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Numerical procedures to construct improved survey designs 
are presented. 

I N AN EARLIER PAPER, the authors (1983) discuss, in 
broad terms, the trade-offs required to optimize 

an aerial survey. This paper addresses one specific 
aspect of efficient survey design, the development 
of optimal two-stage cluster sampling plans. In par- 
ticular, following Smith (1938), a power function is 
proposed for modeling the variance as a function of 
cell size. Associated formulas are developed to com- 
pute the sampling error associated with two-stage 
cluster sampling. Later requisite adjustments are 
presented to incorporate the effects of omission and 
commission errors. These results are useful as a 
planning tool for optimizing aerial surveys using 

Perry and Hallum (1979) use a power function 
model to optimize the cell size for single-stage de- 
signs. Neither, however, develop the methodology 
needed to consider the more general problem of 
optimizing both the primary and secondary cell size 
simultaneously. Moreover, there has been no ex- 
plicit treatment of the effects of detection errors on 
two-stage cluster sampling in an aerial survey con- 
text. This paper addresses these topics. 

The size (and shape) of an area of land contained 
in one photographic frame of an aerial survey is an 

ABSTRACT: This paper extends the statistical theory of two-stage cluster sampling 
to include the effects of omission and commission errors and variable primary and 
subcell size. Equations are derived and computational techniques presented and 
illustrated to enable optimal sampling plans to be developed in cases where two- 
stage sampling is a feasible design alternative. Depending on the population char- 
acteristics and the costs of sampling, these plans can be sign$cantly more efficient 
than single-stage cluster sampling or  simple random sampling alternatives, and for 
this reason merit careful consideration by aerial survey designers. 

two-stage cluster sampling designs. Broadly, spatial 
correlation between neighboring cells has the ten- 
dency of making large subcells inefficient. Measure- 
ment errors will reduce the observed spatial cor- 
relation, but the reduction may be small. 

Multi-stage cluster sampling plans have, of 
course, been discussed extensively in the statistical 
and remote sensing literature: see, for example, 
Cochran (1977), Aldred (1971), Langley (1975), 
Bonner (1975), Bonner (1980). Bonner considers the 
problem of optimizing the primary cell size for two- 
stage designs assuming a fixed subcell size, while 
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important design parameter. For a fixed camera 
format, this size is inversely related to scale, and 
scale is often directly related to ease of imagery in- 
terpretation. For any task, the minimum exploitable 
scale is often known from past experience, or it can 
be determined with a preliminary experiment. 
Thus, the maximum size of a frame associated with 
a particular camera format is usually fixed by known 
scale constraints (in some surveys, such as those 
which use Landsat imagery, the areal extent of the 
frame is fixed rather than a decision variable). See 
Maxim et al. (1981b), however, for an alternative 
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perspective. For some surveys, this maximum size 
can be quite large, especially if the photointerpreter 
need only count detected items, rather than make 
detailed identifications (e. g., agricultural fields, 
wetlands, etc.). Moreover, the cost of acquiring a 
frame of film is sometimes substantially smaller than 
the cost of interpreting it. For small scales, a survey 
designer may choose to exploit only a few such 
frames. Alternatively, the frame size could be re- 
duced-either by flying the survey at a lower alti- 
tude, by increasing the focal length of the lens, or 
by reducing the size of the camera format and ex- 
ploiting more of these "smaller" frames. A third op- 
tion is to selectively "sample" one or more portions 
of a larger frame. This last choice is otherwise 

Though the basic concept of two-stage sampling 
is simple, the associated notation can be intimi- 
dating. Table 1 presents a summary of this notation 
as used by Cochran (1977). In particular, a region 
of size R (hectares, square miles, etc.) is established 
and divided into N primary cells, or quadrats, as- 
sumed to be of equal size and shape. (The case 
where all primary cells are not of equal size is not 
addressed here.) Frequently these quadrats are 
square or nearly square, depending upon the 
camera format. However, by combining several con- 
tiguous frames together, almost any primary cell 
shape is possible. For simplicity, multi-frame pri- 
mary cells are not considered here, although this 
generalization can be incorporated into the formulas 
that follow. Each primary cell is further partitioned 
into M secondary units of equal size and shape, 
termed subcells. The subscript i indexes the pri- 
mary cells (i = 1,N) in the region, while the sub- 
script j indexes the subcells ( j  = 1,M) within each 
primary cell. 

known as two-stage cluster sampling, and requires 
decisions regarding the frame and subcell sizes, and 
the number of subcells to be sampled from each 
frame. The following sections first develop two- 
stage cluster sampling in the context of variable cell 
size absent measurement error and then extend this 
treatment to include omission and commission er- 
rors. 

