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An Approach to Optimized Labeling 
of Image Classes 

A labeling algorithm is described which finds the label assignment 
which will minimize the loss function due to misclassification. 

C LASSIFICATION ALGORITHMS are commonly used in 
the analysis of Landsat and other image data 

to generate image classes. The analyst then exam- 
ines the  correspondence between these image 
classes and the resource types (here termed re- 
source classes) to be identified and assigns a label 
to each image class which best describes this cor- 
respondence. 

Labeling can be  approached as a problem of 
finding the best way to express the classes of one 
classification system in terms of a second system. In 
this paper a loss function is proposed that can be 

ered here but can be developed from the method- 
ology presented. 

The labeling algorithm is not limited to remote 
sensing applications. It can be used whenever the 
objective is to express a set of units in one classifi- 
cation in terms of the classes of a second system. 
For example, a soils map might be used to derive a 
trafficability map by first defining the labels as high, 
moderate, and low trafficability, then acquiring a set 
of sample points for which both the soil and traf- 
ficability class was known, and finding the optimal 
labeling of each soil class. 

Assessing the success of a classification and la- 
beling procedure is essentially the same problem as 
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used to evaluate the optimality of a label assign- 
ment. A labeling algorithm is then described which 
finds the optimum assignment of labels to image 
classes by minimizing the classification loss func- 
tion. The algorithm assumes that each image class 
must be assigned to a single resource class-the 
usual case where a map product is to be generated. 
Where the application is concerned with accurate 
area estimates and mapping is not required, a pro- 
cedure to generate mixed class assignments may be 
preferred. Mixed class assignments are not consid- 
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map accuracy assessment. An approach to map ac- 
curacy testing is discussed in the following section 
which is then used to develop a loss function to 
optimize the labeling procedure. 

One method to test whether a map is of accept- 
able accuracy is to select a sample of map points, 
check the map classification against ground data, 
and then make a statement about the true accuracy 
of the map. Such a statement generally claims some 
minimum level of accuracy with some high level of 
confidence, e.g., a minimum of 85 percent accuracy 
at the 95 percent confidence level. The sampling 
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problem is then one of determining the optimal 
number (N) of map samples to be compared with 
ground data, and an allowable number of misclas- 
sifications (X) of these samples. After these values 
are determined, N  map samples are selected and 
their classifications are compared against the "true" 
classification of the sample point (e.g., ground data). 
If X or fewer points were misclassified, then the 
map is accepted as accurate at the specified level of 
precision. 

In any statistical test there is a probability or risk 
that interpretation of tKe test results will lead to the 
wrong conclusion. The probabilities associated with 
the two types of erroneous conclusions may be  
termed consumer risk and producer risk. * 

Consumer risk is the probability that a map of 
unacceptable accuracy will pass the accuracy test. 
It can be calculated from the binomial sampling dis- 
tribution as follows: 

X 

CRISK = 
N!  

y=oY!(N - Y ) !  QP-" (1 - QdY (1) 

where CRISK = consumer risk, 
Q L  = the minimum accuracy required, 
X = number of allowable misclassifi- 

cations, 
N  = total number of points sampled, 

and 
Y = number of misclassifications. 

The producer risk is the probability that a map of 
some acceptable accuracy Q, will be rejected and 
is calculated as follows: 

the snecified consumer risk, (Producer risk is al- 
read; specified by the sample' size selected.) The 
minimum accuracy value can be interpreted to be 
that accuracy level which is so low that there is only 
a small chance (the consumer risk) that the test re- 
sults could be as good as those observed. It is cal- 
culated from Equation l by setting X to the ob- 
served number of misclassifications, N  to the sample 
size used, and CRISK to the consumer risk used in 
designing the accuracy test. The author developed 
a computer program to iteratively find a value of Q ,  
which satisfies the equation. 

