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Digital Terrain Models for Slopes 
and Curvatures 

Slopes and curvatures of the terrain are derived from the 
two-dimensional Fourier Transform of the conventional DTM. 

T HE CONVENTIONAL, regular (equally spaced) dig- 
ital terrain model (DTM) is well established as 

an effective discrete representation of the terrain. 
With the advent of digital computers and automatic 
plotters, it has become the primary data source for 
a wide range of graphical products. There are, how- 
ever, certain applications associated with terrain 
analysis for which the conventional DTM is not nec- 
essarily the best data source. A more efficient form 
for storage and subsequent usage of the data, one 
which provides, in addition, for a better insight into 
the terrain's geometrical characteristics, is the two- 
dimensional Fourier Transform (DTM-G) of the con- 
ventional DTM-Z. 

With the Fourier Transform DTM-G as the data 
source, we propose a number of computational 
modules for the following purposes: 

Reproduce a conventional DTM-z (elevations) with 
or without intermediate smoothing, 
Use the DTM-G directly in certain aspects of quali- 
tative and quantitative terrain analysis, or 
Derive first and second derivatives of the terrain 
which are transformed subsequently into DTM for 
slopes and curvatures. 

The use of terrain models for slopes and curva- 
tures in a digital or in a graphical form may be un- 
popular at present, but it is mostly a matter of avail- 
ability and of education. Users have been forced to 
develop intuitive and not too precise ways of as- 

ABSTRACT: The concept of the conventional DTM (elevations) as the sole numerical 
descriptor of topography is extended to include DTM of slopes and curvatures. 
There are numerous areas of application where direct and efficient use can be 
made of those new forms of DTM.  The transfomnation from DTM for elevations into 
DTM for slopes and curvatures is based on the well known and highly efficient Fast 
Fourier Transform algorithm. The bulk of calculations can be performed on a large 
size computer or on a microcomputer. An example which illustrates the proposed 
procedure is given in the paper. 

sessing slopes and curvatures directly from the con- 
ventional graphical data forms (contour line maps). 
Potential areas of application of the proposed DTM 
forms can be found in civil, military, agricultural, 
and aeronautical engineering in addition to the map- 
ping sciences. 

The terrain function, Z, in its discrete represen- 
tation, i.e., the Digital Terrain Model (DTM-z), de- 
scribes the terrain surface in a position-oriented 
manner. The elevation (Z) of a point is defined as a 
function of its position (X and Y coordinates). Using 
conventional mathematical terminology, we could 
say that the DTM-z represents the terrain in the 
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space domain (Bath, 1974, p. 12). The terrain could 
be represented also in the spatial-frequency domain 
where Z is defined as the sum of a set of surface 
harmonics. Direct and inverse transformation from 
the space domain (DTM-Z) to spatial-frequency do- 
main (DTM-G) representation of the terrain is ob- 
tained using the discrete Fourier transform algo- 
rithm. On a digital computer the direct and inverse 
discrete Fourier transforms are performed most ef- 
ficiently by the well known Fast Fourier Transform 
(FFT) algorithm (Bath, 1974; Brigham, 1974). The 
rest of this section contains a short formulation of 
the direct and inverse discrete Fourier transforms 
extended to two dimensions. 

First, we discuss Z as a function of a single ar- 
gument, i.e., Z = Z(X). Let a profile of the terrain 
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be represented by an ordered set of N equally 
spaced points with elevations Zk where k = 0, 1, 2, 
. . . , N - 1. In the following equation Zk is rep- 
resented by the sum of N harmonics: i.e., 

. N - l  

where W = ei '  2n'N, i = .\/--I, 
Xk = k . d, d is the regular interval, and 
G, is the amplitude of the nth harmonic. 

