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Irrigated Crop Inventory by 
Classification of Satellite Image Data 

Classification of bands 5 and 7 Landsat multispectral scanner data is 
used to produce inventories with high accuracies of irrigated crops. 

INTRODUCTION mands on the river made by irrigation must be care- 
fully controlled. In New South Wales such control 

M UCH OF THE WESTERN REGION of the state of New is exercised by the issue of irrigation licenses to 
South Wales in Australia experiences arid to farmers. It is then necessary to monitor their usage 

semi-arid climatic conditions with low average an- of water to ensure licenses are not infringed. This, 
nual rainfalls accompanied by substantial evapo- of course, is the situation in many parts of the world 
transpiration. Consequently, a viable crop industry where extensive irrigation systems are in use. 
depends to a large extent upon irrigation from major The water demand by a particular crop is very 

ABSTRACT: Mixed unsupervisedlsupervised classification of band 5,  band 7 Landsat 
Multispectral Scanner image data is used as a procedure for determining area of 
cropland under irrigation in an arid region of the state of New South Wales in 
Australia. Classification using two analysis systems is described. One is a dial-in 
bureau service which supports the ORSER software package and the other a Dipix 
Aries I1 interactive image analysis system. Results obtained agreed to within 1 to 
5 percent with information provided by field studies. Density slicing using a veg- 
etation index is also described, but with an accuracy of approximately 8 percent. 

A rough cost-effectiveness comparison is made with irrigated crop inventory 
studies of other investigators. 

river systems. Cotton growing in the vicinity of the 
township of Bourke is a particular example. With 
an average annual rainfall of 360 mm, cotton 
growing succeeds by making use of irrigation from 
the nearby Darling River. This river also provides 
water for the city of Broken Hill further downstream 
and forms part of a major complex river system ul- 
timately that provides water for the city of Adelaide, 
the capital of the state of South Australia. The Dar- 
ling River itself receives major inflows from seasonal 
rains in Queensland, and in dry years can run at 
very low levels or stop flowing altogether, leading 
to increased salination of the water supplies of the 
cities downstream. Consequently, additional de- 

* Mr. Moreton passed away on 22 October 1982, before 
this paper was completed. He is missed sadly by his many 
fi-iends and colleagues in the Australian remote sensing 
community. 
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closely related to crop area, because most water 
taken up by a plant is used in transpiration (Keene 
and Conley, 1980). As a result, it is sufficient to 
monitor crop area under irrigation as an indication 
of water used. 

There are several means by which irrigated crop 
area inventories can be performed. One is to de- 
pend upon information supplied by farmers who 
make use of irrigation. This can suffer in accuracy 
and timeliness owing to the need to coordinate and 
expedite a large number of farmer returns, all pro- 
vided with perhaps varying degrees of objectivity. 
A second method, and one which is widely used, is 
to employ so-called extension officers who visit the 
regions under irrigation and make assessments of 
irrigated areas. This can be both expensive and time 
consuming; moreover, it is possible that patterns of 
irrigation could change over the period required to 
complete field visits. 
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A third means by which crop area under irrigation 
could be determined is to make use of image data 
of some sort. Aerial photography would in general 
have to be acquired for a given project and thus 
would be an expensive avenue to follow. However, 
imagery from remote sensing satellites is a viable 
medium for area inventories owing to its timeliness 
and to its relatively low cost. The spatial resolution 
of the Landsat Multispectral Scanner (0.4424 ha) is 
sufficient to permit crop area inventories in most 
circumstances with sufficient accuracv. and the , , 
wavelength bands employed can generally provide 
the necessary ground cover type discrimination. 
This paper is addressed to this approach. 

