
WOLFGANG FORSTNER 
Institut fur Photograinmetrie der Unicersitat Stuttgart 

D-7000 Stuttgart 1 ,  Federal Republic of Germany 

The Reliability of Block Triangulation 
Theoretical studies on the reliability of photogrammetric blocks give clear 
guidelines for project planning, leading to coordinates of high quality. 

D WRING THE LAST ten years aerial triangulation 
has become a powerful tool for point deter- 

mination. The main reason is the rigorous applica- 
tion of adjustment theory, which enabled a simul- 
taneous orientation of images and thus increased the 
accuracy by an order of magnitude. The refinement 
of the mathematical model based on this develop- 
ment, with the aim to compensate systematic er- 
rors, lead to a further increase in the accuracy by a 
factor of two to three. Today one can reach a pre- 
cision of the adjusted coordinates of 2 to 3 pin, mea- 
sured at the photoscale, if the full potential is used 
to advantage. This result has been confirmed by var- 
ious controlled tests. 

It is at the same time pleasing and amazing that 

"cleaned" a block, there does not exist an objective 
and coinmonly accepted criterion about when to 
stop the process of elimination of possibly erroneous 
observations. Thus, undetected gross errors may 
still remain which it is hoped do not deteriorate the 
result too much. This immediately leads to the re- 
liability of adjusted coordinates being the intrinsic 
problem of point determination. 

Two tasks have to be solved: 

One needs methocls for the detection and elimi- 
nation of gross errors. Automatic procedures have 
to take into consideration the different types of 
gross errors and, thus, have to be able also to 
handle large gross errors. They therefore cannot be 
reduced to the application of a statistical test. The 
developnlent of efficient strategies seetns to con- 

ABSTRACT: The theory of reliability treats the ability to detect gross errors by using 
statistical tests and the sensitir;ity of the result with respect to non-detectable gross 
errors. The theory deceloped by W .  Baarda, Delft, for use in geodetic networks 
is outlined. In an extensioe in~estigation it was applied to photograinmetric point 
determination. The study results in clear reco~nnzendations for project planning, 
consisting in the appropriate choice of the block parameters as overlap, and in the 
distribution of control and tie points, which leads to a hoinogeneous precision as 
well as to a high reliability of block triangulation. 

these accuracies have also been achieved in normal 
application, as the theoretical studies on the preci- 
sion of block triangulation were based on very sim- 
plified assumptions about the stochastical properties 
of the image or model coordinates. I t  is true that 
the discrepancies between theoretical predictions 
and empirical results have pushed forward the de- 
velopment of methods for compensation of system- 
atic errors and have lead to a deeper insight into 
the powerful tool of self calibration. But the effects 
of unmodeled errors, especially gross errors, on the 
adjustment of photogrammetric blocks had not been 
studied thoroughly until a few years ago. 

However, each block adjustment has to cope with 
a certain percentage of gross errors, which in gen- 
eral are found and eliminated by an analysis of the 
residuals. But, as known to everybody who has once 
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verge to a three-step procedure treating large, me- 
dium-sized, and stnall gross errors by pre-error de- 
tection, automatic weighting, and statistical pro- 
cedures, respectively (cf. the papers presented at 
the Colnmission 111 Sylnposiu~n of ISP, 1982, in 
Helsinki and at the ISP Congress in Rio de Janeiro, 
1984). 
The detectability of gross errors and the influence 
of non-detectable gross errors on the result of the 
block adjustment, i.e., the reliability according to 
Baarda (1967, 1968, 1973, 1976). has to be inves- 
tigated with respect to the project planning. Here 
the type of test for detecting very small gross errors 
will have a large influence and will require a sta- 
tistical description of reliability. 

This paper is supposed to motivate and describe the 
concept of reliability. Based on the result of com- 
prehensive studies, recommendations for the 
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project planning are given, which complete the 
known methods for improving the precision of pho- 
togrammetric coordinates. 

The theory of reliability is part of a concept for 
evaluating the quality of adjustment results, which 
was developed by W. Baarda (1967, 1968, 1973, 
1976) for use in geodetic networks. The notion of 
quality, according to Baarda, includes precision and 
reliability. Figure 1 shows the interrelations be- 
tween the different parts of the theory. 

Reliability 

I I 

i~xterna; 1 1 Intet-"a: 
Reliabilit Reliability 

Sensitivity Controllability 

FIG. 1. Evaluation of quality according to W. Baarda 
(1967, 1968, 1973, 1976). 

