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Determining the Confidence Level 
for a Classification 
The emphasis is on the use of a maximum likelihood classification 
system, but the principle may be extended to apply to all classification 
approaches, be they parametric or non-parametric. 

D URING THE TESTING of a maximum-likelihood 
classifier for land-use classification in New 

Zealand, the need arose for an account of the ap- 
plication of statistical confidence level assessments 
in remote sensing. Such an account was necessary 
to assist the discipline oriented users in evaluating 
their classifications. 

The emphasis here is on the use of a maximum 
likelihood classification system, but the principle 
behind deriving a meaningful confidence level may 
be extended to apply to all classification approaches, 
be they parametric or non-parametric. 

given computer-based classification software 
package; 
the effective operation of the package; 
the selection of an appropriate threshold for each 
class to apply to the likelihood distribution for that 
class; and 
the creation of an appropriate output product after 
the thresholds have been applied. 

Here we consider Landsat to be the data acqui- 
sition system and the IBM Earth Resources MAN- 
agement package (ERMAN) as the analysis software 
(IBM, 1976). This software uses a maximum likeli- 
hood classifier. 

A data acquisition system produces a set of num- 
bers for each spatial resolution element, or "pixel," 
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and counting errors is included. The approach is directed towards the discipline 
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A classification is regarded here as consisting of 
the following components: 

the acquisition of data; 
a decision by the user as to the level of class sep- 
arability that is desired and can be attained, being 
mindful of the spatial averaging of ground cover 
classes produced by the data acquisition sampling 
system; 
the selection of training areas which will suit a 
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on the assumption that each element is homoge- 
neous. However, generally the ground cover within 
a given element will in fact be heterogeneous to 
some degree. The analyst must, therefore, decide 
whether the assumption of homogeneity is accept- 
able in each case. 

Analyst interaction with a software package in- 
serts appropriate training-area characteristics into 
the classification process. Effective operation of the 
package requires adequate expertise on the part of 
the operator as well as accurate software, sufficient 
mathematical precision, and appropriate delineation 
of class boundaries within the training data. 

Each pixel is classified, using ERMAN, into the 
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most likely class type and has an appropriate like- 
lihood associated with it (Swain and Davis, 1978). 
Obviously, if the number of classes chosen for the 
classification process does not include all the classes 
of the area being classified, some pixels will be given 
an incorrect class association although, hopefully, 
with a low likelihood. Each class can, however, have 
associated with it a minimum threshold above which 
pixels may confidently be expected to be members 
of that class. The assignment of a specific minimum 
threshold to each class is a decision that must be 
made by the analyst. 

The creation of an appropriate output product can 
also include a decision by the analyst. If the com- 
puter-produced data are further processed or inter- 
preted to prepare a land-use map, then allowance 
must be made for the impact of further human de- 
cisions. 

Consequently, the success of a classification can 
be influenced by a variety of factors-sensor, soft- 
ware, and human. The derivation of a confidence 
level for a classification must recognize that it rep- 
resents such a combination of influences. 

Any computer-derived classification that will lead 
ultimately to a ground-cover thematic map is based 
on ground truth data gathered by the user from se- 
lected "training" areas. This applies whether unsu- 
pervised clustering or supervised classification is 
employed and whether parametric or non-paramet- 
ric techniques are used- 

The computer may represent classes with similar 
ground cover by character symbols on a line printer, 
colored picture elements (pixels) on a television 
monitor screen, or numbers on computer tape for 
subsequent transcription to positive transparency 
film. 

The accuracy of the thematic map depends on our 
ability to extrapolate successfully from the training 
areas to the whole mapped area. Unless we have 
some statistical measure of the efficiency of the ex- 
trapolation process, we cannot estimate our level of 
confidence in the classification. Once a confidence 
level is so quantified, then a user of the classification 
data can relate it, by means of the probability of 
correct classification, to actuality over the whole 
classified area. The classification is thus married to 
ground actuality by the confidence level. (Here we 
are presently using the term "ground actuality" to 
distinguish, and stress, the difference between the 
set of check data used to evaluate the classification 
product, from the "ground truth" data used to set 
up the statistics and, hence, form the classification. 
The two sets of data must obviously be separate but 
must equally have the same characteristics of loca- 
tion, type, height, health, etc. Often the ground 
truth data are from a well controlled and known area 
whereas the ground actuality data are taken over a 

LNG & REMOTE SENSING. 1984 

wider area, over less pure ground cover pixels, and 
employ essentially random sampling. Thus, the 
ground actuality data more closely represent what 
is actually covering the ground whereas the ground 
truth data are usually aimed at the purest classes to 
affect best class separations in the classification pro- 
cess.) 