The normal approximation to the binomial with 
continuity correction was used for minimum accu- 
racy value calculations in this paper. Where sample 
sizes are small and the minimum accuracy values 
are high (0.9), the difference from using a direct 
calculation may be significant. However, the sample 
sizes used here are large enough (over 100) and the 
minimum accuracies close enough to 0.5 (0.4 to 0.7) 
that this difference is negligible. The minimum ac- 
curacy values were calculated from the following 
equation (adapted from Snedecor and Cochran 
(1967)): 

CRISK 

N - Y  -- 
N  QL - ,, 
K F  I 

where Pr is the "probability of '  and other terms are 
as defined above. 

where PRISK = producqr risk and 
QH = a selected high accuracy level. 

The selection of values for consumer and pro- 
ducer risks depend on the value of the information 
and cost of errors in a specific application. 

A hypothesis test leads to the conclusion that ei- 
ther the map is sufficiently accurate or it is not, 
depending on whether it passed or failed the test. 
However, a map which fails to pass a test for 85 
percent accuracy might still be adequate for a user 
requiring only 80 percent accuracy. The minimum 
accuracy value is a measure of quality obtained by 
calculating the accuracy of the map (QJ for which 
the observed number of misclassifications would be 
the allowable number of misclassifications (X), given 

* (Aronoff (1982) showed that the consumer and pro- 
ducer risks could become either the Type I or Type I1 
statistical error, depending on the way the null hypothesis 
is contructed. By using the terms consumer and producer 
risks, the confusion is avoided.) 

The minimum map accuracy value is the highest 
map accuracy value for which the observed test re- 
sults would constitute passing the map accuracy test 
for a selected level of consumer risk. The minimum 
accuracy value is a probabilistic estimate of the min- 
imum expected accuracy of the map. 

The reason for calculating this conservative ac- 
curacy value is that it is a measure which takes into 
account the degree of certainty of the estimate. 
Using a consumer risk of 0.05, a test result of 90 
percent correct for a sample size of 100 has a min- 
imum accuracy of 83.6 percent whereas, for a 
sample size of 10, the minimum accuracy value is 
60.5 percent. The minimum accuracy value, by re- 
flecting the level of uncertainty related to sample 
size, is a useful index for comparing accuracy test 
results in which the sample sizes are daerent.  

DEVELOPMENT OF THE LOSS F U N C ~ O N  
The  minimum accuracy value is an index of 

quality that incorporates the degree of uncertainty 
and the parameters of the accuracy assessment, i.e., 
the consumer risk and the sample size. If the con- 
sumer risk selected is 5 percent, the minimum ac- 
curacy value is interpreted to be the minimum ex- 
pected accuracy of the map in 95 percent of the 
cases. The remaining 5 percent of the time is not 



OPTIMIZED LABELING OF IMAGE CLASSES 

TABLE 1. DATA MATRIX 

Resource Image Classes 
Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 Sum 

Pine 40 593 158 93 745 89 0 5 18 298 2 197 2 2240 
W. Fir 3318 750 1795 187 130 696 34 66 100 21 28 186 182 7493 
R. Fir 153 48 130 0 5 6 2 1 0  1 1  4 13 364 
D. Fir 1900 1681 2159 204 354 658 24 28 61 54 0 349 224 7696 
Brush 4 2 0 7 1 10 30 28 10 0 4 7 58 161 

Sum 5415 3074 4242 491 1235 1459 90 128 189 374 35 743 479 17954 

"accounted for" by the minimum accuracy value in a number of test areas, identifying their resource 
the sense that there will be a 5 percent chance that class designation from ground data, finding the test 
a map could have a true accuracy lower than the areas on the Landsat image, and then counting the 
minimum accuracy value. In constructing a loss number of pixels in each resource class that was 
function, the producer risk is not of interest because assigned to each image class. Each column of the 
no alternative hypothesis is tested. Selecting a small matrix shows the number of pixels in an image class 
value for the consumer risk gives a minimum ac- that corresponds to each resource class. 
curacy that takes into account most of the uncer- Labeling is the process of deciding which image 
tainty in the sample estimate of the map's accuracy. classes will be used to represent (i.e., be assigned 
As the consumer risk is reduced, there is an increase to) a given resource class. Table 2 shows the results 
in the difference between the minimum accuracy of a subjective assignment of image classes to re- 
value and the sample proportion correct. source classes which was done by an interpreter 