The evaluation of precision consists in comparing 
the covariance matrix Qkr of the adjusted coordi- 
nates with a given matrix Hkk,  also called criterion 
matrix. It is required that the error ellipsoid de- 
scribed by Q k k  lies inside the error ellipsoid de- 
scribed by Hkk and that it is as similar to Hkk as pos- 
sible. This results in a check as to whether a re- 
quired measure of precision is reached. 

We are only concerned here with reliability. 
Baarda distinguishes internal and external reli- 
ability. Internal reliability is the controllability of 
the observations, described by lower bounds for 
gross errors, which can just be detected with a given 
probability. The effect of non-detectable gross errors 
on the result is described by factors for the standard 
errors of the coordinates, which indicate by what 
amount the coordinates may be deteriorated in the 
worst case. These factors describe the external re- 
liability or the sensitivity of the unknown coordi- 
nates. Obviously, there is a close connection to the 
evaluation of precision. 

Remark: Baarda himself used the notion "accuracy" 
for describing precision and reliability. As in photo- 
grammetric applications, the notion accuracy is too 
much associated with the specification of estimated 
standard deviations; quality seems to be  a more 
proper term for also describing non-detectable errors 
in the mathematical model and their effects. 

Before a mathematical definition of reliability is 
given, three examples show that the conditions for 

FIG. 2. Forward intersections with daerent redundancy, 
good geometry, and redundancy numbers. In all direc- 
tions of Figure 2c, errors are locatable. 

good reliability are closely related to the local ge- 
ometry. Figure 2 shows network diagrams of for- 
ward intersections, which differ by one observation 
each. They are to demonstrate the influence of ad- 
ditional observations on the strength of the geom- 
etry. In Figure 2a the observations are not control- 
lable, i.e., they are necessary for the determination 
of the coordinates. In Figure 2b each observation is 
controllable, i.e., it is not necessary for the deter- 
mination of the coordinates. On the other hand, er- 
rors in the observation are not locatable or identi- 
fiable, i.e., each is necessary for the control of the 
others. In Figure 2c, finally, errors in the observa- 
tions are locatable, i.e., each is not necessary for 
the control of the others. Any further observation 
would be supelfluous for the detection of a single 
gross error. The increase in the number of rays goes 
along with an increase in the strength of the ge- 
ometry, which inay be described by the sequence 
of the common terms: determination-control-loca- 
tion or identification. 

Obviously the network design in Figure 2c is 
chosen appropriately to reach a reliable determi- 
nation of the coordinates. This is different in Figures 
3 and 4. 

In Figure 3a the determination of point P is weak; 
therefore, the direction D in Figure 3b is not con- 
trollable. The directions A and B control each other. 
As a consequence, gross errors in directions C and 
D in Figure 3c and in all directions of Figure 4 
practically cannot be located. Any additional direc- 
tion in Figure 4c cutting the existing directions with 
an angle of about 45' enables a location of a gross 
error in any of the directions. 

As these configurations may occur also in net- 

FIG. 3. Forward intersections with different redundancy, 
poor geometry, and redundancy numbers. Errors in di- 
rections C and D in Figure 3c not locatable. 
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FIG. 4. Cf. Figure 3, but errors in directions A ,  B, C, 
and D in Figure 4c are not locatable. 

works with high redundancy, it is obvious that the 
local geometry is decisive for the reliability of the 
point determination. Such situations also arise in 
bundle blocks with 20 percent sidelap where the 
points in the middle of the strips are measured only 
in three images. The x-coordinates (x parallel to di- 
rection of flight) are controllable here, but possibly 
wrong image rays cannot be identified (cf. geometry 
of Figure 2b). " 

This discussion of the geometric properties of a 
network design can be rendered precise using the 
information that adjustment theory and mathemat- 
ical statistics offer. 

Notation: Scalars and vectors are written in small let- 
ters, matrices in capital letters, A' is the transpse of 
A, stochastical values are underscored, 5 and are 
estimates for x and VI, respectively. 

Let the block adjustment be given by the linear- 
ized error equations 

with the vector = ( I , )  containing the observations 
I ,  the corresponding vector _v = (g,) of the resid- 
uals, the error equation or design matrix A with the 
error equation vectors a:, the estimated vector 4 of 
the unknown parameters (coordinates, transforma- 
tion parameters, and, possibly, additional parame- 
ters), and a constant vector a,, resulting from the 
linearization. The weight matrix PI!, being the in- 
verse of the weight-coefficient matrix Qll, is sup- 
posed to be known. 

