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The Quadrustational Close-Range 
Photog rammetric System* 

A greater and more homogeneous accuracy is attained when four, 
rather than two, camera stations are employed. 

T HE DEVELOPMENT of the stereometric camera was 
a significant event in close-range photogram- 

metry and is reviewed in detail by Karara (1974). 
The data reduction using single or stereo geometry 
and the study of the accuracy of both systems has 
attracted the attention of many photogrammetrists, 
including Thompson (1971), Abdel-Aziz and Karara 
(1971), Faig (1972), and Wong (1975). In an attempt 
to reduce the degree of uncertainty by allowing 
double checking, a quadrustational close-range pho- 
togrammetric system has been developed. 

that the assembly of the data acquisition system and 
its operation should be simple and the apparatus, 
if possible, portable; 
that mathematical expressions should be derived 
for both the normal case and the general case using 
a strong geometric representation for the data re- 
duction system; and 
that a special test board should be designed and 
precisely constructed, so that a comparison could 
be made between the results obtained from the 
stereo and multi-stereo systems. 

The system described in this paper is based on 
four stations only, and the mathematical models rep- 

ABSTRACT: Mathematical models representing the geometry of a quadrustational 
close-range photogrammetric system were developed using the optimization from 
rays and planes to determine the optimul point of intersection. The system was 
verified for the normal case using a multistationlmultistereo configuration. The 
accuracy of the system was assessed by taking stereocomparator measurements 
from stereopairs of a specially constructed controlled field. 

The results of experimental studies revealed that (a) the accuracy in all coordi- 
nate axes is more homogeneous when using the quadrustational system, as com- 
pared with the conventional two-station system; and (b )  The quadrustational system 
produces greater accuracy in the 2-dimension (parallel to the camera optical axis) 
than does the conventional system. 

In developing such a system, the following points resenting its geometry were developed. The system 
were taken into consideration: was verified using a data reduction system based on 

a digitized Zeiss Jena Steko 1818 stereocomputer. 
that the system should be a versatile one, to be 
used for stereo as well as multi-stereo; 
that the system should be easily adapted for the C O N F I ~ W R A ~ O N  OF THE SYSTEM 
normal as well as the general case of close-range 
photogrammetry; The configuration of the system which would con- 

form with most of the requirements listed in the 

* Presented paper, Commission V of the International introduction is illustrated in Figure 1. The system 
society for photogrammetry and Remote Sensing, Sym- is based on four camera stations located at the cor- 
posium at York, UK (5-10 September 1982). ners of a quadrangle. The quadrangle can take the 

t Presently with the Department of Civil Engineering, shape of a square or a rectangle, depending on the 
The City University, London, England. design of the data acquisition system. 
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FIG. 1. Intersection of rays in quadrustational geometry. 

Ideally, the number of photogrammetric cameras 
required for this system is four. In this experiment 
only static objects were considered, and as a result, 
due to the excessively high cost involved, it was 
decided to use two cameras only which can be  
mounted on an adjustable stereometric stand 
(Figure 2). Such a configuration is easily achieved 
with little or no modification to the stereometric 
camera system. The four-station system can be  
achieved by raising the stereometric frame to the 
required height (Figure 2). Due to the configuration 
of the four stations, the system is named the "quad- 
rustational" close-range photogrammetric system 
and is referred to as the quadrustational system in 
the various parts of the paper. 

The system used in this experiment consists of a 
specially designed stereometric stand and two UMK 
1011318 short-range cameras (1.5 m to 4.4 m). The 
stereometric stand (Figure 2) was made in such a 
way that the optical axes of each camera can be in- 
clined in the X and Y directions. A hydraulic jack is 

Slawmatian screw for fitt ing nrmac I I 'the o p t i d  axes. 

Frc. 2.  UMK cameras and UMIST stand. The various 
components of the stereometric system and the manner 
in which the quadrustational system is achieved is indi- 
cated. 

incorporated into the system to allow the formation 
of quadrustational photography. The object to be 
measured is first photographed from position S1 and 
S, (Figure 1); then the horizontal frame upon which 
the cameras are mounted is raised to position S, and 
S, and a second stereopair is taken. Throughout this 
paper, the camera stations are referred to as S,, S,, 
S,, and S,. Stereopairs are referred to by the two 
stations involved in each particular pair. 

Considering Figure 1, and assuming that all rays 
intersect with each other at a point P()$,Yp,Zp), then 
the equation of each ray Ri is 

where i varies from 1 to 4 for the quadrustational 
system, giving 12 equations. 