If the minimum accuracy value is treated as the comparing the unsupervised Landsat classification 
minimum expected accuracy for a given resource to ground data. The image class data were then com- 
class, then the complement (1.0 - minimum ac- bined according to the assignments of Table 2 by 
curacy) can be  interpreted as the  maximum ex- adding the respective columns from the data matrix 
pected error for a class. This value can be used to (Table 1). The resulting evaluation matrix is shown 
assess the relative cost of assigning an image class in Table 3. For example, the first column in Table 3 
(e.g., as produced by an unsupervised classification was the result of adding corresponding elements of 
of Landsat data) to a resource class. columns 5 and 10 from Table 1. So, Table 3 repre- 

Consider an unsupervised classification of sents the success of predicting the resource classes 
Landsat data to be used for mapping a resource such using the Landsat classification label assignments 
as forest cover. Visual inspection is commonly used shown in Table 3. Those image classes that the an- 
to label each image class. Test sites are selected, the alyst considered to be poorly related to all resource 
image classs is determined from the Landsat clas- classes were left unassigned and are shown assigned 
sification results, and the corresponding resource to the ' .OUT class in Table 2. 
class is determined from verification data (e.g., field 
inspection). Then the image class is assigned a label 

TABLE 2. IMAGE CLASS ASSIGNMENTS that best describes its correspondence with the ver- 
ification data. Resource 

The data matrix in Table 1 is from an unsuper- Class Image Classes 
vised classification of Landsat-3 data for the mixed 
conifer forest type in a portion of the Plumas Na- Pine 5 10 
tional Forest, California. The table shows the cor- W. Fir 1 6 
respondence between 13 image classes and five re- '. Fir 

D .  Fir 2 3 4 12 13 source classes, namely PINE (ponderosa pine), w FIR Brush 
(white fir), R. FIR (red fir), D. FIR (Douglas fir), and Out 7 8 9 11 
BRUSH (areas of brush). It was produced by selecting 

TABLE 3. EVALUATION MATRIX 

Predicted 
Pine W. Fir R.  Fir D .  Fir Brush Out Sum 

Pine 1043 129 0 1043 0 25 2240 
z W. Fir 151 4014 0 3100 0 228 7493 
3 R. Fir 6 159 0 195 0 4 364 
9 D .  Fir 408 2558 0 4617 0 113 7696 

Brush 1 14 0 74 0 72 161 
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The evaluation matrix is in effect a contingency 
table that shows how many pixels were correctly 
classified and the number of each type of misclas- 
sification. Each row of the evaluation matrix can be 
treated as an accuracy test for the resource class 
with the row sum as the sample size and the diag- 
onal element as the number of correct assignments. 
Minimum accuracy values can be calculated for each 
row. A maximum expected loss value can be cal- 
culated as one minus the minimum accuracy. In ad- 
dition, a weight representing the cost of a misclas- 
sification can be assigned to each row. In the case 
of a forestry application, the per pixel value of the 
timber could be used as a weight. The maximum 
expected loss for each row can then be calculated 
as follows: 

M L ,  = M M ,  W ,  n, (4) 
where M L ,  = maximum expected loss for resource 

class i, 
M M ,  = maximum expected error for resource 

class i. 
n, = number of pixels of resource class i in the test 

areas, and 
W,  = weight assigned to resource class i. 

The expected loss for all resource classes (TL) is the 
sum of the maximum expected loss values for each 
resource class: 

where m = number of resource classes, and 
T L  = total maximum expected loss. 