From the solution = (A' PI! A)-' A' Pi, (1 - a,) 
and the weight coefficient matrix 

Q,, = Qll - A (A' P, A)- A' (2) 
of the residuals _v (which are used for error detec- 
tion), the direct relationship between residuals and 
observations can be derived: 

The matrix Q,, Pit is idempotent, i.e., (Q,, Pll)' = 
Q,, Pll. Using the eigenvalue decomposition of 
Q,, PI[, it can be shown that the rank and the trace 
of Q,, Pa are equal to the redundancy r = n - u of 
the system: i.e., 

The diagonal elements (Q,, P),, obviously show the 
distribution of the redundancy onto the observa- 
tions. The redundancv number 

I ri d=d (Q,, P,Oij I (5) 
is the contribution of li to the total redundancy r (cf. 
Forstner, 1979). 

The redundancy numbers range from 0 to 1. Ob- 
servations with ri  = 1 are fully controllable, whereas 
observations with ri = 0 cannot be checked at all. 
The average value, the relative redundancy p = rln, 
for photogrammetric blocks is about 0.2 to 0.5. An 
average value of 0.5 already indicates a rather stable 
block. Single redundancy numbers, however, easily 
reach values below 0.1, indicating a very weak local 
geometry. 

Using the r , ,  we are now able to calculate the 
influence V o ,  of a single gross error V1, in the obser- 
vation !, on the corresponding residual II,: i.e., 

(V designates "gross error" or, more generally, a de- 
viation from the assumed mathematical model). 

Equation 6 shows that only a small part (from 
about 50 percent down to less than 10 percent) of 
the original gross error V1, is revealed in the residual 
2,. However, only in case the diagonal element 
(QLL P),, = r, of QLL PI! (cf. equation 2) is larger than 
all other elements of the i-th column, a gross error 
in 1, will influence ij, more than the other residuals, 
i.e:, only in that case can V1, be expected to be lo- 
catable using the largest residual as indicator. 

Equation 6, furthermore, can be used in practical 
error detection procedures. With the knowledge of 
the local geometry, i.e., with r,, one can obtain an 
estimate 3, for the size of the original gross error 
Vl,:  i.e., 

A 

Vl,  = - El 1 r , .  - (7) 
This simplifies the evaluatipn of the residuals. It can 
be shown that the value V1, equals the residual in 
an adjustment without !,, iT., in an adjustment with 
p, = 0. The spatial distribution of the redundancy 
onto the block can be described using the redun- 
dancy numbers and gives a first insight into the con- 
trollability of the observations. Figures 2 to 4 show 
the values r,, which demonstrate that the visual 
evaluation of the design quality is confirmed by the 
numerical values (cf. also Kavouras, 1982). 

Remark: The redundancy numbers r, do not give any 
information about the ability to identify or locate gross 
errors. In general, however, gross errors in an obser- 
vation are locatable if 1, is not necessary for the control 
of the other obsewatibns. In this case all correlation 
coefficients p, of - v,  and g (j f i )  are f 2 1. 

Testing the observations based on the residuals 
has to consider the different precision of the resid- 
uals. With the standard deviation 
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U', = g o  cl= g,, G 
(' provided P = diag(p,)) 

of the i-th residual v;, we obtain the standardized 
residual 

A 

- 
2)i V - l i  - 

ai* 
w. = -  = - - - - - 
-1  

- - N(0,l) 
aCi u< rr, 

(9) 
which is used as the test statistk It is at the same 
time a test of the estimated size g, of the gross error 
(cf. Equation 7)! Here u, is assunied to be known. 
Moreover, if it is assumed that the observations are 
normally distributed, then the test statistic wi also 
is normally distributed with expectation O anavari- 
ance 1. 

Remark: If there is no a priori information about the 
precision of the observations and, thus, if a. is not 
known, then instead of w,, the test statistic 

can be used, which follows a student distribution with 
r - 1 degrees of freedom. The variance 

is an estimate for a; and is identical to 6 in an ad- 
justment without observation 1, (cf. Foraner, 1980, 
Equation 12). This test statisticE, is functionally de- 
pendent on the one given by Pope (1975), which is T- 
distributed (cf. Griin, 1982, Equation 22b). E,, how- 
ever, is as well suited as w, for the folloiGng deriva- 
tions, as in both cases the non-central distribution is 
known. 

