 

Average number of families per 
acre 

Average number of year-round 
units per acre 

Average number of vacant housing 
units Der acre 

- - 

1970 Census reports and 1:84,500-scale Numerical 
Census tract maps 

N b 

r 

Computed from Census tract maps 
Computed as total populationltotal 

census tract acreage 
Computed as total one-, two-, three-, 

and three-plus car familiesltotal 
families 

Computed as total familiesitotal census 
tract acreage 

Computed as total  ear-round housing 
units/total census tract acreage 

Computed as total vacant housing units1 
total census tract acreage 



scape model. Consequently, the classification accu- 
racy of any algorithm, combination of mapping vari- 
ables, or training set structure could be verified on 
a point-to-point basis by comparison with the cel- 
lularized 1972- 1973 USGS land-use map. 

Training set statistics for both the Bayesian max- 
imum likelihood and linear discriminant analysis 
were generated by a new self-verifying, grid-sam- 
pling training point approach. This point training 
set was created by again resampling every third row 
and third column of the one-ninth subscene, 
yielding a one-ninth times one-ninth or 1181-sam- 
pled image of 4,100 training points of known USGS 
land-uselland-cover type. This systematic point 
sampling process represented an efficient distilla- 
tion of the landscape model, while providing uni- 
form coverage of the study area (Tom and Miller, 
1982). 

Three combinations of imagelnon-image mapping 
variables were applied to classify the one-ninth sub- 
scene. These mapping combinations were selected 
to appraise the classificational utility of increas- 
ing amounts of collateral geodata beyond the basic 
MSS bands. The four-variable combination was the 
basic four MSS bands. The six-variable set included 
MSS-4, MSS-7, MSS-~IMSS-5 ratio, M S S - ~ / M S S - ~  ratio, 
topographic elevation, and urban built-up area min- 
imum distance, a computed spatial distance param- 
eter that expresses the shortest straight-line dis- 
tance from any cell to the closest urban built-up area 
(Tom et  al . ,  1978). Lastly, the 22-variable set con- 
tained the maximum number of the 41 nonland-use 
variables (Table 5) which could be used for max- 
imum likelihood mapping with GLIKE. That is, the 
restricted subset of the 48 spatial landscape mod- 
eling variables with nonzero individual dispersion 

matrices in the 13 second- and 11 third-order USGS 
land-use classes and, therefore, permitting matrix 
inversion by GLIKE (Appendix A). These were the 
four basic MSS bands, six MSS ratios, four ~sslinso- 
lation ratios, topographic elevation, topographic as- 
pect, landsat image insolation, and five road trans- 
portation access minimum-distance variables. 

These three mapping combinations were applied 
to the one-ninth subscene using both the GLIKE and 
CLASSIFY algorithms, and checked for general first- 
order accuracy on a point-to-point basis for all of the 
36,864 points against the 1972-1973 USGS land-use 
reference. The GLIKE average accuracies checked to 
six first-order USGS classes were 54, 68, and 61 per- 
cent, respectively, for the four-, six-, and 22-vari- 
able mapping combinations, while the CLASSIFY av- 
erage accuracies (with a priori class probabilities) 
were 65, 73, and 76 percent, respectively (Table 6). 

The GLIKE average accuracies checked to 13 
second- and 11 third-order USGS classes were 4, 15, 
and 2 percent, respectively, for the four-, six-, and 
22-variable mapping combinations, while the CLAS- 
SIFY average accuracies (with a priori class proba- 
bilities) were 38, 46, and 49 percent, respectively 
(Table 7). 