- - 

Formula Numerical Value 
Symbol if Applicable Brief Description in Example 

R Size of region or strata 4800 

Integer Number of primary cells in population. 

Integer Number of secondary cells in 
primary cell. 

Index of primary cells. i 

j 

Yij 

Index of Secondary cells/elements. 

Number of objects in jth subcell 
of i' primary cell. 

Mean number of objects per secondary 
cell in ith primary cell 

Overall mean number of objects per 
secondary cell. 

Overall variance among secondary cells 

\ T I  . I .-. lance alrlolrg prilirul-y cell nlc3ans 

'LL a1 lance . alnony: s~ll)ccllb withi11 
primary cells. 

A decision variable 

A decision variable 

Integer 

Integer Numbel- of' sc.colidary cells sanrplecl 
pel- l,~-ilrial.v cell 

s4 Correlation coefficient Oetweelr 
P 0.373 

s~tl,cells in tllr scnnc PI-irnal-y ccll. 
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The subcells contain "objects of survey in- 
terest"-fields, ponds (Gilmer et al., 1980; Work 
and Gilmer, 1976), ant mounds (Green et al., 1977), 
landslides (Logan 1981), dwellings, infested or dis- 
eased trees (Lillesand et al., 1981), etc. The number 
of objects in the jth subcell of the ith primary cell is 
denoted y,. These objects are presumed to be suf- 
ficiently small and discrete relative to subcell di- 
mensions that each object of interest can be as- 
signed to one and only one subcell, or alternatively, 
that a convention is employed to make the assign- 
ment unique. It is also assumed that the imagery 
scale and resolution are such that errors of omission 
or commission can be ignored-this assumption is 
relaxed later in the discussion. 

The average number of obects per subcell in the 
ith primary cell is denoted Y,, while the overall av- 
erage number of objects ger subcell in the entire 
population is denoted by Y. It is assumed that the 
principal quantity of interest is the total number of 
objects in the region, given by the equation 

The overall variance among all secondary cells is 
denoted S2. The variance of the subcell means be- 
tween primary cells is denoted S:, while Si is the 
variance of the subcells within a primary cell. These 
are defined in Table 1 explicitly. The within S; and 
between Sf subcell variances are related by the 
equation 

Finally, the intracluster correlation coefficient, p, is 
defined by the relationship 

As p approaches 1.0, the within subcell variance, 
S;, approaches zero and the y,s within a primary 
cell vary little when compared to the variability be- 
tween primary cells. If p approaches zero, then the 
population becomes more homogeneous until ulti- 
mately there is no spatial correlation. Negative in- 
tracluster correlations are possible (in purely statis- 
tical terms) but not frequently encountered in aerial 
surveys. 

To estimate the survey quantity T (defined in 
Equation 1) using two-stage cluster sampling, a 
sample of n of the N primary cells is randomly se- 
lected and then, from within each of these primary 
cells, m of the M subcells are selected. This is il- 
lustrated in Figure l .  The total is estimated from 
the formula 

while the variance of T is given by 
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Denotes an elemant i n  the sample 

Notes: N = 100. o - 6 .  14 - 9 .  m - 3 

FIG. 1. Schematic representation of two-stage sampling 
(after Cochran, 1977). 

where f, and f2 are the sampling fractions, nlN and 
mlM. These formulas are found in Cochian (1977) 
together with procedures for estimating up (e.g., es- 
timates of S: and S; from either a pilot study or from 
the survey itself). 

In order to model the effects of changing cell size, 
let Var(q) denote the variance of y, for a subcell that 
is q units in area. Then, in particular, 

S2 = Var(q). (5) 

This notation assumes the shape of the subcell has 
no effect on the variance. This is often approxi- 
mately true, but in cases where the cell shapes be- 
come extreme, such as long narrow transects, the 
cell shape can no longer be disregarded. Shape ef- 
fects are developed further in Harrington (1983) 
using linear-by-linear models. Also, see Jessen 
(1978, p. 106) for a discussion on shape. 