By eliminating hi between these equations, the 
following equations are obtained: 

(Xs2 - Xsl) 'Re - ('s2 - X ~ 2  + A 
(ZR,XR, - XR,ZRz) = 0 

(Xs3 - Xsl) yR3 - (Y~3  - 'R3 + A 
(YR1X,, - XR,YR,) = 0 

(XS3 - XSl) ZR3 - ('s3 - 'sl) '~3 + A 
(ZR1XR3 - XR1ZR,) = 0 

(XS4 - XSl) Y ~ 4  - ( Y ~ 4  - 'sl) 'R4 + A 
(YR1Xfi4 - XR,YRJ = 0 

(XS4 - XSl) ZR4 - (ZS4 - Zsl) + A 
(ZR1XR4 - XRIZRJ = 0 (3) 

where 

A = 
(Y,, - YSI)XR2 - (XS2 - XSJYR, 

Y ~ l X ~ 2  - X ~ 1 Y ~ 2  

in which Xni, YRi, ZRi (i = 1,2,3,4) are components 
of the vector Ri and are obtained from 

where hi is the scale factor of location vector ri in 
the image system and Mi is the rotation matrix. 

The equation can further be reduced by taking 
the rotations at all stations relative to the lower left 
station S1 (Figure l) ,  so that R1 = I (unit matrix). 

Equations 3 are nonlinear and must be trans- 
formed to a linear set of equations. Using a Taylor 
series expansion and neglecting second and higher 
order terms, we obtain the following linearized ob- 
servation equations: 

aFi 
Fi = F," + - 

aui 
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where, in the case of the reduced form, 

I The B's are base components and are given by 

The solution of the n Equations 4 then gives ap- 
proximate values of the unknowns (dB,, dByI, . . . , 
dK,), which are then added to the initial approxi- 
mations to obtain a further iterative solution. Usu- 
ally, for four or more control points, the solution is 
obtained using a least-squares procedure. 

As the object space coordinates are not included 
in Equation 3, the solution of Equation 3 is based 
on relative orientation only. 

In order to meet the control requirement, the 
collinear model which involves the reference posi- 
tion of object points was also used in this experi- 
ment. The quadrustational system (Figure 1) is ex- 
pressed by considering four central projections of 
points in a three-dimensional object space onto four 
image planes. These conditions can be expressed 
mathematically for the ith photograph as 

1 where 

Mi = (~4) and Mj = [mjl mj2 mj3] j = 1,2,3 

- 
xi = y - y for each i, p = 1, 2, . . . , (z 11) N control points 

The two expressions (Equation 6) are nonlinear, and 
the same principle of linearization as stated before 
may be used. 

With the quadrustational system, there are 24 un- 
knowns (elements of exterior orientation for each 
camera station). 

Because each control point yields eight observa- 
tion equations (two for each ray), then with a min- 
imum of three control points a unique solution is 
possible. For four or more control points, a least- 
squares procedure is used. 

In the first approach, the volume of the tetrahe- 
dron formed by the mutual intersection of the four 
rays (Figure 1) is minimized. In the second ap- 
proach the same procedure is employed but four 
planes (four sides as in Figure 1) instead of rays are 
used. 

OPTIMIZATION USING RAYS 

Referring to Figure 3, the four rays Ri ( i  = 
1,2,3,4) could fail to intersect at one point; thus, a 
mathematical model must be developed to obtain 
an optimum point. Figure 4 shows only one of these 
rays. If p is the optimum point, then 

and 

Tip = uij i  = Sip - SiTi, i = 1,2, . . . , N; 

therefore, 

Sip - SiTi = (SiTi);' 

Assuming li, mi, ni are direction cosines of SiTi; then 

(X - Xi, Y - Yi, Z - Zi) ~ , ( l ~ , m , , n ~ ) ~  = A 2  
' (8) 

Hence 

hi = (X - Xi) I, + (Y - Y,)m, + (Z - Z,)n, 

Also 

U: = (Sip)2 - h: (9) 

Assuming 
4 

a = Cu: (11 \ 
i=  1 

and differentiating a with respect to X, Y, and Z, 
we get 

Once the coordinates of the camera exposure sta- 
tions and their orientation have been established, 
the spatial coordinates of new points on the object 
may be determined. 