Table 4 illustrates an assessment of the maximum 
expected loss for the class assignments shown in 
Table 2, using the evaluation matrix in Table 3. (A 
consumer risk of 0.001 was found empirically to be 
effective for image classes on the order of several 
thousand pixels or less.) The weights have been set 
to 1, which would be appropriate where, for ex- 
ample, the accurate identification of each resource 
class is equally important. 

From Table 4 it can be seen that the minimum 
accuracy values are lower than the percent correct 
values. This difference is larger as the sample size 
becomes smaller because the level of uncertainty is 
greater for smaller sample sizes. Compare, for ex- 
ample, the minimum accuracy for the PINE class, 
0.432 with 46.4 percent correct (i.e., 0.466), a dif- 
ference of 0.028, and the minimum accuracy for D. 
FIR, 0.582 with 60 percent correct, a difference of 
0.018. 

In some applications it may be important to min- 
imize specific misclassifications, or, if the necessary 
information is available, it may be desirable to dis- 
tinguish the losses incurred by each type of mis- 
classification. Using the previous forestry example, 
the cost of each misclassification could be the ab- 
solute difference between the value of the timber 
as predicted by the classification and the value as 
given by the verification data. 

Calculation of the maximum expected loss for a 
class differs from the simpler case described above 
in that the expected loss must first be partitioned 
among the misclassified categories. Consider the 
PINE class in Table 8. From the accuracy assessment 
it can be seen that 1043 pixels out of 2240 were 
correctly classified. The minimum accuracy for this 
class is 0.433 or 43.3 percent, somewhat less than 
the percentage correct. The maximum expected 
error for the class will be 1 - 0.433 = 0.567 or 56.7 
percent. Using the simple weighting scheme, this 
loss value was multiplied by the row sum to give an 
expected number of misclassified pixels, and then 
multiplied by the weight to give a maximum ex- 
pected loss (see Equation 4). 

However, when weights are assigned to each type 
of misclassification, the maximum expected error 
must be further broken down, i. e.,  partitioned, to 
obtain the portion of the error to be associated with 
each weight. This is done by distributing the max- 
imum expected error (0.567) among the types of 
misclassifications (shown in a row of the evaluation 
matrix) in the same proportion as observed in the 

TABLE 4. ACCURACY ASSESSMENT TABLE USING IMAGE CLASS ASSIGNMENTS OF TABLE 3 AND WEIGHTS SET TO 1 

Resource Number Row % % Column % Consumer Minimum Maximum 
Class Correct Unass~gned Sum Correct Om~ssion Sum Commiss~on Risk Accuracy Loss 

Pine 1043 25 2240 46 6 53 4 1609 35 2 0 001 0 433 1270 1 
W Fir 4014 228 7493 53 6 46 4 6874 41 6 0 001 0 517 3619 1 
R Fir 0 4 364 0 100 0 0 0 0 001 0 364 0 
D Fir 4617 113 7696 60 0 40 0 9029 48 9 0 001 0 582 3216 9 
Brush 0 72 161 0 100 0 0 0 0 001 0 161 0 

For 
Entire 9674 442 17954 53.9 46.1 17512 44.8 
Matrix 
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TABLE 5. NORTHERN SIERRA STUMPAGE VALUES IN 

$ PER 1000 BD. FT. 

Spec~es Value 

Douglas Fir (D. Fir) 40 
Red Fir (R. Fir) 20 
White Fir (W. Fir) 20 
Ponderosa Pine (Pine) 60 

(Source. Anonymous, 1982) 

sample. In this case, the maximum expected error 
for the resource class PINE is distributed among the 
four types of errors, namely w FIR, R. FIR, D FIR, 
and BRUSH, in the proportion 154:0:1043:0. In this 
way the maximum expected error values for each 
type of misclassification of a resource class will sum 
to the maximum expected error for the resource 
class as a whole. The maximum expected loss, par- 
titioned among the different types of misclassifica- 
tions, is calculated as follows: 

where PL,, = partitioned maximum expected loss 
for misclassifying pixels into re 
source class j that were class i, 

A,, = number of pixels assigned to class j 
that were class i, and 

W,,  = weight for misclassifying pixels into 
resource class j that were class i. 