The between cluster variance, S:, for primary 
cells of size Q (units of area) is 

The number, N, of primary cells is simply the quo- 
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tient of the size of the region divided by the primary 
cell size, i.e., 

Likewise the number of subcells in a primary cell 
is given by 

The values of Q and 9 are constrained by the re- 
quirement that N and M above be integers. Equa- 
tion 4, using these definitions, is 

possible if plots within the primary cell are nega- 
tively correlated (p < O), but such circumstances are 
rare. The two models, Equations 11 and 12, are 
logically inconsistent, but apparently both can fit 
spatially distributed data well, often over a substan- 
tial range of Q. For example, Perry and Hallum 
(1979) employed Smith's model (Equation 12) to 
U. S. wheat yields and obtained excellent fits for 
values of Q ranging five orders of magnitude from 
0.27 to 25,463 acres, with values of P ,  between 1.58 
and 1.82, depending upon the location. 

(t2) [(R - nQ) - (Q - mq)(R - Q)] + vr:) 
[R(Q - m9)(R - q)] 

a ? = p  n - (9) 
m(Q - 9) q2(Q - 9) 

and the intracluster correlation coefficient is 

The next section presents one model for Var(q) that 
has been found useful. 

Models that relate the variance of y,. with the size 
of a subcell have been examined by several inves- 
tigators. Jessen (1942), Mahalanobis (1944), and 
others (see Cochran) ~roposed a general law that 
the within variance Si is related to the size of the 
primary cell by the empirical formula 

where O s p s 1. In addition, it was assumed in 
this formulation that the subcell size was held con- 
stant. The above relationship has often fitted exper- 
imental data well, but as Cochran (1977) points out, 
Sg can grow arbitrarily large as Q increases-at vari- 
ance with the reasonable principle that Si should 
approach some upper bound. 

An alternative model was suggested by H. Fair- 
field Smith (1938). In this model the between pri- 
mary cell variance, S:, is related to the size of the 
primary cell by the formula 

where, fdr positive p, - 1 s pi < 0. Combining the 
above with Equations 6 and 8, 

Var(Q) = P;Q('+~:), or 

Var(Q) = PoQP1 (12) 

Harrington (1983) presents an alternative model 
based upon the double geometric model as devel- 
oped by Martin (1979). See also Whittle (1956) for 
a discussion of other properties of the power func- 
tion model. 

Smith's model is analytically convenient in that 
the same model can be used to describe both Sf and 
S2 (since these differ only in the argument, Q or q ,  
respectively) and hence (by Equation 2) Si. Thus, 
the specification of the two parameters @, and p, in 
E q u a p n  12 enables computation of S2, S:, Si, p, 
and a?. This parsimony, together with the observed 
adequacy of fit in numerous empirical studies, mo- 
tivated the choice of the Smith model in the work 
described here. 

where, for positive p, 1 s p,  s 2. Note that if sub- 
cells are statistically independent, then Var(Q) 
should increase linearly with Q (i.e., Pl = 1) while 
if ~erfectly correlated, Var(Q) should increase with 
Q2 (i.e., pl = 2). Values of p ,  less than one are 

To estimate p,  and pl in the model (Equation 12), 
it is necessary to acquire sample values of V(-) for at 
least two values of Q. For example, estimates of S2 
and S: can be obtained as given in Cochran (1977). 
Then, by Equations 5 and 6, Var(Q) and Var(q) can 
be estimated. Finally, by the method of moments, 

and 

If more than two sample values of Var(-) are avail- 
able, Po and can be estimated by weighted regres- 
sion on the logarithms as proposed by Proctor (1980) 
and Hatheway and Williams (1958). 

TWO-STAGE CLUSTER SAMPLING (continued) 

Substituting the power function model, (Equation 
12), into the variance formula, (Equation 9), gives 
the equation 
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o; = Qfi1-2 (T) [(R - nQ) - 
(Q - mq)(R - Q ) ] +  qh-2 [[PoR(Q - 

m(Q - 4) nm(Q - 9) 

Note that Equation 15 is appropriate for any size 
primary and secondary cell which satisfies the in- 
teger constraints given in Equations 7 and 8. Table 
2 gives alternative formulas for Equation 15 that are 
applicable in special cases. The equation for the 
within variance is 

If 9 is small in comparison to Q, the equation above 
reduces to the approximate relationship 

where K is a constant of proportionality. This should 
be compared to Equation 11 hypothesized earlier. 