Landsat Multispectral Scanner (MSS) image data 
have been used by several investigators to deter- 
mine irrigated crop area. Draeger (1977), Heller 
and Johnson (1979), Keene and Conley (1980), and 
Thiruvengadachari (1981) have used photointerpre- 
tation of bands 4, 5, and 7 color composite Landsat 
MSS image products at scales of 1:1,000,000 and 
1:250,000. In principle, photointerpretation as a 
means for identifying irrigated cropland works well 
owing to the marked color contrast of healthy irri- 
gated fields and the (semi-arid) background. More- 
over, a human analystlinterpreter is able easily to 
ignore other regions of healthy vegetation not as- 
sociated with crops, such as those bordering 
streams. These investigators reported accuracies of 
between 4 percent and 10 percent which, for most 
requirements, would be adequate. However, ana- 
lyst time required is excessive, ranging up to ZOO 
man hours. 

Keene and Conley (1980) have also employed dig- 
ital analysis methods to determine areas. In partic- 
ular they chose a band 5 MSS image in which healthy 
irrigated fields normally show as substantially 
darker than their surroundings. They then per- 
formed a density slicing of the brightness values in 
this image in order to count the number of pixels 
with brightness below a predetermined threshold. 
While this method can be fast compared with pho- 
tointerpretation, its accuracy suffers if there are 
other cover types present in the image which also 
appear dark in band 5; these would include back- 
ground vegetation in regions of moderate rainfall, 
and water bodies. Accuracy also depends upon the 
value of the slicing threshold used. 

An alternative approach, utilizing satellite im- 
agery, is to employ classification of more than one 
band of data to ensure acceptable discrimination of 
irrigated fields from other cover types. It is the in- 
tention of this paper to describe an investigation of 
classification procedures used for irrigated crop in- 
ventory, based upon two softwarelhardware sys- 
tems. One is the ORSER package developed at Penn- 
sylvania State University, and the other is the com- 
bined applications software and interactive 
hardware of a Dipix Aries I1 image analysis system. 

With these in mind, the specific intentions of the 
paper are 

to report the results of the study and thereby allow 
a comparison to be drawn with the image based 
methods of other workers and with more traditional 
techniques for gathering irrigated area information, 
to present a comparison of the approaches adopted 
using ORSER (as a dial-in bureau image processing 
service) and the Dipix system (as a dedicated in- 
teractive facility), and 
to provide a case study of the use of combined un- 
supervised/supervised classification methodologies. 

Successful utilization of supervised classification 
procedures depends upon having determined be- 
forehand the spectral structure of the data. Often, 
the simple approach of choosing training data by 
field studies is not sufficient, in the case of max- 
imum likelihood classification, to ensure that the 
data have been resolved correctly into a set of single 
Gaussian modes that will yield accurate results. By 
comparison, unsupervised classification using clus- 
tering is a convenient and usually reliable means by 
which single modes (or so-called spectral classes) 
can be determined. However, it is an expensive pro- 
cedure and is not often used in place of supervised 
maximum likelihood classification except on small 
images. Other supervised methods, such as min- 
imum distance (to class means) classification, also 
depend for their success upon having discovered the 
structure of the data spectrally. To a first approxi- 
mation, the spectral classes used naturally by min- 
imum distance classification are hyperspherical and, 
unless the spectral domain is resolved into sets of 
non-overlapping approximate hyperspheres, error 
can result in applying this classifier. Again, clus- 
tering is a useful procedure for determining data 
structure as a precursor to classification. 

While straightforward supervised and unsuper- 
vised methods are used extensively and show very 
good results, a more reliable approach is to use the 
hybrid supervised-unsupervised (modified clus- 
tering) approach recommended by Fleming et al. 
(1975), in which clustering is used on a representa- 
tive and heterogeneous subset of data to discover 
the spectral modes necessary for use with a super- 
vised algorithm. In this, a set of regions in the image 
is chosen for clustering such that all apparent cover 
types (information classes) are present and so that 
each region contains several cover types. In this way 
any significant boundary modes will be detected. 
Application of clustering then produces not only an 
identification of the spectral classes but also their 
statistics or signatures. Once these spectral classes 
have been associated with ground cover types by 
use of reference or field data, then supervised clas- 
sification of the full image is carried out. 