In this section, two different procedures are de- 
veloped, both being based on the determination of 
an optimum point to represent the intersection. Flc. 3. b u r  rays in space and the optimum point, P. 
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S, txc.y,.z,) T, 

FIG. 4. The perpendicular to one of the rays in the quad- 
rustational system. 

( .:: .. 11:) (1 )  = (;;;) 
a13 a23 a33 

where 
4 

a,, = 2 (1  - 1:) 
i = l  

a,, = 2 limi 
i =  1 

4 

a,, = z (1 - m?) 
i = l  

s 

FIG. 5. Image coordinate system. 

Then the direction cosines of the line from exposure 
station S to the object-point A is 

cos (ri 

= M:(co; h) (14) 

The matrix of coefficients in Equation 12 is sym- 
metrical, and the solution is obtained from these 
three linear equations. This newly developed pro- 
cedure can be used for any data acquisition system 
configuration based on more than two stations. 

OPTIMIZATION USING PLANES 

' I I c  clir(,ctio~~ c,ohi~~c,h r ~ s c ~ l  i l l  Eq11iltio11 12 ilr(, 01)- 
taillc-tl I)!- rlslnq t11(. irni~qc. c.oo~-(li~l:~tc. \!-stc.111 [I" igr~~-v 
31 :111tl thcs r o t a t i o ~ ~  matrix hl .  

Tllc. dirc~ctio~r cohi11c.s of ;I l i ~ ~ c .  t;.o~n tlrc. c.\pos~~rc. 
static111 to the, i l~ r i~gc~  poi11t arcs 

( I ,  = the i r l r , l r ~ c ,  j ) o i ~ ~ t  
S, = ith cs\l)osr~rc* s t i~t io~r  

The second method of obtaining the spatial co- 
ordinates is based on optimization using the planes 
at the four sides of the quadrustational pyramid 
(Figure 1). However, it should be emphasized that 
this method cannot be used for a two-station system. 

The general equation of a plane in the system is 
given by the following equation: 

Expanding Equation 15 we get 

AiX + BiY + CiZ + Di = 0 

where 

Ai = (YRiBZi - ZRiBYi) 
Bi = - (XRiBZi - ZRiBXi) 
C i  = (XR,BYi - YRiBXi) 

(13) BX, BY, BZi 
The length of perpendicular line from the optimum 
point (X,, Y, ,  2,) to each plane is 

A,Xp + BiYp + CiZp - Di 
L. = 

VT, (17) 

where 
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We assume that 

then, by minimizing a, we get 

am a~ an - - = 0 ax, ar, az, 
Equation 19 can be written in the following form: 

Again, the coefficient matrix is symmetrical, and the 
optimum point is obtained by solution of these 
linear equations. 

In  addition to the  generalized geometry de- 
scribed in the previous sections, it was also decided 
to verlfy the results using the geometry based on 
the normal case. 

Considering Figure 1, and extending the basic 
parallax equation, the third dimension, Z, for the 
whole system is given by 

where 

and 
H is the camera-object distance; 
B is the camera base; 
f,,fe are the principal distances of the two cam- 

eras; and 
p ,  and p, are the values of parallax (parallax in the 

direction of the base) measured on stereopairs S, - 
S3 and S, - S, and are given by 

Pl = Yl - Y3 
P2 = Y2 - Y4 

Equation 21 is based on the special symlnetrical 
case, in which the system has all four cameras at 
equal separations. 

Equation 21 gives the height of the object above 
the selected datum. The X and Y coordinates can 
be found by using the basic parallax equation. 

system, a series of tests were carried out. In all 
experiments, the two short-range UMK cameras re- 
ferred to before were used for data acquisition. A 
digitized Zeiss Jena Steko 1818 stereocomparator 
was used for measurements, and data were pro- 
cessed using CYBER and facilities of UMRCC (Uni- 
versity of Manchester Regional Computer Centre). 
In order to fulfill the control requirements, a precise 
control field was constructed and is described in the 
following section. 