The intracluster correlation coeficient reduces to 

For large R, this equation simplifies even further to 
qz - P l ( Q P 1 -  1 - qP1 - 1 )  

p zz 
Q - 4 

For uon~panson, Nichols (1980) and Bonner (1975) 
model this relationship as a linear decreasing func- 
tion of Q. Equation 16 above implies that the intra- 
cluster correlation is approximately proportional to 
QPl-', at least for small (fixed) q. This power func- 
tion form was also suggested by Hansen et al .  
(1953). For 1 < [Pl S 2, p as given by Equation 16 

is nonnegative, and decreasing in Q and increasing 
in q as would be expected. 

Equation 15 can be used to evaluate the precision 
of the survey for any single or two-stage cluster sam- 
pling plan over the range of cell sizes and shapes 
for which the power function model fits the data. A 
survey planner's goal is often to maximize this pre- 

2 
cision (minimize up) by careful choice of the design 
variables n, m, 9, and Q within a specified budget 
constraint. In particular, one common cost equation 
linking n and m (see Cochran, 1977) is 

and if a budget, B, is available for the survey, the 
budget constraint is given by 

Cln + C,nm S B, n, m integer, 

where C is the total cost, C1 is the cost of acquiring 
imagery of a primary cell, and C, is the cost asso- 
ciated with exploiting each subcell. C ,  and C2,  of 
course, depend upon the decision variables 9 and 
Q, but sometimes in a complex manner. These costs 
might be discontinuous in q and Q if it is necessary 
to change to different aircraft types or camera for- 
mats. Nonetheless, optimization is possible in prin- 
ciple and, considering the relatively small number 
of decision variables involved (i.e., Q ,  9, n, m), nu- 
merical search techniques can be employed to ad- 
vantage. 

Conditions 
2 

Uf 

None [ Q r l - l ( ( ~ ( m  - I )  + mq(n - 1) - Q(nm - 1)) + 9pl-2(Q - mq)(R - q)]  
nm(Q - 9)  

m = l  - P 8  [ q P l - 2 ( ~  - q)  - ~ @ l - l ( n  - I ) ]  
n 

rn 2 - PoR QPI-~(R - nQ) 
9 

(e .g . ,  single stage 
cluster sampling) 

n = N  Po@ - nm9) q P 1 - 2  R(R - q, - - [ (e.g., R = nQ) m(R - nq) n 

m = l  
and Po [981-2 

n = N  n 
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Cochran (1977) shows that the optimal number of while 
subcells to sample can be calculated as 

Parameter values for the power function, from 
Equation 13 and 14, are, therefore, estimated as 

and 

Table 3 presents a variety of sampling plans, each 
satisfying the 500 hour budget constraint, for several 
feasible cell sizes. Other considerations required 
that the subcell size, q ,  be at least '14 area units. 
Sampling plans for which the primary cell size, Q, 
is less than 12 area units are not practical alterna- 
tives. They are included in Table 3 simply to give a 
more comprehensive assessment. Also, in order to 
observe the effects of different values of P l ,  the stan- 
dard deviation, ui, has been calculated for three 
values of p l ,  equal to 1.801, 1.60, and 1.40. 

The most important point to note from Table 3 is 
that the subcell size should be '14 area unit, the min- 
imum possible. The best plan (plan 10, or plan 11 
if pl = 1.4) specifies a primary cell size of 12 area 
units, and from each primary cell, three '14 square 
subcells are exploited. Note also that plan 3 (which 
exploits the entire frame) has a standard error that 
is higher by a factor of five compared to that of the 
optimal two-stage plan (plan 10). Two-stage plans 
that exploit only one subcell per frame, m = 1, are 
very similar to single-stage plans having the same 
cell size (e.g., plan 1 versus plan 4). They have 
slightly smaller standard deviations, however, be- 
cause two-stage plans exploit knowledge of Si .  If S i  
is to be estimated from the survey itself, then, of 
course, m must be at least 2. Note also that plans 8 
and 9 exhaust the available primary cells before ex- 
hausting the budgeted hours, and, as a conse- 
quence, their standard deviations are larger than 
might have been anticipated. When this occurs, var- 
ious anornolies are possible, as is shown later. 

Smith (1938) and later again Perry and Hallum 
(1979) showed that the optimal cell size for one- 
stage cluster sampling is given approximately by the 
equation 

This value should be rounded using the rule: if m* 
lies between the integer m and m + 1, choose m* 
= m + 1 if in* > m(m + 1); otherwise rounded 
down. Note, however, if the budget is sufficient to 
enable all the primary cells to be sampled, Equation 
18 may no longer be valid. In this case, m* must be 
established by numerical search. 

