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Estimating Neighborhood Variability 
with a Binary Comparison Matrix 
A technique was developed to estimate variability of nominal scale 
data using a 3- by 3-neighborhood function. 

D IGITAL SPATIAL DATA BASES are created to Support 
a variety of resource management activities. 

Sources of spatially referenced data include aerial 
photography, Landsat multispectral scanners, dig- 
ital elevation models, and maps of point, line, and 
region geographic entities. Once established, digital 
data bases can be analyzed with the functional ca- 
pabilities of a geographic information system. 

The analysis functions of a geographic information 
system allow resource analysts to derive new vari- 

Neighborhood variability of nominal scale data is 
relevant to resource analysis applications of geo- 
graphic information systems. This paper describes 
the use of a binary comparison matrix to estimate 
neighborhood variability of nominal scale data in a 
raster format data base. The topological character- 
istics of the binary comparison matrix index are 
compared with two spatial operators which measure 
other aspects of neighborhood variability. An ex- 
ample from a land-cover classification of the Kenai 
National Wildlife Refuge in Alaska demonstrates re- 
sults produced by the binary comparison matrix. 

ABSTRACT: The analysis of spatial data bases supports resource nzanagement, plan- 
ning, and decisionmaking. Cartographic models of land suitability, for exai~tple, 
incorporate a variety of spatial uariables and analytical ft~nctions. hleiglzborltood 
variability of nominal scale data is a spatial variable relevant to applications of 
geographic information systems. 

A technique which utilizes a binary comparison matrix has been developed to 
implement a neighborhood function for a raster format data base. The technique 
assigns an index value to the center pixel ($3- by 3-pixel neighborhoods. The binary 
coinparison matrix provides additional inforination not found in two other neigh- 
borhood variability statistics; the function is sensitive to both the number of classes 
within the neighborhood and the frequency of pixel occurrence in each of the 
classes. Application of the function to a spatial data base froin the Kenai National 
Wildlge Refuge, Alaska, deinonstrates ( 1 )  the numerical distribution of the index 
values, and (2)  the spatial patterns exhibited by the nunwrical ualues. 

ables from the source data stored in the system. 
Tomlin and Berry (1979) identified four classes of 
fundamental operations which manipulate geo- 
graphic data: reclassifying map categories, over- 
laying maps, measuring cartographic distance, and 
characterizing cartographic neighborhoods. Quan- 
tifying variability is one of many methods to char- 
acterize cartographic neighborhoods. 

Variables in a geographic information system fre- 
quently are of nominal scale; two examples are land- 
cover categories interpreted from aerial photog- 
raphy and soil classes digitized from a soil survey. 
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The binary comparison nlatrix characterizes 3- by 
3-pixel neighborhoods; the technique compares 
nominal class values and assigns the index value to 
the center pixel of the neighborhood. 

The binary comparison nlatrix (BCM) is expressed 
as follows: 

where n = number of neighborhood elements. 
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A boolean operator determines the value of rV by 
comparing nominal class values (C) of pixel pairs: 

If Ci = Cj, then rg = 0, else rY = 1. 

The algorithm which computes the index uses a 
part of the 9- by 9-comparison matrix derived from 
the neighborhood (Figure 1). The binary compar- 
ison matrix is similar to a graph connectivity matrix 
for a network (Abler et al., 1971). The total number 
of comparisons required is (n2 - n)/2. The matrix 
size is n by n, or n2 (Figure lb). Because no pixel 
requires a comparison with itself, n is substracted 
from n2, representing the omission of the matrix 
diagonal. One half of the remaining comparisons are 
redundant, that is, the same comparison is made 
across the matrix diagonal; the numerator (n2 - n) 
is therefore divided by 2. For a 3 by 3 neighbor- 
hood, the number of comparisons is (9' - 9)/2, or 
36. The boolean operator in the algorithm compares 
36 pixel pairs and sums the resulting values of r,. 
The sum of the 36 binary comparison matrix values 
(Figure l b )  produces the same index values as 
Equation 1 applied to the 81 comparisons of the 
complete 9 by 9 matrix. 

An alternative expression for the BCM index is the 
following: 

where n = number of neighborhood elements, 
f, = frequency of elements in class i, and 
K = number of classes in the neighborhood. 

For a 3 by 3 neighborhood, n2 is a constant (81). 
The sum of the squares of class frequencies is equal 
to the count of comparisons (t$ which have the 
same class value. Subtracting t h ~ s  sum from n2 pro- 
duces a count of pixel comparisons which have dif- 
ferent classes, but the count includes the redundant 
information in the full 9 by 9 matrix. Multiplication 
by one-half eliminates the redundant pixel compar- 
isons. For a 3 by 3 neighborhood, with K = 2, fl 
= 2, f2 = 7: 

BCM = 'k [8l - (4 + 49)] 
= 14 

Equation 3 demonstrates that the index incorpo- 
rates both the number of classes occurring in the 
neighborhood (K) and the frequency of occurrence 
in each class K). Thus the index value is sensitive 
to changes in either K orf,. 