CONTROL FIELD 

In order to have all measurements related to the 
same datum plane, it is essential to provide a precise 
control field containing well-distributed control 
points. The control field used in this experiment is 
a permanent field which is fixed on a vertical wall. 
It consists of a metal sheet, two metres long by one 
metre wide, fixed on a wooden board of the same 
size. A 20 cm by 20 cm grid network was drawn on 
the metal sheet. Forty-eight columns of different 
length were made from aluminium bars, and a 
magnet was fixed in a hole at the base of each 
column (Figure 6). This arrangement was made in 
order to allow for changes in the position of control 
points and also to place them accurately on any grid 
point desired. The grid points were numbered from 
1 to 10 horizontally and from A to E vertically. 
Crosses also were drawn at corners and midway 
along the upper and lower sides for horizontal con- 
trol. The height of the column was measured pre- 
cisely using a machine called the Conquest Inter- 
national Inspection Machine. The measurements on 
this machine are based on optical gratings refined 
by a moirk measuring system which provides a dig- 
ital readout of the distance moved by the probe in 
each of three coordinate directions. The resolution 
of the system is one micrometre. Over each of the 
three coordinate gratings of the machine runs a unit 
containing a light source and a subsidiary grating 
which creates moire fringes with the main grating. 

In order to verify the practicability and to inves- 
tigate the resulting accuracy of the quadrustational 

FIG. 6. The UMK cameras on their stereometric stand. 
The control field is mounted on the wall. 
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TABLE 1. ROOT-MEAN-SQUARE ERRORS FOR THE 

NORMAL CASE 

X Y z 
Photos (mm) (mm) (mm) 

S1-s~ 0.19 0.33 0.58 
s3- s4 0.24 0.33 0.66 
s1- s3 0.31 0.21 0.55 
S2-sd 0.26 0.29 0.68 
Aver. 0.25 0.29 0.62 
Sl-S2-S3-S4 0.16 0.19 0.28 

The sinusoidal output is subdivided into levels 
which in turn are counted and displayed by the unit 
as a measure of the distance traveled by the probe 
in the direction of each coordinate. 

Because of the large size of the control field, the 
plane measurement of the crosses was not possible 
directly on this machine. Therefore, the measure- 
ment of the crosses was checked against a bar of 1.5- 
m length, which was precisely graduated using the 
projection microscope of the Conquest machine. 

DATA ACQUISITION AND DATA REDUCTION 

The camera stand was set up parallel to the con- 
trol field, with the camera axis perpendicular to the 
base. A one-second theodolite was used for the ori- 
entation of the stereometric stand. Pairs of photo- 
graphs were taken with the UMK short-range cam- 
eras with equal vertical and horizontal bases. Mea- 
surements were taken on stereopairs S,-S2, S,-S,, 
S,-S3, and S,-S, using the Zeiss Jena Steko 1818 
stereocomparator. 

RESULTS 

Test 1 .  The normal case of the quadrustational 
system. The average R M S  (root-mean-square) error 
of 24 points in each stereopair after processing is 
given in Table 1. 

On studying Table 1, it is apparent that the ac- 
curacy is fairly consistent in the case of the indi- 
vidual stereopairs, while an improved accuracy is 
noticeable in the case of the normal case of the 
quadrustational system. In the X-direction an im- 

Photos 

s1-s2 

s3- s4 

s1-s3 
s!2- s4 
Aver. 
S ,- St- S3- S, 

provement of 36 percent, in the Y-direction an im- 
provement of 14.5 percent, and in the 2-direction 
an improvement of 54.8 percent has been achieved 
using the geometry of the quadrustational system. 
So it is clear that the normal case of the quadru- 
stational system has provided a substantial increase 
in the accuracy, with its highest value in the 2 di- 
rection, the accuracy of which is of vital importance 
in most engineering applications. 

Test 2.  The general case of the quadrustational 
system. Some of the photographs which were used 
for the normal case were measured and solved using 
the general case. The RMS errors for each stereonair 
andalso for the quadrustational system are in 
Eble 2. 

On studying the results presented in Table 2, it 
is noticeable that the use of the quadrustational 
system improved the accuracy by 28.4 percent in 
the X-direction, by 34.4 percent in the Y-direction, 
and by 47.2 percent in the 2-direction. 

Test 3. The general case with equal vertical and 
horizontal bases. In this test, photographs were 
taken simultaneously at stations S1-S, and S,-S,. The 
test was carried out for a number of cases 
throughout the full focusing range of the short-range 
UMK cameras with a base-to-object distance of 0.5. 
A theodolite was used to set up the camera stand in 
front of the control field (as described in the pre- 
vious section) with respect to the base line. The 
collinear model was used for resection and orien- 
tation. The optimal intersection point was calculated 
according to the least-squares criterion. The root 
mean square errors for each focusing distance are 
given in Table 3. 