As a practical matter, a survey planner can pro- 
ceed by developing several potential survey plans 
that satisfy the budget and other constraints, and 
from these feasible choices, select the best one, as 
calculated using Equation 15. This procedure is il- 
lustrated in the following example. 

AN EXAMPLE 

Table 1 also contains numerical values (estimated 
from a subsample) from an aerial survey designed 
to estimate the number of agricultural fields in a 
survey region. For this particular survey, the entire 
region had been photographed previously in re- 
sponse to other requirements-hence, the opera- 
tive concern was to design an exploitation plan 
rather than a collection and exploitation plan. Each 
frame was fixed at 12 area units, (i.e., Q = 12). For 
this survey, time studies established that it required 
'12 hour of effort to register and catalog a frame, and 
approximately 1.0 hour per unit area to exploit this 
film. Thus, the cost parameters, assuming subcells 
of size q are exploited, are 

C, = 112 

and 

C, = q. For this example, Q* would be approximately '18 

area unit when pl = 1.80, '13 area unit when Pl = 
Finally, an exploitation budget of 500 hours of effort 1.6, and 314 area unit when = 1.4. A similar anal- 
was established. ysis for two-stage cluster sampling is not possible, 

From the values given in Table 1, due in part to the simplistic specification of the cost 
Var(1) = S2 function given earlier. Figure 2 shows how the stan- 

= 820, dard deviation varies as a function of subcell size, 
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TABLE 3. ONE AND TWO STAGE S A M P L I ~ C  PLANS 

Primary Primary b ui. 
Cell Subcell Subcells Cells Actual 

Type of Size Size Sampled Sampled Cost P1 = PI = PI = 
Sampling Plan Q q M N  m n (Hours) 1.801 

Single-stage 1 'k I14 1 19200 1 666 499.5 6007 6905 7932 
cluster 2 1 1 1 4800 1 333 499.5 7266 7566 7266 
sampling 3 12 12 1 400 1 40 500.0 16101 12543 9783 

Two-stage 4 1 '1. 2 4800 1 666 499 5 5783 6742 7825 
cluster 5 2 500 500.0 6152 6572 7085 
sampling 6 3 400 500.0 6706 6869 7078 

7 4 333 499.5 7266 7266 7266 

8 '14 48 400 1 400 300.0 5788 8049 9894 
9 2 400 400.0 4049 5631 6921 

10 3 400 500.0 3270 4547 5590 
11 4 333 499.5 3900 4662 5446 

12 1 12 400 1 333 499.5 5292 6267 6791 
13 2 200 500.0 6754 6675 6627 
14 3 142 497.0 8157 7392 6888 
15 4 11 499.5 9333 8064 7189 

assuming that the primary cell size is fixed at 12 and 
that m is chosen optimally. 

In broad terms, as subcell size is reduced, so too 
is up. 
On a more detailed level, however, it is clear that 
the relation between u? and q is not monotone- 
decreasing. Rather, the anomoly idenbfied earlier 
(in cases where the primary cells exhausts the re- 
gion) creates local optima. 
As q decreases, the optimal value of m, m*, in- 
creases. In this example, m* is 1 for values of q 
between 6 and 0.60, and then becomes 2 or more 
for q smaller than 0.60. This is related, in part, to 
the fact that the intracluster correlation decreases 
with 4. 

Because there are noJied costs associated with sub- 
cells, the variance, (+*, will be minimized by making 
subcells arbitrarily small. This shows that the anal- 
ysis given in Figure 2 should not be extrapolated 
too far without careful consideration of the costs and 
how they relate to cell size. And, of course, addi- 
tional constraints on cell size are often relevant. 

Table 4 shows the effect of budget for fixed pri- 
mary and subcell size. Larger budgets permit more 
acquisition and exploitation, so that the total, T, will 
be estimated with greater precision. Ultimately, a 
budget of 5,000 hours is sufficient to do a complete 
census and the sampling error is reduced to zero. 
For comparison, the single-stage plan using the en- 
tire frame is also presented. It is dominated by the 
two-stage plans for all budgets considered. This re- 
sult should not be interpreted to imply that two- 
stage plans will always be superior. The cost struc- 
ture of a survey is important to the choice between 

single and two-stage plans. Given specific alterna- 
tive designs, however, Equation 15 enables alter- 
native plans to be evaluated. 