The maximum expected loss for the evaluation ma- 
trix is then given by 

rn m 

TL = C PL,,, 
t = l  j = l  

where PL,, = maximum expected loss for mis- 
classifying a pixel as resource class 
j when it was class i, 

TL = maximum expected loss for the 
evaluation matrix, and 

m = number of resource classes. 

The stumpage values for timber in the Plumas 
National Forest are given in Table 5. BRUSH is given 
a timber value of 0. The weighting matrix (Table 6) 
was calculated by taking the absolute difference be- 
tween the stumpage value for the predicted tree 
species and the verified species for each type of mis- 
classification. For example, misclassifying PINE, 
valued at  $6011000 board feet, as Douglas Fir, 
valued at $4011000 board feet, is given a loss value 
of 20. The same spectral class assignments assessed 
in Table 4 were re-evaluated using the weighting 
matrix of Table 6 to give the assessment shown in 
Table 7. 

Pine W. Fir R. Fir D. Fir Brush Out 

Pine 0 40 40 20 60 60 
W. Fir 40 0 0 20 20 20 
R. Fir 40 0 0 20 20 20 
D. Fir 20 20 20 0 40 40 
Brush 60 20 20 40 0 0 

Having defined a loss function, an optimal la- 
beling algorithm can be used to find the label as- 
signments that will minimize the loss. The method 
was used to test each image class separately. By 
assigning each image class the label (in this case, 
the resource class name) which minimizes the loss 
for that image class, the loss for the entire evaluation 
matrix is also minimized. 

The following decision rule was used: For each 
image class (j), the loss (LkJ) produced by assigning 
each of the (m) labels to the class was calculated; 
l.e., 

where Lk,, = loss if the pixels in image class j 
were assigned label k, 

kd,, = number of pixels in image class j 
that were in resource class i, 

W,, ,  = weight for a misclassification of re- 
source class i as resource class k, 
and 

m = total number of resource classes. 

Then image class j is assigned the label k such that 
LkJ is a minimum. 

Note that minimum accuracy values are not cal- 
culated when a single image class is being consid- 
ered because the sample size for each test is the 
same. 

In the event that two or more labels give the 
lowest loss value, then the tie is broken by assigning 
the label that would give the largest number of cor- 
rectly identified pixels. 

Table 8 shows the results of an optimal label as- 
signment using the data set of the previous exam- 
ples. In this case, all weights have been set equal 
to 1. This results in a plurality assignment, i.e., the 
image class is assigned to the resource class with the 
largest number of pixels in that image class. This 
algorithm assigns a label to every image class, so 
none can be assigned to the OUT class. The max- 
imum expected loss for the matrix (TL) is 8401.1, 
which is less than the value for Table 4 of 8633.4. 
This indicates that the automated assignment is 
"better" (in terms of minimizing the expected loss) 
than the analvst's assienments evaluated in Table 4. " 
However, this comparison is unfair in that the an- 
alyst was, in effect, using a threshold. If an image 



TABLE 7. ACCURACY ASSESSMENT TABLE USING ASSIGNMENTS FROM TABLE 3 AND WEIGHTING MATRIX 

Resource Number Row % % Column % Consumer Minimum Maximum 
Class Correct Unassigned Sum Correct Omission Sum Commission Risk Accuracy Loss 

Pine 1043 25 2240 46.6 53.4 1609 35.2 0.001 0.433 29200.2 
W. Fir 4014 228 7493 53.6 46.4 6874 41.6 0.001 0.517 75524.0 
R. Fir 0 4 364 0 100.0 0 0 0.001 0 4220.0 
D. Fir 4617 113 7696 60.0 40.0 9029 48.9 0.001 0.582 66699.8 
Brush 0 72 161 0 100.0 0 0 0.001 0 3300.0 