The hybrid approach is adopted in this paper. In 
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one case the supervised algorithm is of the min- to use and can give misleading results if due con- 
imum distance variety whereas in the other it is a sideration is not given to the mechanism by which 
maximum likelihood procedure. it delineates clusters. 

CSIRO-ORSER 

The ORSER software package, developed at Penn- 
sylvania State University, is available in Australia 
as CSIRO-ORSER via the CSIRO computer network 
CSIRONET . Access is obtained generally over 300 
baud telephone lines by means of dial-up modems. 
Inputloutput, therefore, is often accomplished using 
a single terminal such as a Decwriter, which has 
significant implications both for producing thematic 
maps and for locating features in images. The re- 
stricted image width of 132 pixels (characters) means 
that only small image or map segments can be dis- 
played conveniently. 

CSIRO-ORSER , at the time of the project, did not 
have a maximum likelihood algorithm imple- 
mented. Consequently, supervised results were ob- 
tained using a minimum distance classifier. 

The CSIRO-ORSER clustering procedure is of the 
single pass variety and requires the user to enter 
parameters which seed the generation of, and con- 
trol the size of, the clusters found. A little experi- 
ence is required to use this algorithm effectively, 
but once mastered it can be used to determine data 
structure very readily. 

DIPIX ARIES I1 APASP 

Both authors' institutions possess a Dipix Aries I1 
image analysis system which supports an applica- 
tions software package known as A2ASP . This in- 
cludes a maximum likelihood classification algo- 
rithm along with a clustering procedure based upon 
peak selection in multidimensional histograms. This 
clustering algorithm also requires considerable t a re  

THE CSIRO-ORSER BASED STUDY 

THE STUDY REGION 

A band 7 Landsat Multispectral Scanner image of 
the region considered in the study, consisting of 927 
lines of 1102 pixels, is shown in Figure la. This is 
a portion of scene number 30704-23201 acquired on 
February 1980 (Path 99, Row 81). Irrigated cotton 
fields are clearly evident in the central left and 
bottom right regions, as is a further crop in the top 
right. The township of Bourke is just south of the 
Darling River, just right of the center of the image. 
The white border encloses a subset of the data, 
shown enlarged in Figure lb .  This smaller region 
was used for signature generation in both the ORSER 
and DIPIX approaches. 

CLUSTERING 

Figure 2 shows the location of four regions se- 
lected for clustering using the ORSER single-pass al- 
gorithm. A fifth clustering region was chosen which 
partially included the triangular field in the bottom 
right region of Figure la.  These regions consist of 
up to 500 pixels each and were selected so that a 
number of the irrigated cotton fields were included, 
along with a choice of most of the other major 
ground covers thought to be present. These include 
bare ground, lightly wooded regions, such as trees 
along the Darling River, apparently non-irrigated 
(and/or fallow) crop land, and a light colored sand 
or soil. 

Each of the regions shown in Figure 2 was clus- 
tered separately. -with the entered into 
the ORSER clustering processor, each region gener- 
ated between five and 11 spectral classes. The cen- 
ters of the complete set of 34 spectral classes were 

FIG. 1. (a) Band 7 Landsat MSS image of the region of the investigation, showing irrigated fields (white). The area 
enclosed by the white border is shown expanded in (b) and was used in signature generation. 
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FIG. 2. Line printer map (band 7) of the region shown in Figure lb, with cluster regions indicated by the black borders. 

then located on a bispectral plot. Generally, such a 
plot consists of the average of the visible compo- 
nents of the cluster means (Landsat bands 4 and 5) 
versus the average of the infrared components 
(bands 6 and 7). In this exercise, however, owing to 
the well-discriminated nature of the data, a band 5 
versus band 7 bispectral plot was used; moreover, 
the subsequent classification also made use only of 
bands 5 and 7. This reduced the cost of the classi- 
fication phase; however, the results obtained sug- 
gest that accuracy was not prejudiced. The band 5 
versus band 7 bispectral plot showing the clustering 
results is illustrated in Figure 3. 