The poor performance of GLIKE, especially for the 
detailed second- and third-order USGS classes, was 
indeed surprising. A detailed explanation is not cur- 
rently available. However, the fact that the first- 
order GLIKE mapping accuracy was comparatively 
high relative to the second- and third-order map- 
ping accuracy may ~rovide a clue. That is, the ca- 
pability for specifying a priori class probabilities in 
CLASSIFY materially improved all its classifications 
(Appendix B). Because no such capability existed in 
GLIKE, it could achieve comparable results to CLAS- 

TABLE 6. COMPMIVE FIRST-ORDER LAND-USEILAND-COVER MAPPING ACCURACIES OF "GLIKE" A N D  "CLASSIFY" (WITH A 
 PRIOR^ [PRIOR] CUSS PROBABILITIES) ALGORITHMS. A 192-row by 192-column subscene was classified with both 

algorithms using three different combinations of LANDSAT-1 image and/or ancillary geodata variables. The same 
supervised training areas were used for both algorithms. The accuracy of these classifications was checked 

cell-by-cell for six first-order classes (Table 5) against the digital 1972-1973 USGS reference. Calculated z values and 
associated significance levels (P) showed that there were highly significant differences between the two classifiers in 

providing correct classifications (after Snedecor and Cochran, 1967). Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Glike 19,751 53.58 z = 32.5* 
Four 

Classify (Prior) 24,051 65.24 P = 0.000 

Glike 25,093 68.07 z = 14.9* 
Six 

Classify (Prior) 26,938 73.07 P = 0.000 

Clike 22,662 61.47 z = 41.7* Twenty- 
Two Classify (Prior) 27,855 75.56 P = 0.000 

* Significant at 0.001 probability level. 
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TABLE 7. COMPARATIVE SECOND- AND THIRD-ORDER LAND-USEILAND-COVER MAPPING ACCURACIES OF "CUKE" AND 

"CLASSIFY" (WITH A PRIORI [PRIOR] CLASS PROBABILITIES) ALGORITHMS. A 192-row by 192-column subscene was 
classified with both algorithms using three different combinations of LANDSAT-1 image and/or ancillary geodata 
variables. The same supervised training areas were used for both algorithms. The accuracy of these classifications 

was checked cell-by-cell for 13 second- and 11 third-order classes (Xble 5) against the digital 1972-1973 USCS 
reference. Calculated z values and associated significant levels (P) showed that there were highly significant 

differences between the two classifiers in providing correct classifications (after Snedecor and Cochran, 1967). 
Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Glike 1,584 4.30 z = 122.7* 
Four 

Classify (Prior) 13,972 37.90 P = 0.000 

Glike 5,690 15.44 z = 96.1* 
Six 

Classify (Prior) 17,056 46.27 P = 0.000 

Twenty- Glike 895 2.43 z = 170.3* 

Two Classify (Prior) 18,002 48.83 P = 0.000 

* Significant at 0.001 probability level. 

SIFY given only six broad first-order classes, but the 
statistical similarity of the many second- and third- 
order classes proved too much for it to handle with 
only assumed equal class probabilities. 

This a priori versus equal class probability hy- 
pothesis was tested by rerunning the CLASSIFY al- 
gorithm for the four-, six-, and 22-variable mapping 
combinations, and quantifying the accuracy changes 
using the equal class probability assumption of 
GLIKE. Consequently, CLASSIFY had reduced av- 
erage accuracies with equal mapping class proba- 
bilities which, checked to six first-order classes, 

were 51, 71, and 73 percent, respectively, for the 
four-, six-, and 22-variable mapping combinations 
(Table 8), while the combined second- and third- 
order accuracies were 19, 32, and 37 percent, re- 
spectively (Table 9). 

The use of equal mapping class probabilities pre- 
sumes equal likelihood of each land-usefland-cover 
type in the larger, unknown image, while weighted 
class probabilities presume that the analyst has 
some a priori knowledge of the proportion of pre- 
defined mapping classes in the study area. Some 
knowledge of the relative amount of each class, 

TABLE 8. COMPARATIVE FIRST-ORDER LAND-USEILAND-COVER MAPPING ACCURACIES OF "GLIKE" AND "CLASSIFY" (WITH 
DEFAULT [EQUAL] CLASS PROBABIUTIES) ALGORITHMS. A 192-row by 192-column subscene WEIS classified with both 

algorithms using three different combinations of LANDSAT-1 image and/or ancillary geodata variables. The same 
supervised training areas were used for both algorithms. The accuracy of these classifications was checked 

cell-by-cell for six first-order classes (Table 5) against the digital 1972-1973 USGS reference. Calculated z values and 
associated significant levels (P) showed that there were highly significant differences between the two classifiers in 

providing correct classifications (after Snedecor and Cochran, 1967). Image taken 15 August 1973. 