A pixel classified into a particular class can only 
be either correctly or incorrectly classified. There 
is no middle ground. That is, if the probability of 
correct classification of a pixel belonging to a given 
class is p, and the probability of incorrect classifi- 
cation is q, then 

In this case, for one pixel taken at random from the 
complete set of pixels belonging to the class, the 
probability P that the pixel is correctly classified is 
P(l) = p. Similarly, the probability of being incor- 
rect is P(0) = q. 

For a two-pixel sample from the complete set 
there are four possible combinations, where R in- 
dicates the classification has been shown to be cor- 
rect and W indicates an incorrect result: 

RR, W R ,  RW, and WW. 

Here ,  the  probability of being correct twice is 
P(2) = p2; the probability of being incorrect twice is 
P(0) = q2; and the probability of having one correct 
and one incorrect is P(1) = 2pq (we are not con- 
cerned with sequential ordering). Similarly, for a 
three-pixel sample we could have the combinations 

RRR, WRR,  RWR, RRW, 
W W R ,  RWW, W R W ,  and WWW. 

The probabilities then would be 

P(3) = p3, P(2) = 3qp2, 
P(1) = 3q2p, P(0) = q3. 

Translating to numerical probabilities, if p = 314 and 
q = 114, then 

The development of a probability distribution can 
be noted in the above examples, where the abscissa 
represents a stipulated number i of correctly clas- 
sified pixels in a sample of n pixels, and the ordinate 
represents the probability that the number of cor- 
rectly classified pixels is found upon examination to 
be exactly equal to i. 

Three other points also emerge: 

(a) The probabilities to be associated with 0, 1, 
2, . . . , n correctly classified pixels from a sample 
of n pixels drawn from the complete set may be 
given by the terms in the binomial expansion of 
(P + q)". 
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(b) As p + q = 1, then (p + q)" = 1; 
hence P(n) + . . . + P(3) + P(2) 
+ P(l) + P(0) = 1. 

(c) The coefficient for P(i) is given by the Bi- 
nomial Coefficient Cy 

where cy = 
"! 

i!(n - i)! 

Consequently, we may represent the probability 
of finding exactly i pixels correctly classified in an n 
pixel sample as P(i) where 

This obviously leads to a distribution of P(i) against 
i. It is known as the Binomial Distribution. The 
mean (m) and standard deviation (s) for the Binomial 
Distribution* are (Moroney, 1956, p. 124) 

Usually we are concerned, when checking the ef- 
ficiency of a classification, with the summation of 
the probabilities for all stipulated pixels between n 
and a lower bound, say i. That is, we wish to know 
the probability that at least i pixels are correctly 
classified, when a random sample of n pixels is se- 
lected. 

This probability is called the Confidence Level 
(CL) for that classification, and is usually expressed 
as a percentage. Thus, if CL is the integrated prob- 
ability expressed as a percentage, we can say that 
we are CL percent confident that the pixels are clas- 
sified correctly at least i times out of n (or at least 
(100iln) percent of the time). 

The mathematical evaluation of CL from the Bi- 
nomial Distribution rapidly becomes tedious. A 
more convenient approach is sought. 