All these results assume that all "items of in- 
terest" are detected with certainty. It is often the 
case, however, that detection errors are present and 
some items are missed, and so the number actually 
identified, x,, will be less than or equal to the true 
number of items in a subcell, y y .  (Commission er- 
rors will be addressed later.) It is further assumed 
that these items have a common detection proba- 
bility, Pd. If Pd does vary, it is assumed that strata 
can be defined by the geography of the primary cell 
or by some variable such as field size (see Maxim 
and Harrington, 1982) such that Pd can be consid- 
ered essentially constant within each stratum. De- 
tections are assumed to be independent events. In 
this case, the expected number of items detected in 
the ijth subcell is Pdy,, and an unbiased estimate of 
the total number of objects in the population is 

where 

It is shown in the appendix that the variance of 9' 
is given by the equation 
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0- 

T 
(thousands) 

(76) Flguee I n  parentheses 
shew optlmal sample size 
of przrnary quadrat 

10 

m'=l i n  t h i s  region m'+=2 i n  t h i s  region 
I 

COMMON ASSUMPTIONS : 

R = 4800 Q = 12 C = 0.50 
8, = 1.801 q = as shown C' = 1.0 
60  5 820.0 B2 = 500 

FIG. 2. Standard deviation of sampling plans for varying subcell size, 
assuming primary cell size is fixed, Q = 12, and m is chosen optimally. 

This expression differs from that obtained ea4ier 
only by the addition of the last term. Because Y is 
proportional to the subcell size, 9, this term can be 
written as 

where y(1) is the expected number of items when 
the subcell size is 1. This term is inversely related 
to subcell size, q,  and so can be made smaller by 
specdying larger subcells. It is independent of the 
primary cell size, Q, unless a change in Q implies 
a change in scale (and thus possibly Pd).  It is also 
independent of the primary and secondary finite 
population correction factors (1 - f,) and (1 - f,), 
and so this additional term will represent a larger 
percentage of the total variance with increasing 
sample s i z y  Nevertheless, the effects of detection 
error on upr  are often small, at least for the cases 
considered here. Figure 3 plots this variance for 
various Pd and m. As this shows, the variance is not 

increased substantially until Pd is less than 0.30, al- 
though the assumed value of ~ ( 1 )  ( = 2 0  here) is 
equally important. 

Table 5 provides another useful numerical ex- 
ample. Specific inputs, e.g., Pd, ~ ( l ) ,  S2, Si, etc. are 
shown at the bottom of this table, but broadly this 
example assumes that Q is fixed at 12 and q is fixed 
at 1 (similar to plans 12 and following in Table 3) 
and that the detection probability is 0.3. Optimi- 
zation here reduces simply to the specification of 
rn*, and is readily accomplished numerically. Note 
that once a value for m(m = 1, M) is assumed, n is 
immediately determined as the largest integer be- 
neath N that satisfies the budget constraint given in 
Equation 17. The optimal value of m, m*, is one in 
this example. The standard error of the estimated 
total corresponding to m*, a", is equal to 5,588 (a 
proportional error of 5 . 8  percent), somewhat 
higher than would have been the case with perfect 
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B 
Assumed Optimal Two-Stage Plan Single-Stage Plan 
Budget 
(hours) m* n* m n uf 

- - 

Common Assumpt~ons 
R = 4800 q = l  C,  1 0 5  
Pa = 820 Q = 12 C , = 1 0  
PI = 1 801 B = as shown 

detection (uT = 5,292) but appreciably lower than 
that plan corresponding to simple single-stage sam- 
pling, i.e., where m = M or 12. Note also that a, 
is quite sensitive to the choice of m. While this sen- 

sitivity is a function of many factors, and the 
problem can have a "flat optimum" (often noted 
with sampling problems), it serves as a reminder 
that "flat optima" do not always result. Among other 
factors, the sensitivity of a, to m is a function of the 
ratio, C1/C2. In particular, when C1 is very small 
relative to C, (as happens, for example, with 
Landsat imagery where the user's acquisition cost 
is small relative to other costs for image processing 
and exploitation), m tends to be small relative to M, 
the standard error increases quickly with m, and the 
two-stage plan is considerably more efficient than 
the single-stage alternative. 