Number of Computer 
Mapping Classification 
Variables Algorithm Used 

Verified Verified Computed 
Accuracy, Accuracy, Z 

Pixels Percent Statistic 
- - 

Glike 19,751 53.58 z = 8.26* 
Four 

Classify (Equal) 18,631 50.54 P = 0.000 

Glike 25,093 68.07 z = 7.33* 
Six 

Classlfy (Equal) 26,011 70.56 P = 0.000 

Glike 22,662 61.47 z = 33.8* Twenty- 
Two Classify (Equal) 26,937 73.07 P = 0.000 

* Significant at 0.001 probability level. 
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TABLE 9. COMPARATIVE SECOND- A N D  THIRD-ORDER LAND-USE ~'~APPING/LAND-COVER MAPPING ACCURACIES OF "GLIKE" 
AND "CLASSIFY" (WITH DEFAULT [ E Q u ~ ~ ]  CLASS PROBABILITIES) ALGORITHMS. A 192-row by 192-column subscene was 
classified with both algorithms using three different combinations of LANDSAT-1 image andlor ancillary geodata 
variables. The same supervised training areas were used for both algorithms. The accuracy of these classifications 

was checked cell-by-cell for 13 second- and 11 third-order classes (Table 5) against the digital 1972-1973 USGS 
reference. Calculated z values and associated significance levels (P) showed that there were highly significant 
differences between the two classifiers in providing correct classifications (after Snedecor and Cochran, 1967). 

Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Glike 1,584 4.30 z = 64.1* 
Four 

Classify (Equal) 7,030 19.07 P = 0.000 

Glike 5,690 15.44 z = 54.8* 
Six 

Classify (Equal) 11,915 32.32 P = 0.000 

Twenty- Glike 895 2.43 z = 131.7* 

Two Class* (Equal) 13,728 37.24 P = 0.000 

* Significant at 0.001 probability level. 

whether derived from field surveys, image sam- 
pling, or ancillary geodata sources, is computation- 
ally useful. Previous results from CLASSIFY with de- 
fault (equal) and a prior+ class probabilities checked 
to the six first-order USGS classes (Table 10) and the 
combined 13 second- and 11 third-order USGS 
classes (Table 11) directly showed the reduced map- 
ping accuracy using assumed equal class occur- 
rences. The drop was even more pronounced for the 
combined second- and third-order classes (Table 

l l ) ,  and mirrored the same effect noted earlier in 
GLIKE, although not to the same severity. 

A clear machine time and cost differential 
emerged-between the two LMS algorithms. GLIKE 
took 508, 845, and 2,212 machine seconds on a Con- 
trol Data Corporation 6400 computer, respectively, 
for the four-, six-, and 22-variable mapping combi- 
nations, while CLASSIFY took only 406, 430, and 612 
seconds, respectively (Table 12). Thus, CLASSIFY 
took only 80, 51, and 28 percent of the machine 

TABLE 10. COMPARATIVE FIRST-ORDER LAND-USELAND-COVER MAPPING ACCURACIES OF "CLASSIN" (WITH DEFAULT 
[EQUAL] AND A PRIORI [PRIOR] CLASS PROBABILITIES) ALGORITHM. A 192-rOw by 192-column subscene was classified 
with both class probabilities using three different combinations of LANDSAT-1 image andlor ancillary geodata 

variables. The same supervised training areas were used for the algorithm. The accuracy of these classifications was 
checked cell-by-cell for six first-order classes (Table 5) against the digital 1972-1973 USGS reference. Calculated z 
values and associated significance levels (P) showed that there were highly significant differences between the two 

class probabilities in providing correct classifications (after Snedecor and Cochran, 1967). 
Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Classify (Equal) 18,631 50.54 z = 40.9* 
Four 