The test of the observations, the "data-snooping" 
proposed by Baarda, now consists in comparing the 
absolute value I~, i , l  of the test statistic with the crit- 
ical value k, which depends on the present signifi- 
cance level S = 1 - a,. If the standardized residual 
exceeds the critical value k, the corresponding ob- 

servation 1, is suspected to be erroneous. In a prac- 
tical procedure one of course will only check the 
observations with the largest test statistics and take 
into consideration the interrelation between the re- 
siduals, as a single large gross error in general will 
lead to many test statistics which exceed the critical 
value. As can be seen from Equation 9, a large to, 
also can be caused by a wrong weight. Therefore, 
w not necessarily must be rejected, if only being a 
Gtle larger than the critical value k. 

The normal distribution-at least in principal- 
allows deviations of any size from the mean value. 
The probability that the test statistic exceeds the 
critical value, if the observations are not erroneous, 
and therefore leads to an erroneous decision of type I ,  
is the significance number a,, which usually is 
chosen small (e.g., 5 percent, 1 percent, or 0.1 per- 
cent). 

On the cther hand, gross errors may stay unde- 
tected. The power p, of the test, i. e., the probability 
of detecting a gross error, and the pobability for 
this erroneous decision, an error of t ~ p e  11, depends 
on the size V1,. The gross error Vl,  changes the test 
statistic w, by 6,  = V w , ,  i.e., Vli shlfts the probability 
density function of w, by 6,, thus leading to a non- 
central distribution (cf. Figure 5) with non-cen- 
trality parameter 6,.  

Because the size of gross errors is unknown, 
Baarda proposed requiring a minimum probability 
p, to detect a gross error, i.e., starting with a min- 
imum power p, of the test and determining the 
lower bound Volt for a gross error in the observation 
1 which can be detected with a probability P > Po. 
i s  can be seen from Figure 5, a given lower bound 
p, leads to a lower bound 6, = Vow, for the non- 
centrality parameter. We will use So = 4, for sim- 
plicity, which corresponds to a significance level 
1 - a, = 99 percent and a probability po = 93 per- 
cent for error detection. Table 1 shows the depen- 
dency of p, on the critical value k for a given 6 ,  = 4. 
In accordance with experience, gross errors can be 
found more easily, i.e., P increases as smaller crit- 
ical values k are chosen. 

E N i  IH,) k E(wilHa) 
6 E ( l i  l H o )  E(li IH,) - k ---I - Vwi = 6. 2 V1. 

1 - 
FIG. 5.  Probabilities a and 1 - P of wrong decisions of type I and I1 when using data- 
snooping. 
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TABLE 1. SICNIFIC:ANCE LEVEL S = 1 - ao. CRITICAL 

VALUE k, A N D  POWER Po OF TEST FOR GIVEN NON-CENTRALIlY 
PARAMETER 6n = 4 

From Equation 9 now the lower bound Voli for 1 gross errors, which are detectable with a probability 
>Pn, can be derived: 

The value ti,!,, is the factor for all giving a minimum 
size Val, of a just detectable gross error in I,. The 
lower bounds Vol, or the factors 66, designate the con- 
trollability of the observations or the internal reli- 
ability according to Baarda. They essentially depend 
on the redundancy numbers r,, i.e., on the local 
geometry. Redundancy numbers between 0.1 and 
0.5 lead to lower bounds for detectable gross errors 

<> 

between Vol, = 6 all and V,l, = 13 u,, or to control- 
lability factors between ti;, = 6 and ti,!,, = 13. Thus, 
gross errors much larger than the three-fold stan- 
dard deviation may stay undetected and may falslfy 
the result. 

Remark: A similar line of thought leads to the notion 
of locatability or identifiability, describing the ability 
to correctly locate or identify gross errors. Require- 
ments for a high locatability analogously lead to re- 
quirements for the correlation coefficients of the re- 
siduals. This aspect will not be treated here (cf. 
Fiirstner, 1983). 

All not-detected gross errors contaminate the re- 
sult of the adjustment. The influence Vo,x, of a gross 
error of size V,l, on the unknown $ can directly be 
obtained using - f = (AfPI,A)-I A' Pll ( I  - ao): 

VolxJ = ((A' P//  A)- ' A' P ~ ) J #  Voll ( I 3 )  
The values Vo,x, give conspicuous insight into the 
sensitivity of the result and may be useful in small 
systems. There are, however, several reasons to use 
a different measure: 

The calculation of all n x u values VaxJ is prohibi- 
tive in large blocks. 
In most cases the influence of non-detectable gross 
errors on the orientation parameters or even on 
additional parameters is of no interest. 
In free blocks, without any control points, the in- 
fluence values Voix, depend on the coordinate 
system. 