The wave-length of the nth harmonic is equal to 
the (N - n)th: i.e., 

N - d  N . d  
n o n = -  

o n  = -. N - n  
O < n < N / 2  N / 2 s n < N  

Equation 1 is the inverse discrete Fourier trans- 
form, whereas the direct transform is 

N - 1  

G , =  z Z k . W - n k , ( n = 0 , 1 , 2  , . . . ,  N - 1) 
k=O 

(2) 
The direct and inverse Fourier transforms for a 

two-dimensional terrain function Z(.r<,Y) are similar 
to the above. Assume a regular DTM-Z, i.e., a matrix 
of N by M Zkl elevations which represents discretely 
a given terrain. Then direct transform is 

and inverse transform is 

The algorithm for performing two-dimensional 
Fourier transforms is based on a sequential appli- 
cation of the one-dimensional FT: first in one direc- 
tion (for example, X) and then in the other direction 
(Y). Equation 3 can be rewritten as follows: 

M-1 

Gnm = z Q, . W,"' 
1=0 

(3') 

where 

The Gnm coefficients (including real and imaginary 
components), arranged by their n and m subscripts, 

are the spatial frequency domain representation of 
the terrain, denoted by us as the DTM-G. Another 
useful derivative of the DTM-G is the power spec- 
trum of the terrain, which is an N by M matrix con- 
taining the modules of the complex G,, coefficients. 

Figure 1 shows a perspective block diagram of a 
hilly terrain in northern Israel. The 2.5 by 5.0 km 
regular DTM-z of that terrain was measured on a 
Wild A-7 Autograph equipped with encoders and a 
diskette drive. The sampling density (d, = d, = 40 
m) was high as related to the average roughness of 
the terrain, which enabled us to experiment with 
various degrees of low-pass filters (suppression of 
high frequencies in the original DTM-G). 

Figure 2 shows a perspective view of the two- 
dimensional power spectrum of the same terrain. 
Note the following characteristics of the power spec- 
trum of the terrain: 

symmetry with respect to the center (highest fre- 
quency) harmonic: n = Nl2 and m = Ml2, 
over all flatness in the high frequencies, and 
the low-pass-filter depression rectangle. 

The low-pass-filtered DTM-G served subsequently as 
a data base for a number of experiments, which are 
reported upon in a later section of this paper. 

The fundamental geometric properties which 
characterize the terrain surface at a point are its 
elevation, slope, and some measure of its curvature. 
The slope and curvature at a point are associated 
with the first and second derivatives of the terrain 
function Z = Z(X,Y). Using daerential geometry 
formalism, we can evaluate the components of the 
gradient vector or its magnitude and direction angle 
(s and g). The curvature at a point can be defined 
by the principal radii of curvature of the surface or 
by their function. The first order derivatives azlax 
and aZ1aY are related directly to the slope at a point 
as follows: 

s = d ( a z / a x ) ~  + (aZ/aY)2 is the slope's 
magnitude and 

FIG. 1. A perspective block diagram of the terrain. 
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FIG. 2. Power spectrum of the terrain-a perspective view. 

( )  is the slope's direction angle. g = arctan - 

The curvature at a point is evaluated by more com- 
plicated expressions, which are in general functions 
of the second order derivatives a2Z/aX2, a2Z/aXaY 
and a2Z/ay2 as follows: 

where 

C, and CT are the mean and total curvatures of 
the surface, respectively; 

R, and R2 are the principal radii of curvature; and 
E ,  F ,  G and D, D', D" are the respective first- 

and second-order fundamental quantities of the 
surface (Thomas, 1952, p. 49). 

Another measure for the curvature of the surface 
which is much easier to evaluate is the Laplacian (c): 

c = a2z/ax2 + a2z/ay2 (7) 
The difference between c and C ,  is a function of 

the first-order derivatives (see Gelbman (1981) for 
a detailed derivation), and for terrain with slopes of 
up to 40 percent (s s 0.4) the difference is smaller 
than 4 percent. Thus, in order to evaluate the s, g, 

and c quantities at a point, we need two first- and 
two second-order derivatives of the terrain at that 
point. 

We selected the "moving surface" approach as a 
basis for finite element differentiation of the DTM-z 
grid. First, we fit a second- or a third-degree poly- 
nomial z = z(x,y) over a subset of the DTM-Z. The 
subset is composed of 9 = 3 by 3 or of 25 = 5 by 
5 grid points including at its center the object (k,l) 
point (see Figure 3). 