At this stage, it was necessary to rationalize the 
number of spectral classes and to associate spectral 
classes with ground cover types (so-called informa- 
tion classes). While a sufficient number of spectral 
classes must be retained to ensure classification ac- 
curacy, it is important not to have too many, because 
the number of class comparisons, and thus the cost 
of a classification, is directly related to this number. 
Because the classifier to be employed was known to 
be of the minimum distance variety, which imple- 
ments linear decision surfaces between classes, 
spectral classes were grouped together into approx- 
imately circular groups (provided they were from 

. O R I G I N A L  SPECTRAL CLASS MEANS 
/- / +*\\ S O I L I S A N D  

+ R A T I O N A L I S E D  SPECTRAL CLASS 

I % R I G A T L D  CROPS 

/..-A. 

25 5 0  75 1 0 0  125 1 5 0  

BAN0 7 HE)N BRIGHTNESS VALUES 

FIG. 3. Bispectral plot (band 5 class means versus band 7 class means) showing the original 34 cluster centers (spectral 
classes) generated. Also shown are the class rationalizations adopted. Original spectral classes within the dotted circles 
were combined to form a single class with mean positions indicated. The labels were determined from reference data 
and spectral response characteristics. 
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the same broad cover type) as shown in Figure 3. 
In this manner, the number of classes was reduced 
to ten. Labels were attached to each of those (as 
indicated in Figure 3) by comparing cluster maps to 
black-and-white and color aerial photography, and 
to band 7 line printer maps of the satellite data. The 
relative band 5 and band 7 brightness values were 
also employed for class recognition; fields under ir- 
rigation were evident by their low band 5 values 
(-30 on a scale of 255, indicating high chlorophyll 
absorption) accompanied by high band 7 reflectance 
(-100 to 150, indicating healthy, well-watered veg- 
etation). 

SIGNATURE GENERATION 

Signatures for the rationalized spectral classes 
were generated by averaging the means of the con- 
stituent original set of spectral classes. This was 
done manually, and is an acceptable procedure for 
the classifier used. Minimum distance classification 
makes use only of class means in assigning pixels 
and does not take any account of class covariance 
data. On the contrary, maximum likelihood dassi- 
fication incorporates both class covariance matrices 
and mean vectors as signatures, and merging of con- 
stituent spectral class signatures to obtain those for 
rationalized classes cannot readily be done by hand. 
Rather, a routine that combines class statistics, such 
as MERGESTATISTICS available in LARSYS, is required 
(Phillips, 1973). Such a facility is not available in 
CSIRONET-ORSER (CSIRO-ORSER Users Manual, 
1979). The rationalized class means are indicated in 
Figure 3. 

I CLASSIFICATION AND RESULTS 

With spectral class signatures determined as 
above, Figure l a  was checked for crop fields that 
indicated use of irrigation. A classification map of 

the Figure l b  (6,957 ha) region is shown in Figure 
4. Fields under irrigation are clearly discernible by 
their shape, as well as by their classification. By 
retaining several other ground-cover types as sep- 
arate information classes (rather than giving them 
all a common symbol representing 'non-irrigated'), 
other geometric features of interest are evident. For 
example, the Darling River is easily seen, as are 
some neighboring fields that are not irrigated. This 
was useful for checking the results of the classifica- 
tion against maps and other reference data. 

The results of the classification agreed remarkably 
well with ground-based data gathered by field offi- 
cers of the New South Wales Water Resources Com- 
mission and the New South Wales Department of 
Agriculture. In particular, for the region of 169 651 
pixels (75,000 ha) shown in Figure 5, a measure of 
803 ha given by the classifier as being under irri- 
gation agreed to better than 1 percent with that 
given by ground data. This is well within any ex- 
perimental error that could be associated with the 
classification and with the uncertainty regarding 
pixel size (in hectares), and is consistent with ac- 
curacies reported by some other investigators 
(Tinney et al., 1974). 