For 
Entire 9674 442 17954 53.9 46.1 17512 44.8 178944.0 
Matrix 

class was judged not to show a high enough level of 
correspondence to the resource class, it was not as- 
signed. The loss function will register a benefit 
whenever the number of correctly classified pixels 
is increased-no matter how small the increase. 
The problem is that there is a second implicit ob- 
jective in labeling, namely that the levels must also 
have some minimum level of "class purity," espe- 
cially when the labels will be used for map produc- 
tion. The problem of incorporating a threshold into 
the algorithm is discussed in a separate section 
below. 

Table 9 is an optimal assignment of the data set 

using the weighting matrix of Table 6. Note that the 
image class assignments are slightly different; the 
labels for classes 6 and 13 have been changed. 
Image class 6 has changed from an assignment of W. 
FIR to D. FIR. Because the weight for D. FIR is twice 
that of w. FIR and the number of pixels belonging to 
each resource class is about the same (see Table l), 
the change appears to be appropriate. Image class 
13 has changed'from D. FIR to w. FIR, a change that 
does not seem appropriate because the plurality as- 
signment for class 13 is D. FIR, and that resource 
class is also higher valued than w. FIR. 

The calculation of the loss values (Lkj) are shown 

Evaluation Matrix 
Predicted 

Pine W. Fir R. Fir D. Fir Brush Out Sum 

Pine 1043 154 0 1043 0 0 2240 
7 W. Fir 151 4242 0 3100 0 0 7493 
3 R. Fir 6 163 0 195 0 0 364 
3 D. Fir 408 2671 0 4617 0 0 7696 

Brush 1 86 0 74 0 0 161 

Image Class Assignments 
Resource 

Class Image Classes 

Pine 5 10 
W.Fir 1 6 7 8 9 11 
R. Fir 
D. Fir 2 3 4 12 13 
Brush 
Out 

Accuracy Assessment Table 

Resource Number Row % % Column % Consumer Minimum Maximum 
Class Correct Unassigned Sum Correct Omission Sum Commission Risk Accuracy Loss 

Pine 1043 0 2240 46.6 53.4 1609 35.2 0.001 0.433 1270.1 
W. Fir 4242 0 7493 56.6 43.4 7316 42.0 0.001 0.548 3386.8 
R. Fir 0 0 364 0 100.0 0 0 0.001 0 364.0 
D. Fir 4617 0 7696 60.0 40.0 9029 48.9 0.001 0.582 3216.9 
Bmsh 0 0 161 0 100.0 0 0 0.001 0 161.0 

For 
Entire 9902 0 17954 55.2 44.8 17954 44.8 
Matrix 
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TABLE 9. OPTIMIZED ASSIGNMENT USING WEIGHTING MATRIX 

Evaluation Matrix 
Predicted 

Pine W. Fir R. Fir D. Fir Brush Out Sum 

Pine 1043 67 0 1130 0 0 2240 
% W. Fir 151 3728 0 3614 0 0 7493 
% R. Fir 6 170 0 188 0 0 364 
9 D. Fir 408 2237 0 5051 0 0 7696 

Brush 1 134 0 26 0 0 161 

Image Class Assignments 
Resource 

Class Image Classes 

Pine 5 10 
W. Fir 1 7 8 9 11 13 
R. Fir 
D. Fir 2 3 4 6 12 
Brush 
Out 

Accuracy Assessment Table 

Resource Number Row % % Column % Consumer Minimum Maximum 
Class Correct Unassigned Sum Correct Omission Sum Commission Risk Accuracy Loss 