Mood (1950, p. 139) demonstrates that, as the 
sample size n becomes larger, the discrete Binomial 
Distribution approaches the continuous Normal 
Distribution as the limiting case for n tending to- 
wards infinity. If the total population has both a 
finite mean and standard deviation, then the sample 
mean and standard deviation may be described by 
Equation 4, again for an increasing sample size 
(Mood, 1950; Moroney, 1956). (This is based on the 
Central Limit Theorem and applies without refer- 

* Strictly speaking, the Binomial Distribution requires 
that, each time we examine whether or not a randomly 
selected pixel is correctly classified, we should immedi- 
ately replace the pixel, so that we are always selecting 
from the complete set (consequently, with a finite chance 
that the same pixel is selected more than once). In prac- 
tice, we sample without replacement, in which case the 
Hypergeometric Distribution should be used (Aitken, 
1942, pp. 56-58). However, provided that we are dealing 
with large sample sizes, the properties of the two types of 
distribution can be assumed to be identical. 

ence to the form of the population distribution func- 
tion, provided large samples are involved. By 
"large", a sample of 50 should be regarded as a min- 
imum (Unthank, 1960) with a sample in the 
"hundreds" (Mood (1950) suggests 300) being more 
acceptable.) These conditions would be met by the 
practical classification tasks we are addressing here. 

Consequently, under these conditions, we use 
the more mathematically tractable Normal Distri- 
bution. This is especially useful because when the 
total area under the curve is normalized to 1.0, the 
probability we seek is the integrated area between 
the limits appropriate to n and i. The equation for 
this unit-area Normal Distribution is 

1 
Probability Density = - 

s& 
exp [ - (i - m)212s2] 

(5) 
(from Moroney, 1956, p. 117) 

Van Genderen et al. (1978) show that the number 
of samples necessary to support the achievement of 
the desired confidence level in the classification 
product is a function of that required level. For ex- 
ample, for the attainment of the Anderson et al. 
(1972) suggested level of 90 percent confidence in a 
classification, Van Genderen et al. (1978) conclude 
that 30 randomly distributed samples are necessary, 
as a minimum, to support such an assessment. This 
is discussed further by Rosenfield et al. (1982). 
(Compare back to the sample sizes felt necessary to 
permit the Binomial Distribution to be replaced by 
the Normal Distribution.) 

The task is now to redefine the Confidence Level 
(CL) in terms of Equation 5. Under such a curve 
the integrated area from three standard deviations 
below the mean (m - 3s) to plus infinity is 0.999. 
Thus, if we wish to have 99.9 percent confidence in 
our evaluation of the performance of the classifier, 
then the lower bound to the number of pixels that 
must be correctly classified in the check sample is 
equal to the mean minus three standard deviations. 

GROUND ACTUALITY CHECKING OF THE CLASSIFICATION 

Obviously, it is impossible to check every pixel of 
a classified area. By taking a suitably selected 
sample of pixels, representative of all conditions of 
vegetation/soil/climate, etc., that exist over the 
area, statistical techniques can then lead to a rep- 
resentative confidence level for the classification. 
Van Genderen et al. (1978) outline factors that 
should be borne in mind when designing any sam- 
pling program. They further indicate a simple and 
acceptable method for establishing a network of 
sampling sites to support the checking of the re- 
quired number of samples for the desired level of 
classification confidence. (However, they do point 
out that limitations to access may intrude upon the 
physical implementation of such a sampling pro- 
gram. This, as indicated later, did modify the sam- 
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N is the number of samples taken, 
P is the number of samples that have been cor- 

rectly classified, 
Q is the number of samples that have been in- 

correctly classified, 
m is the (estimated) mean of the distribution, 
s is the (estimated) standard deviation of the 

distribution, 
em is the standard error of the estimate of the 

mean, 
es is the standard error of the estimate of the 

standard deviation, 
e, is the experimental (human) error in as- 

sessing and counting the number of samples 
that are correctly classified, 

pling program used to acquire the test data reported tribution of such sampling points over the whole 
here.) region must be striven for (Van Genderen et al . ,  

There is no substitute for field checking the clas- 1978). 
sified dataset against the actual conditions that pre- The above were the ground rules used by the 
vail pixel by pixel on the ground. This is known as New Zealand group when checking their E R M A N  
the site-specific approach (Mead and Szajgin, 1982). computer classification results. 

An alternative, that of checking other classifica- 
tions or prepared maps, involves another set of DETERMINATION OF A CONFIDENCE LEVEL 
human decisions in the process and can only de- 
grade the checking process. Another alternative is If 
to check a multispectral classification using pan- 
chromatic air photographs. This also reduces the 
amount of reliable information that can be applied 
to the checking process. 