Therefgre, Baarda proposed using the standardized 
length 6,, of the vector Voik, a subvector ~f Voix, con- 
taining the influence on the coordinates _k of the new 
points 

- 
6Oi = llVo,kll = dVotkl Qii V,MU~. (14) 

It is a measure for the total deformation of the block, 
caused by a gross error Vol, in observation 1,.  This 
seemingly abstract measure for the defognation 
gives at the same time an upper bound V, f for the 
influence of grpss errors V1, < V,l, on an arbitrary 

function -& = A_k) of the coordinates k. 
Using auchy-Schwarz's identity, 3 can be shown 

that, with the standard deviation ufoff, the influ- 
ence is bounded: i. e., 

-1 (15) 
For the special functions f = x,, f = z;,, f = z, one 
obtains 

Voi9 5 Foi - Voi f Voiyj 5 Foi . a,,, 

and Voiz, 5 $i . u3 (16) 

Thus, the coordinat_es x ,  y, and z are not contam- 
inated by more t h g  tioi times their standard devia- 
tion. The factors so, describe the sensitivity of the 
result or the external reliability according to Baarda. 
A practical formula for calculating the values SOi is 
given by KleinIForstner in Seminar (1981) (cf. also 
Schwarz et al . ,  1982). 

The previous section has provided three mea- 
sures for describing the reliability of an adjustment, 
which are based on the theory of Baarda (1967, 
1968, 1976): 

The redundancy nutnber r, (cf. Equation 5) is the 
contribution of observation I ,  to the total redun- 
dancy r, as Zr, = r. They ena%le the calculation of 
the influence Vo, of a gross error V1, in observation 
I, on the corresponding residual 1;,. Vo, = - r, V,, 
{cf. Equation (6)). 
The controUability factor 66, (cf. Equation 12) is the 
factor for the standard deviation ul giving a lower 
bound V,l, = 6; a,, for just detectable gross errors 
(cf. Equation 12) in 1,. Gross errors in observation 
1, which are smaller than the 6;,-fold standard 
deviation ul,, cannot be detected by a statistical 
test, e.g., the "data-snoopingm-test (Equation 9). 

Both ri and 6& describe the internal reliability ac- 
cording to Baarda. 

The sensitivity factor 8% (cf. Equation 14) is the 
factor for the standard deviation ux of an arbitrary 
unknown x giving an upper hound Vo,x 6, . u,for 
the influence of nondetectable gross errors. Thus, 
the adjusted coordinates-x, y, and z are not con- 
taminated by more than 6, times their standard de- 
viation, if a statistical test has been applied. 

The values 6,, describe the external reliability ac- 
cording to Baarda. 

Table 2 gives an indication how to evaluate the 
different reliability measures. 

On the basis of the reliability theory described in 
the previous section, several photogrammetric 
blocks were investigated at the Institute of Photo- 
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TABLE 2. ON THE EVALUATION OF RELIABILIT~41EASURES:  ri, REDUNDANCY NLIHBER; CONTROLLABILITY FACTOR; 

ijOir SENSITI\,IIY FACTOR 

Good Acceptable Bad Not Acceptable 

grammetry, Stuttgart, in order to obtain information 
about the dependency of the internal and external 
reliability on different project parameters. These 
were, in particular, especially 

the control point distribution, 
the degree of overlap, 
the density and the distribution of the, tie points, 
and 
the size of the blocks. 

The investigation used simulated regular square 
shaped blocks with bundles and independent 
models, single blocks (designated with S )  with 20 
percent sidelap and double blocks (designated with 
D) with either 60 percent sidelap or consisting of 
two single blocks flown crosswise. The blocks with 
independent models use four or six single or twin 
points per model. The bundle blocks have nine 
single or twin points and 25 single points per image. 
The number of points per unit is added to the S or 
D to describe the block concerned. The horizontal 
control points are situated at the perimeter of the 
blocks (cf. Figure 6).  The vertical control varies for 
single and double blocks. The height of single blocks 
is stabilized by chains, while the vertical control 
points in double blocks form a regular grid. The 
control point interval varies from 2 to 20 baselengths 
b .  The precision of all observations, including the 
coordinates of the control points, is assumed to be 
equal, with one exception: the x- and y-coordinates 
of the projection centers in independent model 
blocks are assumed to have double the standard de- 
viation. 