Pine 1043 0 2240 46.6 53.4 1609 35.2 0.001 0.433 26823.4 
W. Fir 3728 0 7493 49.8 50.2 6336 41.2 0.001 0.479 81208.5 
R. Fir 0 0 364 0 100.0 0 0 0.001 0 4000.0 
D. Fir 5051 0 7696 65.6 34.4 10009 49 5 0.001 0.639 55565.1 
Brush 0 0 161 0 100.0 0 0 0.001 0 3780.0 

For 
Entire 9822 0 17954 54.7 45.3 17954 45.3 
Matrix 

in Table 10. It can be seen that the large loss for the 
misclassified D. FIR pixels is offset by the lower 
losses for BRUSH and R. FIR. The weighting matrix 
used here represents the difference between the 
actual and predicted stumpage values. The label as- 
signment has, therefore, optimized the following re- 
lation: If image class 13 must be assigned a single 
label, which label will give a predicted value closest 
to the actual total value of those pixels as defined 
by the weights? From the data matrix (Table 1) and 
the stumpage values used to generate the weights 
(Table 5), the actual value of the pixels for image 
class 13 is calculated as (2 x 60) + (182 x 20) + 
(13 x 20) + (224 x 40) + (58 x 0) = 12980. If all 
479 pixels in class 13 were considered W. FIR, the 
predicted value would be 479 x 20 = 9580, an 
underestimate of 3400. Considering the class to be 
D. FIR would give an estimate of 479 x 40 = 19160, 
an overestimate of 6180. So the assignment algo- 
rithm did select the best label, given that only one 
could be selected. 

A further refinement of the labeling procedure, 
in the case where a map is not required, would be 
to allow the splitting of image classes. In this way 
the pixels in an image class could be apportioned 
among a number of resource classes. 

As noted in the previous section, the loss function 
will register a benefit whenever the number of cor- 
rectly classified pixels is increased. As a result, the 
loss value will decrease by assigning any label to an 
image class instead of listing it as an OUT class, as 
long as there is some increase in the number of 
correctly identified pixels. Even if the pixels of an 
image class were evenly divided among the resource 
classes, i. e., complete ambiguity, assigning a label 
would still decrease the loss value. 

It is often desirable to flag those image classes 
which are "too" ambiguous and should either be 

TABLE 10. COMPARISON OF LOSS VALUES FROM LABELLING 
IMAGE Cuss 13 AS WHITE FIR AND DOUGLAS FIR 

As White Fir As Douglas Fir 

Pine 40 X 20 = 80 2 X 20 = 40 
W. Fir 182 x 20 = 3640 
R. Fir 13 X 0 = 0 13 X 20 = 260 
D. Fir 224 x 20 = 4480 
Brush 58 x 20 = 1160 58 x 40 = 2320 

L = 5720 L = 6260 



TABLE 12. MARGINAL BENEFITS FOR O ~ I M ~ Z E D  LABEL 
ASSIGNMENT USING WEIGHTING MATRIX 

Image 
Class 

Marginal 
Benefit 

Image 
Class 

Marginal 
Benefit 

labeled by an analyst or not assigned a label at all. 
This requires that the ambiguity in a class be mea- 
sured. The marginal benefit to include a class can 
be used as a measure of ambiguity: i.e., 

T L  - TLout, 
MB, = 

n; 

1 L 
T E S T j  = MBj - T H R E S H  - - h' (10) 

where TEST,  = test value for image class j ,  
T H R E S H  = user selected threshold value, 

T L  = maximum expected loss value, 
and 

N = total number of pixels over all 
image classes. 

where MB, = marginal benefit to include Then image class j is assigned to the OUT class if 
image class j as assigned by the TEST,  is less than or equal to zero. 
algorithm, Table 13 shows the results of an optimized assign- 

T L  = lnaximum expected loss for a ment using a threshold of 7. Image classes 7, 8, and 
given automated label assign- 13 were not assigned labels. The threshold value 
ment, provides an explicit, consistent method to identify 

T L ~ ~ ~ ,  = maximum expected loss for a classes that are ambiguous, as defined by the user's 
given automated label assign- selection of a threshold value and a weighting ma- 
merit when image j is as- trix. In this way, the relative importance of distin- 
signed to the OUT class, and guishing between resource classes is taken into ac- 

n, = number of pixels in image class j. count. 