Landsat, or any such sampling system, inevitably 
impresses a sampling grid over the varying ground 
cover. Allowance must be made for the positioning 
of this spatial sampling grid when checking the clas- 
sification against the actual ground cover. The rep- 
resentative ground-cover class for each pixel, or 
sampling unit, must be determined and used. If the 
class resolution so imposed is not detailed enough, 
then a different sampling system, for example an 
aircraft scanner, should be employed. 

The approach used by the New Zealand group is 
to take site-specific ground truth, distributed over 
awide area, by actual on-site inspection. This covers and 
the geographic extent of the classification and in- 
cludes representative data on different soil types, 
microclimate, differing cropping cycles, etc. The 
classification is then set up, in a supervised manner, 
by using part of the ground truth to provide the then 

training areas. The remainder of the ground truth + = 1 (1) (from previous discussion) 
can then be used to check the classification accuracy 
outside of the training areas. A variation of this tech- m = N P  (4) 
nique is also used for those areas that have long- = (4) lived ground cover. Here, the classification result is 
taken into the field, in lineprinter format, and in- s 
dividual pixels are checked, and marked off, for ac- em = 3 (') Morone~> 137) 
curacy of classification by on-site comparison. The 
lineprinter product is ideal for this application as it s 
more easily permits pixel location and recording es = - * (9) (from Moroney, 1956, p. 137) 
than do the photographic products. 

Returning to the degradation in spatial resolution It is assumed that p is greater than 0.1 and that 
occasioned by the sampling technique: It is obvious N is greater than 50, so that the Binomial Distri- 
that allowance must be made for this in checking a bution may be adequately represented by the unit- 
classification product. Field checking must, there- area Normal Distribution (Moroney, 1956, p. 128). 
fore, be restricted to those areas separated from the The error e, is regarded purely as a human as- 
road edge or similar clearly non-homogeneous sessment and counting error. "Assessment," in the 
ground cover classes by at least one and preferably sense that a field check of a microscopically heter- 
two pixels. ogeneous ground-cover pixel must produce a dom- 

If an influence from soil or microclimate is sus- inant class which is regarded as describing that pixel 
pected, a subdivision of the check statistics into ap- homogeneously. This is a human decision. Similarly, 
propriate soil/microclimate regions is necessary. The counting techniques will have a human error asso- 
computation of individual confidence levels for each ciated with them. The "assessment" error is mini- 
class within each of these regions and a comparison mized by having the same person who set up the 
of the results then aids the assessment of the level ground-truth files, trained the computer classifica- 
of influence of these factors. tion software, and selected the thresholds, also 

The sampling must also be as representative as doing the ground checking over the whole area. An 
possible of the whole classified area. A random dis- accompanying impartial observer can also be used 

p =PIN 

q = QIN 
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to assist in resolving the "yes/no" status of any du- 
bious pixel classifications during the checking pro- 
cess. Errors in ground-cover class interpretation can 
thus be reduced. This was done by the New Zealand 
group. Consequently, it was felt that the "assess- 
ment" error would be absorbed into the overall clas- 
sification error, under these conditions. The 
counting inaccuracy in a test case involving some 
25,000 pixels was found to be less than 0.5 percent. 
This was determined by repeated checks of the 
same data by different analysts with at least two sets 
of counts per analyst. e, was then taken (another 
human decision) to be 0.5 percent. 

The Normal Distribution. normalized to unit 
area, allows us to determine the number of pixels 
that would need to be correctly classified to main- 
tain a Confidence Level of 99.9 percent. This is the 
equivalent of determining the lower acceptable 
limit for a number of correctly classified pixels as 
being at the mean of the population distribution 
minus three standard deviations. 

In practice, values for both the mean and the 
standard deviation are obtained from a restricted 
(though possibly large) sample drawn from the 
whole population, and thus are estimates, whose 
standard errors are given by Equations 8 and 9. 
These equations indicate that em and e, differ from 
s by numerical factors only, indicating complete cor- 
relation among the quantities. Thus, the value of 
the lower limit, to give a 99.9 percent confidence 
level, is obtained by taking a value for the mean 
which is three standard errors lower than the esti- 
mated mean, and then subtracting three times a 
standard deviation which is three standard errors 
greater than the estimated standard deviation. That 
is, 

Examination of Equations 4, 8, and 9 will readily 
show that when m and N are very large, as in the 
example below, the standard errors are trivial and 
can be neglected, in which case 

Nevertheless, for the sake of completeness, we have 
included em and e, in the following illustrative cal- 
culations. 