Classify (Prior) 24,051 65.24 P = 0.000 

Classify (Equal) 26,011 70.56 z = 7.58* 
Six 

Classify (Prior) 26,938 73.07 P = 0.000 

Twenty- Class* (Equal) 26,937 73.07 z = 7.74* 

Two Classify (Prior) 27,855 75.56 P = 0.000 

* Significant at 0.001 probability level. 
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TABLE 11. COMPARATIVE SECOND- AND THIRD-ORDER LAND-USE/~ND-COVER MAPPING ACCURACIES OF "CLASSIFY" ( W ~ H  
DEFAULT [EQUAL] AND A PR~ORI [PRIOR] CLASS PROBABILITIES) ALGORITHM. A 192-row by 192-column subscene was 
classified with both class probabilities using three different combinations of LANDSAT-1 image andlor ancillary 

geodata variables. The same supervised training areas were used for the algorithm. The accuracy of these 
classifications was checked cell-by-cell for 13 second- and 11 third-order classes (Table 5) against the digital 1972- 

1973 USGS reference. Calculated z values and associated significance levels (P) showed that there were highly 
significant differences between the two class probabilities in providing correct classifications (after Snedecor and 

Cochran, 1967). Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Classlfy (Equal) 7,030 19.07 z = 57.9* 
Four 

Classify (Prior) 13,972 37.90 P = 0.000 

Classify (Equal) 11,915 32.32 z = 39.2* 
Six - -- 

Classify (Prior) 17,056 46.27 P = 0.000 

Classify (Equal) 13,728 37.24 z = 32.0* Twenty- 
Two Classify (Prior) 18,002 48.83 P = 0.000 

* Significant at 0.001 probability level. 

times required by GLIKE, respectively, for the four-, 
six-, and Wvariable mapping combinations. The 
GLIKE algorithm thus exhibited machine time and 
cost sensitivity to the number of mapping variables 
used for classification. 

The CLASSIFY algorithm had a clear cost advantage 
over GLIKE when the machine costs were weighted 
by correctly classified pixels for costs per correct 

pixel. Here, CLASSIFY was 1.5, 2.1, and 4.4 times 
more cost-effective than GLIKE for the first-order 
mapping of the four-, six-class, and 22-variable map- 
ping combinations, respectively, while for the com- 
bined second- and third-order mapping, CLASSIFY 
was 11.3, 6.0, and 73.7 times more cost-effective, 
respectively (Table 12). 

Finally, the use of band ratios derived from the 

TABLE 12. COMPARATIVE MACHINE CLASSIFICATION TIMES, TOTAL COSTS, AND COSTS PER CORRECT PIXEL OF "GLIKE" A N D  

"CLA~~IFY" (WITH DEFAULT [EQUAL] AND A P R ~ O R ~  [PRIOR] CLASS PROBABILITIES) ALGORITHMS. ii 192-row by 192-column 
subscene was classified with both algorithms using three different combinations of LANDSAT-1 image andlor 

ancillary geodata variables. The same supervised training areas were used for both algorithms. The accuracy of these 
classifications was checked cell-by-cell for six first-order and 13 second- and 11 third-order classes (Table 5), 

respectively, against the digital 1972-1973 USCS reference. The machine processing was performed on a Control 
Data Corporation 6400 computer. Image taken 15 August 1973. 

Number of Computer Machine Machine Cost per Correct Cost per Correct 
Mapping Classification Time, Cost, First-Order Second-/Third- 
Variables Algorithm Used Seconds Dollars Pixel, Cents Order Pixel, Cents 

Clike 508.24 40.94 0.21 2.59 

Four Classlfy (Equal) 401.21 32.32 0.17 0.46 

Classify (Prior) 406.33 32.73 0.14 0.23 

Glike 844.97 68.07 0.27 1.20 

Six Classlfy (Equal) 414.90 33.42 0.13 0.28 

Classify (Prior) 429.45 34.59 0.13 0.20 

Glike 2212.42 178.22 0.79 19.91 

Twenty- classify (~qua l )  610.28 49.16 0.18 0.36 
Two 

Classlfy (Prior) 612.24 49.32 0.28 0.27 
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TABLE 14. IMPROVEMENT IN THE COMBINED SECOND- AND THIRD-ORDER LAND-USEILAND-COVER MAPPING ACCURACIES OF 

"CLASSIFY" (WITH A PRIORI [PRIOR] CLASS PROBABILITIES) ALGORITHM BY THE ADDITION OF MSS BAND RATIOS AND 

ANCILLARY GEODATA. Calculated z values and associated significance levels (P) showed that there were highly 
significant differences between the four- and mapping combination and the addition of MSS band ratios and 

ancillary geodata in providing correct classifications (after Snedecor and Cochran, 1967). 
Image taken 15 August 1973. 