The general form of such a polynomial is 
(1 rr - n 

FIG. 3. A nine-point DTM-z subset. 
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where u is the degree of the polynomial (the total 
number of coefficients a,? being (u + 1) - (u + 2)l 
2) and x,y are the Cartesian coordinates of a point 
in the subset with respect to the (k,l) point. The 
derivatives of z are obtained in a straightforward 
manner where, for example, for u = 2 we have 

adax = a,, + all . y + 2a,, . x (9) 

The expressions for the derivatives are greatly sim- 
plified because of selecting the origin of the x y  
system at the (k,l) point. As a result, we obtain the 
following expressions for s, g, and c: 

s = 
g = arctan (aollalo) (10) 
c = 2 (a,, + a,,) 

The results of the least-squares fit of the Equation 
8 polynomial are a,, coefficients which are linear 
functions of the 9- or 25-point subset Z values. For 
example, for u = 2 and a %point subset we obtain 

At this stage we substitute for Zk+l,l-l,Zk+l,l, etc. 
in Equation 11 above their equivalents (their in- 
verse Fourier transforms) as taken from Equation 4. 
Through laborious and patient algebra we arrive fi- 
nally at the following general expressions for a,,, a,,, 
and c: 

N-1 M - 1  

where v and flo, fol, andf, are coefficients which are 
independent of k and 1. For the above example of 
u = 2 and a 9-point subset, we obtain the following 
expressions: 

flo(n.m, = (Wrl: - Win) . [1 + (WE + Wirn)l (13) 
f,l(,,,) = (WE - [1 + (W; + Win)] (14) 
f,(,,,, = 2 [2 (W; - win) . (Wrl; - W G ~ )  (15) 

-(W; + W,") - (Wrl; + Wim) - 41 

We can see that the evaluation of a,, a,, and c in 
Equation 12 is similar in form to the ordinary in- 
verse Fourier transform as shown in Equation 4. 
The two-dimensional FFT algorithm is applied to the 
spectral density matrix DTM-G where each Gnm ele- 
ment is premultiplied by the appropriate (nm) coef- 
ficient: i.e., 1, f,,, f,,, or f,. The expressions for 
evaluating s and g (Equation 10) conclude the com- 
putational process. Thus, we have generated four 
digital models which completely describe the ter- 
rain. Using the spectral density model DTM-G as a 
data source, we can produce elevation (DTM-z), 
slope (DTM-s/g), and curvature (DTM-C) digital 
models of the terrain. 

We should point out that most of the above trans- 
forms are performed in parallel for a considerable 

savings in time (CPU). This is made possible by the 
particular properties of the Fourier transforms as 
well as due to the fact that the DTM-Z, DTM-C, and 
DTM-g,s are composed of complex numbers with 
zero imaginary components. 

As a natural conclusion of the study reported in 
the previous sections, a package of computer pro- 
grams was prepared to perform all the necessary 
operations for the generation, storage, print-out, 
and graphical display of the new forms of DTM. 

Figure 4 shows a schematic flowchart of the soft- 
ware package. The rectangles represent the various 
forms of the data while the ellipses represent the 
program modules. The intervention of the operator 
is required at almost every step (ellipse) of the flow- 
chart. The various DTM'S are accompanied by ac- 
curacy estimates (a) which are derived from the 
a-priori a, following its propagation through the 
intermediate mathematical operations. The DTM'S 
affected by the smoothing operation are marked 
with overbars. 

The DTM-G of the 2.5 by 5.0 km terrain block 
mentioned in the second part of this paper was sub- 
jected to smoothing. Smoothing was produced by 
applying a low-pass filter on the DTM-G matrix: i.e., 
the Gnm coefficients corresponding to wavelengths 
shorter than 213 m were set to zero (24 < n < 104; 

Pass-Filter 0 
I 1 

FIG. 4. Schematic flowchart of terrain data forms. 
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12 < m < 52; see also figure 2). As a result of 
smoothing, the total number of coefficients in DTM- 
G was reduced by 40 percent. The difference be- 
tween the contour-line maps before and after 
smoothing was negligible and was considered well 
within the accuracy bounds of the original DTM-Z. 