Before investigating the influence of the daerent 
block parameters on the reliability, two examples 
are examined. Figures 7 to 9 show two represen- 
tative blocks with independent models and with 
bundles, respectively. For symmetry reasons only 

one-fourth of each of the blocks is plotted. The re- 
dundancy nuibers  r,, the cofitrollability factors ti;,, 
and the sensitivity factors 6,, are shown in each 
block. The values are given separately for the pla- 
nimetry and height of independent model blocks 
and for the x- and y-coordinates of the bundle block. 

The model blocks S8 with sparse and dense con- 
trol (i = 2b and i = 6b) (cf. Figures 7 and 8) have 
four twin points in the corner of each model. The 
reliability figures are identical for the two points of 
a group and are, therefore, only &ven once. The 
figures suggest the interior parts, the border parts, 
and the control points be considered separately. 

The redundancy numbers r, in the interior of the 
blocks are about 0.5.  This proves the block to be 
very stable. Gross errors larger than 6;, . a, = 
5.6 . cr,, can be detected with the data snooping. bn- 
detectable gross errors, however, falsify the coor- 
dinates of the new points only up to 3 times their 
standard deviation (ti,, 5 3). The reliability is filly 
acceptable. 

This is different at the border parts of the blocks, 
especially at the borders with the short model sides. 
They are determined-as being not very reliable, 
with sensitivity factors &,of around 5. The influence 
of the control points on the reliability is negligible. 

The coordinates of the control points, which are 
introduced as observations, are the most poorly con- 
trolled. Already with moderate control point dis- 
tance i = 6b, only 7 or 12 percent of the size of the 
gross errors show up in the residuals (r, = 0.07 or 
0.12, respectively). Gross errors must be larger than 
6 or 15 ( ! ) times the standard deviation a,, or uZ of 
the model coordinates to be detectable. 

Bundle blocks reveal a similar reliability struc- 
ture. In the images of block S18 shown in Figure 9 
double points are measured at the nine standard 
positions. Again, the values suggest that the interior 
and the border parts be considered separately. This 

A planimetry and he ight  

o he ight  

FIG. 6. Control point distribution. 
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Fl 
6x12 plan.  

Frc. 7. Redundancy numbers r,, and controllability and sensitivity factors 6& and 80, of plani- 
metric coordinates of a block with 6 x 12 = 72 independent models with sparse and dense 
control; four pairs of tie points in the corners of each model, values for x and y identical. 

statement is not influenced by the points in the 
middle of the strips, which occur in all images. At 
these points only '16 of gross errors in the x-coordi- 
nates are revealed in the residuals (ri = 'Is), which 
moreover cannot be located (cf the earlier section 
on reliability). 

At the border parts somz observations are not 
controllable at all (6& and tioi = w). These points 
would be single points in an adjustment with in- 
dependent models and in a previous analytical rel- 
ative orientation would be controllable only in the 
y-direction. The points in the overlap zone of ad- 
jacent strips, howzver, are well determined, with 
sensitivity factors 8, below 3. 

The control points are as weakly controllable as 
in model blocks, discussed above. Here also the 
height control points are less controllable than the 
horizontal control points, with factors 8, of 14.6 or 
11.0 versus 13.0 or 8.0 at the corners or the borders, 
respectively. 

A direct comparison of the reliability of bundle 
and independent model blocks is not possible, as 
the controllability and sensitivity factors refer to dif- 
ferent types of observations and as the structure of 
the precision of the new points is different. 

Blocks with single tie points (not shown) are the 
least reliable. Here the controllability factors are 
larger for the interior and the border parts by factors 
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MP model p o i n t ,  z-coordinate 
PCx pro ject ion  cent re ,  x-coordinate 
CPz control  p o i n t ,  z-coordinate 

Frc. 8. Redundancy numbers r,, and controllability and sensitivity factors 6; and Sa of height coordinates and of x- 
coordinates of projection centers of a block with 6 X 12 = 72 models, control point interval i = 6b, four pairs of tie 
points in the comers and projection centers (x, y, and z) per model. 
Comment: The values for the y- and z-coordinates of the projection centers are nearly independent of the location 

within the block: i.e., y: ri = 0.44, 6& = 6.0, 6, = 1.6; z: ri = 0.40, 6; = 6.3, 6, = 0.3. 

of 1.2 to 1.5 and 2, respectively. In blocks with in- 
dependent models with only four tie points, the 
lower bounds for detectable gross errors reach 
values of 22u, a_t the borders of the blocks. The sen- 
sitivity factors &,, of blocks with single tie points are 
larger by factors of about 1.1 to 1.5 and 1.5 to 3.0 
for the interior and the border parts, respectively. 
The measurement of double tie points thus leads to 
a rather high reliability. Moreover, in case a tie 
point has to be eliminated, the connection is not 
lost and still can be controlled. 