Table 11 shows the marginal benefits for the op- 
timal assignment shown in Table 8 which used 
weights all set to 1. Referring to the data matrix 
(Table l ) ,  it can be seen that the more ambiguous 
image classes 4, 7, and 13 have relatively low mar- 
ginal benefits whereas those image classes strongly 
associated with a single resource class, such as 
classes 10 and 11, have high values. Table 12 shows 
the marginal benefits when the weight matrix of 
Table 6 is used. Note that the relative order of image 
classes from highest to lowest marginal benefits has 
changed to reflect the different costs of misclassifi- 
cations, as expressed by the weighting matrix. 

Using the marginal benefit, a threshold can be set 
so that any class giving a benefit less than the  
threshold is assigned to the OUT class. For conve- 
nience, the threshold was made proportional to the 
average per pixel loss of the automated assignment 
as follows: 

In this paper the problem of assigning labels to 
image classes was addressed. A labeling procedure 
was proposed that takes into account the relative 
certainty of accurately identifying a pixel in a given 
image class and the cost of each type of misclassifi- 
cation. In this way, the relative suitability of label 
assignments for a specific application can be mea- 
sured. An optimal assignment algorithm was devel- 
oped for this labeling procedure by finding the label 
assignments that would give the lowest expected 
loss value. This algorithm assigned a label to every 
image class regardless of its degree of ambiguity. 
However, the user could select a threshold value so 
that classes exhibiting a level of ambiguity ex- 
ceeding the threshold were not labeled. The loss 
value calculated for the entire evaluation matrix (TL) 
can be used to compare the relative success of dif- 
ferent labeling assignments on the same or different 



OPTIXIIZEII LABELING OF IX4AC;E CLASSES 

TABLE 13. OPTIMIZED ASSI(:KNEKT USING WEICH.I.IK(: MATHIN A K D  T I I R E S H O L . ~  

Evaluation Matrix 
Predicted 

Pine W. Fir R. Fir D. Fir Brush Out Sum 

Pine 1043 60 0 1130 0 7 2240 
% W Fir 151 3446 0 3614 0 282 7493 
2 H. Fir 6 154 0 188 0 16 364 
3 D. Fir 408 1961 0 3051 0 276 7696 

Brush 1 18 0 26 0 116 161 

Image Class Assignments pel- Pixel Threshold to Include = 7.0 
Resor~rce 

Class Image Classes 

Pine 5 10 
W F i r  1 9 11 
R. Fir 
D. Fir 2 3 4 6 12 
Brush 
Out 7 8 13 

Accuracy Assessment Table 

Resource Number Unassigned Row 70 % Colunrn % Corrsumer Minimum Ma~irnu~n 
Class Correct Sum Correct Omission Sum Commission Risk Accuracy Loss 

Pine 
W. Fir 
R. Fir 
D. Fir 
Brush 

For 
Entire 9540 697 17954 53.1 46.9 17237 44.7 
Matrix 

data sets and the relative success of different clas- 
sification algorithms. 

The labeling algorithm is not limited to remote 
sensing applications. It can be used whenever the 
objective is to express a set of units from one clas- 
sification in terms of the classes of a second system. 
This application arises whenever a tnap is "re-inter- 
preted" to provide a different analysis, e .g. ,  gen- 
erating a trafficability map from a soils map or a 
wildlife habitat tnap frotn a vegetation map. The 
algorithm presented here is able to optimize label 
assignments while incorporating the uncertainty in- 
herent in drawing a sample, the costs of each type 
of misclassification, and the need for an assignment 
to have some minimum value as a predictor of the 
class identity of a pixel, i .e . ,  attain some minimum 
level of "class purity. " 
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