CONCLUDING REMARKS 

In general, the combined clusteringlsupervised 
classification strategy adopted here works well as a 
means for identlEying a reliable set of spectral classes 
upon which a classification can be based. The clus- 
tering phase, along with a construction such as a 
bispectral plot, is a convenient and lucid means by 
which to determine the structure of image data in 
multispectral space; this would especially apply for 
exercises that are as readily handled as those de- 
scribed here. The rationalized spectral classes used 
in this case correspond not so much to unimodal 

FIG. 4. Classification map of the region of Figure l b  generated using the ORSER software package. Class symbols used 
are: * irrigated crops; + other crop fields, x treeslriver course; - soillsand; bare ground. 
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FIG. 5. Region (enclosed in white border) used to assess 
accuracy of classification using field data. 

Gaussian classes normally associated with maximum 
likelihood classification, but rather are a set that 
match the characteristics of the minimum distance 
classifier employed. This is an important general 
principle: the analyst should know the properties 
and characteristics of the classifier he is using and, 
from a knowledge of the structure of the image, 
choose spectral class descriptions that match the 
classifier. 

A major disadvantage with the ORSER approach to 
the investigation was the difficulty in locating re- 
gions in the image of interest using line printer 
output. By comparison, using the interactive color 
display subsystem of a Dipix system, positional lo- 
cation is straightforward. 

SIGNATURE GENERATION 

Again, only band 5 versus band 7 two-dimen- 
sional spectral data were employed for signature 
generation on the sub-area of Figure lb.  Clustering 
was used to generate the spectral classes; however, 
the Dipix histogram peak selection method was not 
easily controlled when using only two bands. It dis- 
played a tendency to place class means along a line 
between the river and soil regions in the band 5 
versus band 7 scatter diagram and tended to miss 
the obviously irrigated vegetation classes out along 
the band 7 axis in Figure 3. 

Instead of using clustering on the full range of 
spectral data in one pass, the following procedure 
was used and led to an acceptable set of unsuper- 
vised signatures. It was based upon foreknowledge 
of the bispectral plot in Figure 3 but could have 
been based upon a scattetplot of the data from 
Figure lb ,  along with a sampling of the lower tri- 
angular field in Figure la.  Figure 6 shows the bi- 
spectral plot of Figure 3 with four distinct spectral 
regions identified. Three correspond to well defined 
irrigated classes and the fourth to remaining cover 

types as indicated. Clustering was used to generate 
six classes in the last zone by limiting the (two-di- 
mensional) spectral range over which the histogram 
of data was constructed. Only one class was gener- 
ated for each of the other three spectrally limited 
zones. These classes, which can be identified as 'ir- 
rigated' by reference to the image data, could have 
been generated by parallelepiped classification; 
however, clustering was used to ensure that the re- 
gions chosen correspond acceptably to single Gaus- 
sian spectral modes. 

CLASSIFICATION AND RESULTS 

Together, all regions gave nine spectral classes, 
the signatures for which were used in a maximum 
likelihood classification of the image segment of 
Figure lb .  The classlfication map so generated is 
shown in Figure 7. Only the three irrigated classes 
are shown (as white), with the other six cover types 
not shown. For the larger region of Figure 5, max- 
imum likelihood classification based upon the set of 
signatures generated above gave an irrigated area of 
765 ha. This is within 5 percent of the figure ob- 
tained by field personnel and of the value obtained 
by the ORSER study. 

USE OF A VEGETATION INDEX 

A classification exercise as moderately straightfor- 
ward as detection of irrigated crops in an arid or 
semi-arid background is easily handled by the con- 
struction of a simple vegetation indicator. As a cross 
check of the previous results, a simple band 7 di- 
vided by band 5 index was set up. This shows veg- 
etated regions as bright and other regions (including 
sand) as dark. This ratio for Figure l b  is shown in 
Figure 8. Classification amounts to single dimen- 
sional parallelipiped classification by determining a 
value of the ratio that is a transition between the 
irrigated and non-irrigated classes. On an interac- 
tive image processing system, such as the Dipix 
Aries 11, such a transition is easily established by 
using a test area such as that in Figure lb, and color 
density slicing it. The Dipix allows color density 
slicing, of data stored in the system's video memory, 
in real time. Consequently, a large number of trials 
can be carried out to determine a transition that 
slices the fields from the background in an accept- 
able manner using the ratio data. This transition can 
then be used in parallelepiped classification of the 
full image data of interest, which is generally too 
large to be accommodated in video memory. This 
procedure was adopted for this investigation as well 
and led to results for Figure 5 of 860 ha of irrigated 
crops. Agreement with field studies is to within 8 
percent. 