Table 6 shows the (one-at-a-time) sensitivity of m* 
to each of the main inputs to the problem, i.e., k, 
Pd, S:, S;, C1, and Cz if the budget is fixed at 500. 
As can be seen, exact a priori knowledge of these 
quantities is not required for determination of m*. 
For example, S: was assumed equal to 500 in the 
base case. Other factors held constant m* is one for 
any value of S: greater than 129-a wide tolerance 
of error (-74.2 percent to infinity). In this case at 
least, preliminary estimates of the relevant inputs 
are likely to be sufficiently accurate for determina- 
tion of m*. Subsequent data analysis can refine 
these inputs for final survey design computation of 
confidence intervals and survey estimates, etc. 

10 

FIG. 3. The effect of detection probability on standard error for 
fixed primary and secondary cell dimensions and for fixed cost. 
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TABLE 5. ILLUSTRATIVE OPTIMIZATION OF SUBCELL SAMPLING IN TWO-STAGE CLUSTER SAMPLING WITH FIXED BUDGET 

Efficiency 
Number of Subcells Number of Standard Relative, To 

Sampled Per Primary Cells Error of Standard Optimal Plan (%) 
Primary Cell Sampled Estimated Total Error As 100 u2(m*) 

m n 'JT % of Estimate + 
uT(m) 

1 333 5,588 5.8 100 
2 200 6,949 7.2 64.7 

I 3 142 8,310 8.7 45.2 

I 
4 111 9,461 9.9 34.9 
5 90 10,585 11.0 27.9 
6 76 11,575 12.1 23.3 
7 66 12,464 13.0 20.1 
8 58 13,339 13.9 17.5 
9 52 14,119 14.7 15.7 

10 47 14,881 15.5 14.1 
11 43 15,582 16.2 12.9 
12 40 16,169 16.8 11.9 

Common Assumptions 
N = 400 M = 12 C,  = 0 5  cz = 4 

&(I) = 20 Pd = 0 3 8 = 500 q = 10 
Sf = 500 Sj  = 350 Q =  120 
S2 = 820 

SPATIAL CORRELATION WITH DETECTION ERRORS 

The variance of the x, can be shown to be 

For some data sets (see Bonner (1975), for ex- 
ample), the power function model does not appear 
to be suitable because the observed intracluster cor- 

Var,(q) = 7 Pd(l - Pd) + P,2S2. (21) relation decreases less rapidly with Q than is pre- 
dicted from Equation 16. The presence of detection 

Thus, the intracluster correlation associated with errors (or other measurement errors) could account 
the x,, (as distinct from the y,) is, by Equation 16, for this at least in part. Figure 5 plots the apparent 

Figure 4 plots values of p, for various Pd and Q. The 
effect of detection errors is to reduce the observed 
correlation. But, at least for this example, detection 
errors again need to be very small before this effect 
is large. 

TABLE 6. ONE-AT-A-TIME SENSITIVITY ANALYSIS FOR 

EXAMPLE IN TABLE 5 WHERE m* = 1 AND B = 500 

Parameter 

Base 
Case 
Value 

500 
350 
0.3 
20 

0.5 
1.0 

Value Necessary % Difference 
to Increase m* from 

to 2 Base Case 

(observed) intracluster correlation, Equation 22, for 
a variety of cases where P, and Pd have been chosen 
jointly so that p = 0.5 when Q = 2. This shows that 
the intracluster correlation given by Equation 22 
can appear to persist over large areas under suitable 
values of the parameters. 

Appendix B provides an extension of the proof 
given by Cochran (1977) to show that if detection 
errors are present, then the variance is minimized 
when the number of subcells sampled per primary 
cell is 

This equation reduces to m* obtained earlier when 
Pd = 1; otherwise, m** above is larger than m*. For 
the example considered earlier, this adjustment, 
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61 = 1.801 

B2 = 820 

g = 1  

U(1) = 20 

FIG. 4. Effect of the detection probability on the observed intracluster corre- 
lation. 

is not large unless Pd is less than about 0.30. 

In many surveys, commission errors as well as 
omission errors need to be considered. There are 
several approaches for modeling commission errors. 
As one example, cominission errors might be pro- 

As a second example, commission errors might 
simply be a function of the area searched. In this 
case, the number of such errors would be indepen- 
dent of y, and could be modeled as Poisson with 
mean and variance 0 for all subcells within a 
stratum. Given this assumption, an unbiased esti- 
mate of the total is 

and variance of this estimate can be shown to be 

portional to the number of "items of interest" in a 
cell because objects so misclassified are collocated 
with the objects of interest. In this case, commission 
errors might be modeled as independent Poisson 
events with a mean and variance By,. That is, 

Given a suitable ground truth data set, this Poisson 
assumption can be assessed directly. An unbiased 
estimate of the total would be 

and the variance can be shown (by a procedure sim- 
ilar to that given in Appendix A) to be 

Of course, distributions other than the Poisson may 
be appropriate. If so, formulas can be derived sim- 
ilar to Appendix A. See Maxim et al. (1981~) for yet 
other models applicable to commission errors. 