As an example of the above approach, we take 
an actual case of classifying 145.4 km x 117.1 km 
(2 661 552 Landsat pixels) of the King Country, 
North Island, New Zealand using the E R M A N  
package (Benning, 1982). 

Because the King Country has highly dissected 
topography, it was not possible to access, on the 
ground, such a random sampling network as sug- 
gested by Van Genderen et  al .  (1978). Conse- 
quently, the site-specific field checking was con- 
ducted by driving over most of the road network 
that existed in the classified land-cover area. The 
pixels were evaluated at least one pixel away from 
the road edge and along the adjacent ridge lines. 

The road network spanned the complete area clas- 
sified and was believed to thus fulfill reasonably well 
the random sampling criterion. 

25 773 pixels were field checked (= N )  (0.97 per- 
cent of the total area), 

24 587 were found to be correctly classified (= P), 
and 

1 186 were found to be incorrectly classified 
( = Q).  

In this example, we take the complete classification, 
not by class, and assess an overall probability for the 
full classification. 

From N  = 25 773 
P = 24 587 
Q = 1 186 

then p = 0.9540 
q = 0.0460 
m = 24 587 
s = 33.637 

em = 0.210 
e, = 0.148 

From equation 10, the lower acceptable limit to 
give a 99.9 percent confidence level is 

(m - 3e,) - 3(s + 3e,) 
= 24 484 = 95.00 percent of the sample. 

However, the above result does not take account 
of the counting error e,, which we have earlier set 
at 0.5 percent. Thus, 129 pixels (0.5 percent of 
25 773) may have been miscounted. To maintain our 
99.9 percent confidence in the result, we must 
therefore reduce the lower acceptable limit by 129; 
i.e., to 24 355 = 94.50 percent of the sample. 

We conclude, with 99.9 percent confidence, that 
at least 94.50 percent of the pixels in the whole area 
have been correctly classified. That is, if 1000 
random samples, each of about 25 000 pixels, were 
taken from the whole 2.66 million pixels being clas- 
sified, in only one case would we expect to find a 
classification accuracy of less than 94.50 percent. 

Lesser degrees of confidence may be acceptable 
in some applications. For instance, if a confidence 
level of 99 percent was required, all the "threes" in 
Equation 10 would be replaced by 2.33. To achieve 
95 percent confidence, the "threes" in the equation 
would be replaced by 1.65. Applied to the present 
example, after taking account of e, as indicated 
above, the following results are obtained. 

We are 
99.9 percent confident that at least 

94.50 percent 
99 percent confident that at least 

94.59 percent 
95 percent confident that at least 

94.68 percent 

of the pixels in the whole area have been correctly 
classified. The very small spread in these figures is 
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a direct result of the very large size of the sample 
taken, which leads to a strongly peaked distribution 
with a small standard deviation-note that 's' is only 
about 0.1 percent of 'm'. 

As already stated, the above probability of at least 
94.50 percent correct classification for a confidence 
level of 99.9 percent pertains to the full multi-class 
classification. A similar evaluation should be under- 
taken to assess applicable confidence levels for in- 
dividual classes. 

The concept of a confidence level for a classifi- 
cation has been outlined. It is contended that clas- 
sifications with ascribed confidence levels are to be 
preferred. However, the derivation technique for 
these confidence levels should also be indicated and 
combined with the classification products. 

Some of the basic factors that should be consid- 
ered during field checking of a classification have 
been discussed. 

The statistical background to the derivation of a 
confidence level based on the Normal Distribution 
has been presented and illustrated by reference to 
an actual New Zealand classification exercise using 
Landsat data processed by means of the IBM ERMAN 
package. 

While this has been developed to support a New 
Zealand series of projects utilizing a maximum like- 
lihood classifier, we believe the methods to be of 
general use irrespective of project area, type, or 
classifier. 
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