CONCLUDING REMARKS 

The availability of an interactive image processing 
system makes an investigation such as the present 
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FIG. 6. Bispectral plot of the original class means developed in the o ~ s ~ ~ - b a s e d  approach by clustering, showing also 
the spectrally-limited zones used for spectral class determination in the DIPIX study. 

one quite simple, with several alternative ap- 
proaches available. Finding regions of interest in 
the image is straightforward, and real time manip- 
ulation of image data, such as color density slicing, 
using the display subsystem means user familiarity 
with the particular data under consideration can be 
gained quickly. The trade-off, however, is that the 
user requires expertise to operate such a system and 
to utilize its hardware and software effectively. This 
is particularly so with the clustering technique avail- 
able on the Dipix system. 

With the limited and diverse data available, it is 
difficult to carry out an accurate comparison of cost- 
effectiveness of irrigated crop inventory using clas- 
sification as against photointerpretation or ground 
studies. However, some general comments of in- 

terest can be made, and these form the basis of a 
rough comparison. 

The accuracies of the classification results (1 per- 
cent to 5 percent) are as good as those obtained by 
photointerpretation as reported by Heller and 
Johnson (1979) and Keene and Conley (1980) (5 per- 
cent to 10 percent), when the classification is based 
upon both band 5 and band 7. 

Although a particularly fast method, the use of 
band 7Iband 5 ratio as a vegetation index gave 
slightly poorer accuracy. More importantly, it de- 
pended critically on a careful choice of the threshold 
value of the ratio which separates irrigated and non- 
irrigated cover types. This approach is not pursued 
further in these remarks, but rather, the following 
apply to the classification of two-dimensional image 
data. 

Both the ORSER and DIPIX based approaches de- 
scribed required approximately 20 hours of analyst 

FIG. 7. Classification map of the region of Figure l b  gen- FIG. 8. Band 7/band 5 ratio of the region of Figure l b  
erated by the DIPIX based approach. Only the irrigated generated with the real time look-up table manipulation 
crop class is shown. facilities of the DIPIX image analysis system. 
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time. In the former, a large portion was used in 
locating the study areas using line printer image 
products. This step was almost insignificant using 
the Dipix system; however, with the Dipix a con- 
siderable amount of the time was taken in deriving 
suitable class signatures by clustering with the al- 
gorithm available. It is conjectured that if a more 
controllable algorithm could be used on the Dipix 
for signature generation, then this approach would 
have taken perhaps only 10 to 15 hours of interactive 
and batch computing. This would then be the  
preferred approach. An appropriate clustering pro- 
cedure would be the migrating means technique 
adopted in LARSYS (Phillips, 1973), or even the 
ORSER single pass algorithm. 

To make a cost comparison with other studies and 
methodologies, it is necessary to consider the areas 
inventoried. To provide a basis for comparison, the 
number of minutes of analysis time required per 
4050 ha (10,000 acres) is used in Table 1 as a means 
for approximate relative assessment of a number of 
approaches. A direct dollar cost comparison has 
been avoided owing to differences in exchange and 
inflation rates. 

From the table it is noted that there is a wide 
variation in the 'cost' for inventorying by photoin- 
terpretation, for results of comparable accuracy. 
This variation is possibly attributable to relative dis- 
crimination difficulties with different data sets, but 
is probably related also to biases introduced by the 
relative sizes of the test areas reported. Apart from 
the results of 3.4 minl4050 ha of Thiruvengadachari 
(1981), reported for only 6,000 ha, the classification 
approach of this paper is of comparable or better 
cost effectiveness. The best approach seems to be 
the image analysis method used by Keene and 
Conley (1980) in which a single band is density 
sliced into irrigated and non-irrigated classes (akin 
to the vegetation index approach herein). However, 

accuracy was not reported for that technique. More- 
over, it suffers when only a single band is used be- 
cause non-irrigated and irrigated covers can have 
similar brightness. 