There are many ways for representing, digitally 
and graphically, DTM'S of slopes and curvatures. Of 
the many different experiments we did, we have 
chosen to present in this paper only a few which 
did appeal to our "topographical" sense. All those 
representations are made with the contour-line map 
of the terrain as a background. The reader can use 
the background contours in order to check his in- 
tuitive perception of slopes and curvatures against 
what the computer had to say. 

Figure 5 shows a "hachured" slope map of the 
terrain, where the arrows point downhill (direction 
of steepest descent) and their length is proportional 
to the module of the gradient (s). The middle of each 
arrow on the map corresponds to the position of the 
respective node. 

Plate 1 is another graphical representation of the 
DTM of slopes. It can be characterized as a tinted or 
a layered slope map. Darker shades correspond to 
steeper slopes and, vice-versa, blank areas stand for 
level terrain (slopes below the 15 percent limit). In 
both slope maps, features of interest are the narrow 
wadies in the northern part as well as the ubrupt 
ascent of the topography from the flat and low 
coastal plain (western part of the map) towards the 
high and undulating hills of the eastern part. 

Plate 2 is similar in appearance to Plate 1, only it 
represents curvatures. The three levels of brown 
stand for upwardly convex areas while the three 
levels of green represent concave areas. Areas with 
radii of curvature greater than 286 m are shown as 
blank areas and constitute the major part of the 
map. It is interesting to note the "curvature" picture 
along the narrow wadies. The ubrupt rise from west 
to east has its own curvature signature. Note also 
the curved borders of the wide and generally flat 
valley entrance on the southern part of the map. 

CONCLUSIONS 

Two new digital derivatives of the conventional 
DTM were presented, namely, the DTM of slopes and 
the DTM of curvatures. The new forms of DTM and 
the conventional DTM of elevations complement 
each other in providing information on the topog- 
raphy from different points of view. 

The fast Fourier transform (FFT) algorithm, which 
was used to process the various data forms, has 
many attractive properties. In addition to the re- 
markable savings in computer time, it provides, 
through the spectral density matrix, for an excellent 
insight into the inherent characteristics of the to- 
pography. 

Users of the new forms of DTM could come from 
various branches of the engineering profession. We 

Slopes have agricultural engineers interested in applying 
our programs for investigating the correlation be- 

in % tween soil fertility and surface curvature. Construc- 
tion engineers have approached us for help in in- - 50 vestigating the surface of concrete formworks. 

- 40 Highway engineers could benefit from the avail- 
- 30 ability of DTM-G or DTM-c of airfield runway sur- 

faces. Military engineers could most efficiently 
- 20 orient themselves in unfamiliar areas with the help 
- 10 of appropriate slope maps. The list of potential users 

is undoubtedly much longer and we haven't in- 
cluded the mapping sciences. 
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International Conference on Training for Remote Sensing Users 

Toulouse, France 
8-1 1 October 1984 

The aim of the Conference-organized by the Groupement pour le DCveloppement de la TClBdCtection 
ACrospatiale and sponsored by the Ministbre des Relations ExtCrieures, the Ministbre de l'Industrie et de 
la Recherche, the Centre National d'Etudes Spatiales, and the Conseil Regional Midi-PyrCnBes-is to 
review the various training programs existing all over the world, to estimate the importance of educational 
needs, and to promote relationships between demanders and training suppliers. The conference will be 
divided into three parts: 

Presentation of various remote sensing training centers 
Estimation, by various international agencies, of education needs in the forthcoming year e.g., researchers, 
technical staff, experts, etc. 
Discussions on the necessary development of training, taking into account the following points. 

-evolution of future systems 
-national politics 
-international cooperation 
-development projects 
-pedagogic constraints 

For further information please contact 

G. D. T. A. formation- Section "Colloques" 
18, avenue Edouard-Belin 
31055 Toulouse Cedex, France 