The two examples give a first impression about 
the reliability of photogrammetric coordinates, but 
provide no information about the dependency on 
the block parameters. The main result, however, is 
the high homogeneity of the values in the interior 
of the blocks. This indicates that the values are in- 
dependent of the block size and also of the shape of 
the block. It can be expected that the reliability will 
be affected by an increase in the tie point density 
or the overlap and that the controllability of the 
control points will also depend on the control point 
interval ilb. 

Figure 10 summarizes the main results of the in- 
vestigation with regard to the reliability of the pho- 
togrammetric tie points. Here the maximum con- 
trollabiljty factors &d and the maximum sensitivity 
factors So, are given for the three areas of interest, 
the values for the comers being given separately. 

The controllability of model coordinates obviously 
is increased when using more tie points, especially 
at the corner and the border parts. Changing from 
four tie points (S4) to double points (S8) already 
leads to an acceptable reliability of the coordinates 
(E,,, 5 5). Double blocks cannot really be made more 
reliable by increasing the tie point density. 

The situation is different for bundle blocks. Using 
more tie points (S9 -* S18) does not increase the 
reliability, due to the already mentioned points in 
the middle of the strips, where additional points do 
not change the weak local geometry. The reliability 
of bundle blocks can be improved only by using 
higher coverage, i.e., 60 percent sidelap or two 
single blocks flown crosswise. Figure 11 shows that 
in all cases sensitivity values of 6, < 4 are achieved, 
even with single tie points. 

The controllability of horizontal and vertical con- 
trol points is given in Figures 12 and 13 for single 
blocks. Double blocks will usually be applied in spe- 
cial cases in which high precision is demanded and 
the reliability of the control points will (hopefully) 
be guaranteed by geodetic means. Table 3 also con- 
tains approximations for the values of control points 
in the other areas of the blocks. The sensitivity 
values, which are not shown, can easily be obtained 
from S2, = 8;); - 8; and in most cases 8, = 6; as 
6, << ti;,. The dependency of the reliability on the 
control point interval ilb is different for horizontal 
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FIG. 9. Redundancy numbers r,, and controllability and sensitivity factors ti;, and so, of x- and y- 
coordinates (top and bottom figure, respectively) of a bundle block with 6 x 13 = 84 images; point 
interval i = 6b; nine pairs of tie points at the standard positions. 
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FIG. 10. Maximum values 86, and of controllability and 
sensitivity of photogrammetric blocks (from Forstner, 
1980). 

and vertical control points. The factors 6; of hori- 
zontal control points increase approximately pro- 
portionally to the control point interval, whereas the 
controllability of vertical control points increases 
only with the square root of the interval ilb. This 
can be explained by the different control point pat- 
terns: single horizontal control points at the perim- 
eter versus chains of vertical control points across 
the block. The absolute values are rather high (8; 
> 10) even for small distances ilb. 

Photogrammetric point determination can reach 
a high reliability. Summarizing, this is the conclu- 
sion which can be drawn from this investigation. 
The stable geometry of photogrammetric blocks is 
the reason for the good experiences gained in prac- 
tical application. The results, however, show the 
weak areas in photogrammetric blocks: the geodetic 
control, the perimeter of the blocks, and the points 
with only a few rays in bundle blocks. 

The main result for project planning is the inde- 
pendence of the reliability on the block size and the 
block form and the moderate influence of the dif- 
ferent block parameters on each other. This could 
allow a separate discussion, especially of photograin- 
metric and geodetic observations. But, also, two dif- 
ferent types of application have to be distinguished: 
the determination of pass points for a subsequent 
mapping and the densification of highly accurate 
point fields. 