The ORSER based study of this paper was carried 
out as a professional consulting project at a total cost 
of approximately $4,000 Australian, in 1983 terms. 
This represents about $55 (1983) per 4050 ha (10,000 
acres), inclusive of data costs, analyst time, com- 
puting costs, and other overheads. It would be in- 
teresting to compare this to the cost of obtaining the 
information by ground personnel. Unfortunately, 
this was not possible in the present situation. How- 
ever, an interesting comparison can be drawn by 
considering results from a study by Jensen et al. 
(1975). 

They report conventional survey costs (in equiv- 
alent 1983 Australian dollars) of approximately $120 
per 4050 ha; this is a factor of two higher than the 
remote sensing based study reported herein. This 
factor is not inconsistent with the cost savings of 
remote sensing over and above traditional ground 
based techniques reported by others. For example, 
for five selected projects documented by Solomon 
and Maher (1979), the factors range between 1.9 
and 4.4. 

A cost component which did not enter into the 
present study is that associated with geometric cor- 
rection of the image data. This was not necessary 
because the crop fields of interest were well delin- 
eated, but, more importantly, accurate thematic 
mapping was not required. Should this not be the 
case, then the cost of rectification would need to be 
added. 

The major limitation of classification as a proce- 
dure for projects such as irrigated crop inventory 
seems to be that appropriate analytical skills are re- 
quired along with expertise in using digital image 
analysis equipment. Despite this, classification 

METHOD 
AREA* 

(ha) 
TIME 

01.) 
'COST' 

(minl4050ha) 
ACCURACY 

(percent) 

Photointerpretation 
(Heller & Johnson, 1979) 
Photointerpretation 
(Thiruvengadachari, 1981) 
Photointerpretation 
(Draeger, 1977) 
Photointerpretation 
(Keene and Conley, 1980) 
Image Analysis-1 band 
(Keene and Conley, 1980) 
Classification-ORSER 
(This study) 

6 +  10 

4 

4 + 7  

-5 

not given 

-1 

* The area given in this column is not necessarily the complete area inventoried in the project but rather is an area reported in conjunction with times, 
thereby allowing 'cost' to be calculated. 
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yields results of high accuracy with good cost effec- 
tiveness, as demonstrated above. In addition, the- 
matic m5ps can also be produced readily, and in- 
cremental costs for additional areas surveyed (once 
signatures have been generated) are probably sig- 
nificantly lower than by photointerpretation. These 
would seem to justify the method, and if skills are 
not readily available, image analysis consultants can 
be used, this being particularly cost effective when 
complete project costs are taken into account. 

The project reported upon in this paper has been 
based upon a water resources study in which it was 
important to know crop areas irrigated but in which 
crop type discrimination was not significant. Con- 
sequently, the classification strategy was straightfor- 
ward and, as noted, cost effective. Moreover MSS 
sensor resolution was acceptable to ensure good ac- 
curacy for crop fields of the size typically encoun- 
tered in western New South Wales. 

Should crop discrimination be a consideration, 
then the classification methodology would need sub- 
stantial refinement to allow a finer segmentation of 
the spectral domain. Often, this refinement can add 
significantly to overall project costs. Instead, a more 
cost-effective approach might be  to follow the  
methods adopted in this paper for an initial strati- 
fication of the image data into crop and non-crop 
regions and then use a second level of sampling to 
enable crop discrimination within the regions iden- 
tified as crops. The latter could be carried out by 
field personnel or by aerial photography. 

The authors wish to acknowledge the assistance 
provided by the New South Wales Water Resources 
Commission in providing field data and related in- 
formation. 
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