Number of Computer Verified Verified Computed 
Mapping Classification Accuracy, Accuracy, Z 
Variables Algorithm Used Pixels Percent Statistic 

Four 13,972 37.90 z = 23.1* 
Classlfy (Prior) 

Six 17,056 46.27 P = 0.000 

Four 13,972 37.90 
Classlfy (Prior) z = 30.1* 

Twenty- 18,002 48.83 
Two P = 0.000 

Six 17,056 46.27 z = 6.96* 
Classify (Prior) 

Twenty- 18,002 48.83 P = 0.000 
Two 

* Significant at the 0.001 probability level 

basic MSS bands, as well as map-derived ancillary 
geodata, as additional pseudospectral bands in- 
creased thematic mapping accuracy over the basic 
four-band mapping combination. Previous results 
from CLASSIFY with a priori class probabilities 
checked to the six first-order USGS classes (Table 13) 
and the combined 13 second- and 11 third-order 
USGS classes (Table 14) directly showed the in- 
creased classificational accuracy using band ratios 
and, in particular, ancillary geodata. 

Several significant conclusions emerged from 
these comparative LMS algorithm tests involving 
GLIKE (Bayesian maximum likelihood) and CLASSIFY 
(linear discriminant analysis), as follows: 

Linear discriminant analysis was a more accurate 
classifier than the Bayesian maximum likelihood; 
Bayesian maximum likelihood machine time was 
greater than that for linear discriminant analysis; 
Bayesian maximum likelihood machine cost per 
correctly classified pixel was much greater than 
that for linear discriminant analysis; and 
Linear discriminant analysis machine time was 
much less sensitive to the number of mapping vari- 
ables apd zero mapping class variance than the 
Bayesian maximum likelihood. 

These results demonstrated the greater utility of 
linear discriminant analysis as a data-based machine 
algorithm relative to the Bayesian maximum likeli- 
hood, perhaps the most common computer classi- 
fication technique in use today. Advantages of linear 
discriminant analysis were indicated in terms of ac- 
curacy, time, cost, and nonsensitivity to the statis- 
tical variance and number of mapping variables. 

These economies of the linear discriminant algo- 
rithm will be important in making the computer 
more available and acceptable for machine pro- 
cessing of digital MSS data in the future. 

The WSGS Circular 671 scheme, developed for air- 
craft and satellite data inputs, worked reasonable 
well as a hierarchical classification system at both 
the first- and second-order levels in this supervised 
machine-interpretation effort. However, it ap- 
peared that much more detailed ancillary geodata 
will be needed for accurately mapping the third- 
order USGS urban classes. The inherent remaining 
problem in urban settings is the repetitive use of 
man-made building matrials in a diversity of urban 
land uses, and is worthy of additional research. For- 
tunately, the USGS land-use classification system is 
predominately land-cover oriented and is therefore 
useful for remote sensing discrimination. The ancil- 
lary geodata compensated, in large part, for the 
land-uselland-cover confusion factor in the seven 
second-order urban classes but did not do well for 
the four third-order urban classes. Average classi- 
fication accuracy was 60 percent for the second- 
order urban classes, but only 13 percent for the 
third-order classes, using linear discriminant anal- 
ysis. The generally poor performance of the Baye- 
sian maximum likelihood, especially for the second- 
and third-order uscs classes, should also receive ad- 
ditional attention by researchers. 

Lastly, the increased mapping accuracy of joint 
Landsat image and ancillary geodata sets strongly 
suggests that additional automated geographic in- 
formation systems development could provide more 
complete, consistent, and objective information and 
analyses than might be possible using only digital 
remote sensing data. 