Block triangulation as a basis for mapping needs 
only 20 percent sidelap. Because only pass points 
in the edges of the images are needed, also the 
bundle (only with self calibration) method can be 
used. The points in the middle of the strips than 
are no longer anymore used after the adjustment. 
Double points are reco~nmended in any case. This 
increases the reliability, while not requiring much 
additional effort for targeting or point transfer and 
for measuring. But what is more important, this 

remedy also simplifies the error detection proce- 
dure, because the elimination of points does not 
weaken the connection. In blocks with independent 
models four pairs of tie points are sufficient. If, how- 
ever, self calibration is applied, tie points in the 
middle of the strips are also necessary in order to 
guarantee the determinability of the additional pa- 
rameters. Here single points suffice. 

There are several possibilities to strengthen the 
border areas of the blocks: 

Increasing of the tie point density at the perimeter 
of the block. Especially in independent model 
blocks this is a very effective action. 
Increasing of the block size by one strip or two base 
lengths in the strip direction, in order to keep the 
area of interest within the interior of the block, i .e . ,  
one base length at the perimeter is not used for 
mapping. 
Bordering the block by a strip, which strengthens 
the perimeter. This is a variant of the previous 
remedy against the weak geometry (cf. Ackermann, 
1966). 

In all cases a high reliability can be obtained with 
sensitivity factors 6,, G 3, which guarantee the 
quality of the result. 

In contrast to mapping applications, aerotrian- 
gulation for purposes of photogrammetric network 
dens$cation requires at least a four-fold overlap. 
With regard to reliability, 60 percent sidelap and 
cross flights are equivalent; cross flights, however, 
have advantages in compensating systematic errors. 
Because of the high overlap, each point can be mea- 
sured in at least four images, which guarantees a 
location of gross errors. Thus, no points are lost by 
the elimination of a single observation. Here the 
increase of the block by one base length is best for 
strengthening the border. The low sensitivity values - 
6,, 4 achieved then make photograinmetric point 
determination comparable to geodetic densification, 
if not superior. 

The reliability of the control points will always 
cause problems. Even for small control point inter- 
vals only controllability values around 86, = 10 are 
reached. Thus, it appears i~npossible to check the 
coordinates of the ground control during the ad- 
justment. This check has to be done and docu- 
mented by the geodesist. 

Then only the targeting has to be kept under con- 
trol. Groups of control points are excellent for this 
purpose, too. The distribution of the points within 
the groups may consider the following recommen- 
dations: 

The points should be determined as independently 
as possible and therefore may be laid wide apart. 
The points should belong to at least two models or 
three images in order to be able to distinguish pho- 
togrammetric and geodetic errors. Thus, one 
should avoid using a point in the corner of the block 
as a control point, but rather use some tie points 
at the border possibly together with a point more 
inside the block. 
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control points in a bundle block with 49 images; sidelap 60 percent, control point 
interval i = 2 base lengths, nine tie points and nine pairs of tie points pet. image. The 
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Position of CP 
Block Type Tie Points within Block (6;),y2 Horiz. CP (8i,,)"ert. CP 

Independent 
models 

Bundles 

corner 
border 
interior 
corner 
border 
interior 
corner 
border 
interior 
corner 
border 
interior 

64 + 8 (ilb)" 
56 + 1.9 (ilbY2 

64 + 4 (ilb)" 
40 + 1.2 (ilb)" 

42 + 12.8 (db)" 
30 + 3.7 (ilb)" 

48 + 6.9 (ilb)" 
30 + 2.1 (ilb)" 

50 + 51 (ilb) 
37 + 27 (ilb) 
19 + 14 (ilb) 
58 + 30 (ilb) 
38 + 16 (ilb) 
24 + 10 (ilb) 

80 (ilb) 
42 (ilb) 
21 (ilb) 

42 + 42 (ilb) 
22 + 22 (ilb) 
11 + 11 (ilb) 

At least three points should be targeted, in order 
to be able to control the targeting by checking the 
similarity of triangles, thus to be independent of 
the local scale. If remeasurements are not possible 
or not wanted, one should use at least four points. 
Then a single gross error can be located without 
additional information. In case the distances be- 
tween the points within a group are small, the con- 
trollability is higher (due to the s~naller influence 
of the local scale). Then one needs one point less, 
i.e., two or three points at least, provided the 
points are rather independent. 

When using groups of points, one must realize 
that a joint shift of the group is more difficult to 
detect than if one would use a single point, due to 
the higher weight of the group. 

The joint effect of bordering, using double tie 
points and groups of control points, on the reliability 
is shown in Figure 14, which suinlnarizes the result 
of this investigation. 

Thus, compared to the expedients which are nec- 
essary to reach a high precision, only a few addi- 
tional remedies have to be considered in order to 
guarantee a high quality of aerial triangulation. 
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