If the detection probability is to be estimated (see 
Maxim and Harrington, 1981a), then the uncer- 
tainty, Var (Pd), of this estimate neeps to be consid- 
ered. (It also biases the estimate, T', although this 
bias is usually small.) In particular, an estimate of 
the variance of T' is, using a Taylor series approxi- 
mation, 
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Common Assumpt ions:  

FIG. 5. The persistence of the observed intracluster correlation 
when detection errors exist. 

The first term is calculated as given by Equation 20, 
substituting in sample values where necessary. The 
second term in Equation 24 can be significant and 
should be included if the  size of the ground truth 
sample used to estimate Pd is small. 

An aerial survey often has a variety of errors other 
than those associated with detection and identifi- 
cation. For example, the accuracy of linear or area 
measurements will be a function of the mensuration 
equipment used, uncertainty in aircraft altitude 
above ground level, optical distortions, the skill of 
the photointerpreters, etc. In other cases, regres- 
sion models are used because the variable of interest 
cannot be determined directly (e.g., the wood 
volume of a tree (see Bonner, 1975)). In these in- 
stances, the variable of x, will be "contaminated" 
with error (measurement or otherwise), e,, and the 
observed values, x,, can be represented as 

If e, has an expected value of zero and is distributed 
independent of the other eqs, then it can be similar 
to Appendix A that the variance of 

I: Ex, 
T x =  N M -  

nm 

is given by 

where a: is the variance of e,. Because the e,. are 
assumed independent, one model for a:, for varying 
subcell size, would be 

where ai(1) is the measurement error variance for a 
subcell of size 1. Thus, the term given in Equation 
25 for this added error reduces to 

The functional form of Equation 25 is similar to 
those related to detection errors. Thus, this more 
general case is a simple extension of these earlier 
results. 

The variance of two-stage cluster sampling plans 
is calculated for varying primary and subcell sizes. 
The equation for the intracluster correlation is also 
derived assuming a power function model, Equation 
12. Adjustments for omission and commission errors 
are then calculated. Generally, when data exhibit 
large intracluster correlations, efficient sampling 
plans will utilize small subcells. When this intra- 
cluster correlation is small, then the total area ex- 
ploited is more important than how it is partitioned 
into primary and secondary subcells. However, as 
Equation 16 demonstrates, the intracluster corre- 
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lation varies with cell and subcell size, and so the 
optimization of a survey design can be complicated. 
The effect of detection errors is to reduce the ap- 
parent intracluster correlation, and so make larger 
subcells more attractive. Also, the correlation can 
appear to persist over longer distances. With real- 
istic cost components, these results could be incor- 
porated into a survey planning models similar to 
those proposed by Aldred (1971), Titus (1979), 
Wensel and Eriksson (1980), and others. 
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APPENDIX A. THE VARIANCE OF f' 
This appendix shows the variance of 

Given the true number of objects in the ijth subcell, the number detected, x,, will be bino~nially 
distributed, assuming such detections are independent of one another. Thus 

E(x,l~y) = 'dy, 
and 

From Cochran (e.g., 10.2) 

where E2(.) and V2(.) are the mean and variance given a particular set of primary and secondary cells, and 
El(.) and Vl(.) denote the mean and variance over all possible selections of primary and secondary cells. 
Now, 

From Equation (4) in the text, 

Also 

El (Pd(l - Pd) 2 Z y,) = nm Pd(l - P,) 7. (A5) 
Adding Equations A4 and A5 to give Equation A3, the result, Equation A2, follows from Equation Al. 

Equation 23 in the main text can be proven similar to that given by Cochran, that assumes no detection 
errors. That is, letting 
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I 

the variance of can be written as 

Minimizing Var (z) for fixed cost C = nC, + nmC, is equivalent to minimizing the product 

(nC, + nmC,) 

By the Cauchy-Schwarz inequality, the above expression is minimized if 

Solving for m gives m**. 
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