AUTOMATED LAND-USE MAPPING COMPARISON 

The authors gratefully acknowledge the indis- 
pensable support provided by the Earth Resources 
Branch (Code 923), ~ ~ s ~ / G o d d a r d  Space Flight 
Center, and the Colorado State University Com- 
puter Center, as well as the many helpful comments 
and suggestions received during the preparation of 
this paper, particularly those of George H. Rosen- 
field, us~s/Reston, Virginia. The work described in 
this report was performed for the National Aero- 
nautics and Space Administration, Goddard Space 
Flight Center, Greenbelt, M D  20771. 

1 Anderson, J. R., E. E. Hardy, and J. T. Roach, 1972. A 
Land-Use Classification System for Use with Remote 
Sensor Data. U.S. Geological Survey Circular 671, 
U.S. Gov't Print. Off., Wash., D.C., 16 p. 

Carter, V. P., E Billingsley, and J. Lamar, 1977. Summary 
Tables for Selected Digital Image Processing Systems. 
U.S. Geological Survey Open-File Report 77-414, 
Reston, Va., 45 p. 

Davis, John C., 1973. Statistics and Data Analysis in Ge- 
ology. John Wiley and Sons, New York, 550 p., illus. 

Dixon, W. J., 1967. BMD Biomedical Programs. Univ. of 
Calif. Press, Berkeley, pp. 214a-214s. 

Driscoll, Linda B., 1975. Land-Use Classifxation Map of 
the Greater Denver Area, Front Range Urban Cor- 
'ridor. U.S. Geological Survey Misc. Inv. Map-I- 
856-E. 

I Duda, R. O., and P. E. Hart, 1973. Pattern Classij?cation 
and Scene Analysis. John Wiley and Sons, New York, 

I 482 p., illus. 
Eppler, W. G., C. A. Helmke, and R. H. Evans. 1971. 

Table Look-Up Approach to Pattern Recognition. In 
Proceedings of the Seventh lnternational Symposium 
on Remote Sensing of Environment, The Univ. of 
Michigan, Ann Arbor, pp. 1415-1425. 

Hsu, Shin-yi, 1978. Texture-Tone Analysis for Automated 
Land-Use Mapping. Photogram. Eng. and Remote 
Sensing 44(11): 1393-1404. 

Jordan, D. C., D. H. Graves, and M. C. Hammetter, 
1978. Use of Manual Densitometry in Land Cover 
Classification. Photogram. Eng. and Remote Sensing 
44(8): 1053-1059. 

Mather, P. M., 1976. Computational Methods of Multi- 
variate Analysis in Physical Geography. John Wiley 
and Sons, London, 532 p., illus. 

Maxwell, Eugene L. 1976. Multivariate Systems Analysis 
of Multispectral Imagery. Photogram. Eng. and Re- 
mote Sensing 42(9):1173-1186. 

Mendenhall, W., and R. L. Scheaffer, 1973. Mathematical 
Statistics with Applications. Duxbury Press, North 
Scituate, Mass., 55 pp., plus appendices. 

Miller, L. D., C. H. Tom, and K. Nualchawee, 1977a. 
Remote Sensing lnputs to Landscape Models Which 
Predict Future Spatial Land Use Patterns for Hy- 
drologic Models. NASA preprint X-923-77-115, God- 
dard Space Flight Center, Greenbelt, Md., 41 p., 
illus. 

Miller, L. D., E. L. Maxwell, and R. L. Riggs, 1977b. 
User's Manual for L M S  (LANDSAT Mapping System). 

Dep't of Earth Resources, Colorado State Univ., Ft. 
Collins, misc. paging. 

Richardson, A. J., R. J. Torline, and W. A. Allen, 1971. 
Computer Identification of Ground Pattern from Ae- 
rial Photographs. In Proceedings of the Seventh ln- 
ternational Symposium on Remote Sensing of Envi- 
ronment, The Univ. of Michigan, Ann Arbor, pp. 
1357- 1376. 