X Y z 
(mm) (mm) 

Focusing 
(mm) 

distance Quadru- Quadru- Quadru- 
( 4  S1-s~ stational s1- s2 stational s142 stational 
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RMS 

X Y  Z 
BIH (mm) (mm) (mm) 

0.4 0.13 0.16 0.09 
0.6 0.10 0.14 0.09 
0.8 0.21 0.17 0.19 
1.0 0.26 0.13 0.14 

The results in Table 3 reveal that the accuracy has 
been improved in the Z-direction at all focusing dis- 
tances in the case of the quadrustational system 
when it is compared with the results of stereopair 
S,-S,. The percentage of improvement of the accu- 
racy in the Z-coordinate is 41 percent, 44 percent, 
84 percent, 15 percent, and 51 percent for the 
abovementioned focusing distances, respectively. 
However, the results in the X-direction do not show 
a consistent improvement while in the Y-direction 
the accuracy has generally been improved. 

Test 4T. The quadrustational system with dif- 
ferent base to object-distance ratios. In this test 
photographs were taken at a distance of 1.5 m. 
Equal vertical and horizontal bases but with dif- 
ferent base to object distance ratios were used. The 
average root-mean-square errors of 19 points are 
shown in Table 4. 

Although one expects an improvement in accu- 
racy by increasing the base to object-distance ratio, 
the results of this test showed that the highest ac- 
curacy is obtained at a BIH of 0.6. Comparing the 
root-mean-square errors at BIH = 0.6 with those at 
BIH = 1, it can be found that results at BIH = 0.6 
are 61 percent in X and 36 percent in Z more ac- 
curate than when BIH = 1. However, the root- 
mean-square error in Y is least at BIH = 1. 

Test 5.  The quadrustational system with different 
bases. Photographs were taken at four stations from 
distances of 1.5 m and 3.3 m. Equal and different 
bases were compared in this test, the results of 
which are given in Table 5. B ,  and B ,  are horizontal 

TABLE 5. ROOT-MEAN-SQUARE ERRORS FOR EQUAL AND 

DIFFERENT BASES OF THE QUADRUSTATIONAL SYSTEM 

B,IH = 0.5, B,/H = 0.5, 
BJH = 0.5 B21H = 0.3 

Object 
distance X Y Z X  Y Z 

(m) (mm) (mm) (mm) (mm) (mm) (mm) 

TOGRAMMETRIC SYSTEM 

B,IH = 0.6, B,IH = 0.6, 
B,IH = 0.6 B$H = 0.3 

Object 
distance X Y Z X Y Z  

(m) (mm) (mm) (mm) (mm) (mm) (mm) 

and vertical bases, respectively, and are shown in 
Figure 1. 

From Table 5 a distinct conclusion cannot be 
drawn as to whether the accuracy would be different 
with equal and different bases. In an attempt to 
obtain a specific answer, a second test was carried 
out at a focusing distance of 2.2 m but with bases 
B,IH = 0.6 and B,IH = 0.3. The result of this test 
is given in Table 6. 

The results of test 5 show that there is no consis- 
tent variation in root-mean-square errors between 
equal and different bases in the quadrustational 
system. The authors feel that in using the quadru- 
stational system it might not be necessary to raise 
the camera frame to the same amount as that of the 
separation of the cameras. In other words, there is 
no noticeable difference as to whether the base of 
the quadrustational pyramid is square or rectan- 
gular. However, if the normal case of the quadru- 
stational system is used, one should check that the 
BIH ratio of the left and right stereopairs does not 
affect stereo-vision on the stereocomparator. 

The results of the experimental studies presented 
in the last section support the view that the quad- 
rustational system generally offers a higher degree 
of accuracy and reduces the elements of uncertainty 
as compared with the conventional two-station 
system. This was due to the fact that 

the number of degrees of freedom are increased, 
and 
any gross error can be easily detected. 

Based on the theoretical and experimental studies 
in this paper, it can be concluded that 

The accuracy is more homogeneous in all coordi- 
nate axes when using the quadrustational system as 
compared with the two-station system; and 
The system produces higher accuracy in the Z-di- 
rection, which is of paramount importance to most 
engineering measurement problems. Incorporation 
of optimization principles into the system, to de- 
termine the optimal point, has the following ad- 
vantages: (a) the optimal point (P in Figure 3) rep- 
resents an acceptable point for the location of in- 
tersection of the four rays involved in the 
quadrustational system; (b) the system is reduced 
to a 3 by 3 matrix, while eight equations are for- 
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mulated for a simultaneous vector intersection; and 
(c) most of the available minico~nputers can execute 
the simultaneous solution of the quadrustational 
system to determine the optimal point. 
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