Smith, J. A., L. D. Miller, and T. D. Ells, 1972. Pattern 
Recognition Routines for Graduate Training in the 
Automatic Analysis of Remote Sensing Imagery- 
RECOG. Science Series 3A, Dep't of Watershed Sci- 
ences, Colorado State Univ., Ft. Collins, 86 p., illus. 

Snedecor, G. W., and W. G. Cochran, 1967. Statistical 
Methods, Sixth Ed. Iowa State Univ. Press, Ames, 
593 p., illus. 

Spann, G. William, 1980. Satellite Remote Sensing Mar- 
kets in the 1980's. Photogram. Eng. and Remote 
Sensing 46(1):65-69. 

Su, M. Y., R. R. Jayroe, and R. E. Cummings, 1972. Un- 
supervised Classification of Earth Resources Data. In 
Remote Sensing of Earth Resources, F. Shahrokhi, 
ed., Univ. of Tennessee, Tullahoma, pp. 673-694. 

Swain, P. H., and S. M. Davis, 1978. Remote Sensing: 
The Quantitative Approach. McGraw-Hill Book Co., 
New York, 396 p., illus. 

Tom, C. H., and L. D. Miller, 1980a. Spatial Land-Use 
Inventory/Denver Metropolitan Area, with Inputs 
kom Existing Maps, Air Photos, and LANDSAT Im- 
agery. In Proceedings of the Fourteenth lnternational 
Symposium on Remote Sensing of Environment, The 
Univ. of Michigan, Ann Arbor, pp. 603-612. 

, 1980b. Forest Site Index Mapping and Modeling. 
Photogram. Eng. and Remote Sensing 46(12):1585- 
1596. 

, 1982. A Comparison of LANDSAT Point and Rec- 
tangular Field Training Sets for Land-Use Classifica- 
tion. lnternational Jour. of Remote Sensing review 
draft, 28 p. 

Tom, C. H., L. D. Miller, and J. R. Christenson, 1978. 
Spatial Land-Use Inventory, Modeling, and Projec- 
twnlDenver Metropolitan Area, with lnputs from Ex- 
isting Maps, Airphotos, and LANDSAT Imagery. 
NASA Technical Memorandum 79710, Goddard 
Space Flight Center, Greenbelt, Md., 225 p., illus. 

Univ. of Ga. Computer Center, 1981. Image Processing. 
Computer Software Management and Information 
Center (COSMIC), Univ. of Ga. Computer Center, 
Athens, Ga., misc. paging. 

(Received 26 May 1982; revised and accepted 1 October 
1983) 

APPENDIX A 
BAYESIAN MAXIMUM LIKELIHOOD 

The Bayesian maximum likelihood classifier, such 
as the GLIKE classification algorithm in the LMS 
package, assumes that the data are multivariate nor- 
mally distributed. It utilizes a Bayesian decision 
rule of the form 
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where 

p(Xli) is the likelihood of occurence of the fea- 
ture vector 
X given that it belongs to the ith class, 
Pi is the variance-covariance matrix for the ith 
class, 
JSil is the determinant of Xi, 
2-I is the inverse of Xi, and 
A, is the mean feature vector for the ith class. 

These conditional probabilities for mapping 
classes are taken two at a time, ratioed, and evalu- 
ated to assign each pixel to the class for which the 
likelihood, p(Xli), or the unknown vector is the 
highest, or 

g,(X) = p(X/i). 

The class probabilities, p(i), are assumed equal in 
the Bayesian maximum likelihood (Maxwell, 1976). 
However, the modified Bayesian maximum likeli- 
hood can exploit a priori mapping class probabilities 
for improved machine classification accuracy by 
taking 

ANALYSIS 

Linear discriminant analysis derives linear com- 
binations of the mapping variables which provide 
the greatest separation of the group multivariate 
means, and which provide the least inflation of the 
within-groups multivariate variance. The statistical 
algorithm embodied in CLASSIFY computes a dis- 
criminant function for each of the mapping classes 
by selecting the independent variables, the 48 
Landsat image and ancillary geodata variables, in a 
stepwise fashion. The new variable entered at each 
step is selected on the basis of largest F-value to 
enter. An original set of observations on a landscape 
modeling element, for example, is transformed into 
a single discriminant score by the discriminant func- 
tion. The score represents the cell's position along 
the line defined by the linear discriminant function. 
As stated earlier, the discriminant function collapses 
a multivariate problem down into a univariate sit- 
uation. 

The discriminant function is found by solving an 
equation of the form 

where [s:] is an m x m matrix of pooled variances 
and covariances of the m variables. The coefficients 
of the discriminant function are represented by a 
column vector of the unknown lambdas. Lowercase 
Greek lambdas (A) are used by convention to rep- 
resent the coefficients of the discriminant function. 
These are exactly the same as the betas (p) also used 
by convention in regression equations. These 

should not be confused with the lambdas used to 
represent eigenvalues in principal components or 
factor analyses, nor the lambdas used to represent 
wave-length in a remote sensing sense. 

The right-hand side of the equation consists of the 
column vector of m digerences between the means 
of the two groups A and B in the simple linear dis- 
criminant analysis case. The equations can be solved 
by inversion and multiplication, such as 

or by the use of a simultaneous equation solution. 

ASSUMPTIONS 

The significance of the separation between the 
two groups can be tested, provided that certain as- 
sumptions are made regarding the nature of the data 
used in the discriminant function. These five basic 
test assumptions about the test data are as follows: 

(1) The observations in each group are randomly 
chosen; 

(2) The probability of an unknown observation be- 
longing to either group is equal; 

(3) The variables are normally distributed within each 
group; 

(4) The variance-covariance matrices of the groups 
are equal in size; and 

(5) None of the observations used to calculate the 
function were misclassified. 

The most difficult assumptions to justlfy are (2), (3), 
and (4). However, the function is not seriously af- 
fected by limited departures from normality or by 
limited inequality of variances. The justification of 
(2) depends upon an a priori assessment of the rel- 
ative abundance of the groups under examination 
(Davis, 1973). 

TESTS OF SIGNIFICANCE 

A test for the significance of the discriminant 
function is developed from the t-statistic mentioned 
earlier. A "distance" measure between the two mul- 
tivariate means can be calculated by simply sub- 
tracting R, from R,. This is equivalent to substi- 
tuting the vector of differences between the two 
group means into the discriminant equation, or set- 
ting the individual values of +. equal to Dj. This 
distance measure is called ~aAalanobis' distance, 
or the generalized distance, D2. It is a measure of 
the separation between the two multivariate means 
expressed in units of the pooled variance. Hotel- 
ling's T-statistic of this distance has the form 

The ?-test can be transformed into a F-test, be- 
coming 
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with m and (n, + nb - m - 1) degrees of freedom. nated from future analyses. Because discriminant 
The null hypothesis tested by this statistic is that analysis is so closely related to multiple regression, 
the two multivariate means are equal, or that the most of the procedures for selecting the most effec- 
distance between them is zero; that is, tive set of predictors can also be used to find the 

H,,: [Dj] = 0 most effective set of discriminators. For example, 
the relative contribution of variable j to the distance 
between the two group means may be measured by 
a quantity Ej; i. e. , H,:  [D,] > 0. 

The utility of this as a test of a discriminant func- 
tion should be clear. If the means of the two groups 
are very close together, it will be difficult to separate 
them, especially if both groups have large variances. 
On the other hand, if the two means are well-sep- 
arated and scatter around the means is small, dis- 
crimination is relatively easy. 

REDUCTION OF DIMENSIONALITY 

Not all of the variables included in the discrimi- 
nant function are equally useful in distinguishing 
one group from another. Those variables that are 
not particularly useful can be isolated and elimi- 

where Dj is the difference between the jth means 
of the two groups. This is only one measure of the 
direct contribution of the variable, j, and does not 
consider interactions between variables. If two or 
more of the variables in the discriminant function 
are not independent, their interactions may con- 
tribute to D2 to a greater extent than the value of 
Ej suggests. This measure serves roughly the same 
purpose as standardized partial regression coeffi- 
cients in multiple regression. Values of Ej may be 
simply converted to percentages by multiplying by 
100. 
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