As K increases, the index will also increase. For 
most values of K ,  however, varying the class fre- 
quencies will produce different results for the BCM 
index (Figure 2). For a specified K ,  a concentration 
of neighborhood elements in a single class (a high 
fl will result in a low BCM index. Conversely, rela- 
tively low class frequencies across all classes will 

(b) 
Fic. 1. (a) Example of a 3 by 3 neighborhood. (b) Binary 
11 

1 2 3 4 5 6 7 0 9  

comparison matrix illustrating each of the relevant ru NunbrofClrrr(lQ 

values for the 3 by 3 neighborhood shown in Figure la. FIG. 2. Minimum-maximum BCM index values as a func- 
The BCM index for the neighborhood is 14. tion of the number of classes in a neighborhood. 
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produce a high BCM index. For example, consider 
two extremes for neighborhoods with K = 2: 

Case One -f, = 1, f, = 8 
BCM = 'h [8l - (1 + 64)] = 8 

CaseTwo-f, = 4, f - 5 
BCM = ?h?81 - (16 + 25)] = 20 

Because the index is sensitive to both K andfi, a 
higher value of K in a neighborhood does not nec- 
essarily produce a higher result for the BCM index. 

I Compare the following with Case Two above: 
1 Case Three - K = 3, fl = 7, f, = 1, f3 = 1 

BCM = 5 [8l - (49 + 1 + I)] 
= 15 

Although Case Three contains three classes, the 
BCM measure of neighborhood variability is lower 
than that obtained for Case Two, which contains two 
classes. The lower index for Case Three is due to 
the concentration of neighborhood elements in one 
of the classes, fl. Note, however, that the index for 
Case Three is greater than that obtained for Case 
One. 

I COMPAR~SON WITH OTHER METHODS 
Two other raster format variability measures that 

were compared with the binary comparison matrix 
technique are 

Number of different classes (NDC) (C. Dana Tomlin, 
Yale University, unpublished manual for the Map 
Analysis Package, 1980; Environmental Systems 
Research Institute, Geographic Information Soft- 
ware Descriptions), and 
Center versus neighbors (CVN) (Mead et al., 1981). 

I Four characteristics of the estimation methods were 
compared: 

The set upon which a topology is generated, that 
is, the topological space; 
The method of generating the topology; 
The method of calculating the index from the to- 
pology; and 
The range of values for the index. 

The following definitions from Munkres (1975) 
were applied in the comparisons: 

A topology on a set X is a collection T of subsets 
of X having the following properties: 

The empty set 0 and X are in T, 
The union of the elements of any subcollection 
of T is in T, and 
The intersection of the elements of any finite sub- 
collection of T is in T. 

The set X for which a topology has been specified 
is called a topological space. 

NUMBER OF DIFFERENT CLASSES (NDC) 
The NDC method utilizes the nine-element neigh- 

borhood, W, as the topological space. The topology 
on W is generated by partitioning W into subsets of 
nominal class values. 

For example, the algorithm would implicitly par- 
tition the neighborhood shown in Figure l a  into two 
subsets: 

The topology on W includes: 0, W,, W2, and W. 
The estimation of neighborhood variability is a 
count of the subsets, Wi; for the example in Figure 
la, the index value is 2. In general, the NDC index 
value ranges from 1 to 9. 

CENTER VERSUS NEIGHBORS (CVN) 

The CVN method compares the neighborhood 
center with the other eight elements. The topolog- 
ical space V is a set of eight ordered pairs repre- 
senting the comparisons of class values between 
neighborhood elements. The eight ordered pairs are 
partitioned into two sets: Vo, the ordered pairs of 
elements with the same xiominal class value, and 
Vl, the ordered pairs with different class values. The 
method counts the elements in V, to estimate neigh- 
borhood variability. The index ranges from 0 to 8. 

For the example (Figure la), the subsets of the 
topology are 

Vo = [(5,3), (5,4), (56) (5,7), (5,8), (5,911 
and 

V, = [(5,1), (5,211. 
The count of elements in V1 is 2. 

BINARY COMPARISON MATRIX (BCM) 

The topological space, R, for the BCM technique 
is 36 ordered pairs representing the paired compar- 
ison of neighborhood elements (Figure lb). The bi- 
nary operator implicitly partitions R into two sets of 
neighborhood element relations: R,, the ordered 
pairs with identical class values, and Rl, the ordered 
pairs with different class values. The index is a count 
of ordered pairs in R,; the index values range from 
0 to 36. For the example (Figure l), the two sets 
are 

The resulting index value is 14. 

The topological space distinguishes the three vari- 
ability estimation techniques (Table 1). The NDC 
technique incorporates the set W as the topological 
space; the CVN and BCM methods use a relation on 
W for the topological space (a relation is a subset of 
the cartesian product of W x W). Because NDC does 
not use a relation for the topological space, there 



are no explicit comparisons of neighborhood ele- 
ments. For this reason, NDC is not sensitive to 
changes in class frequency. The CVN method does 
use a relation on W for the topological space; how- 
ever, the relation is a subset of the topological space 
R used in the BCM method. The relation R is the 
only topological space which represents the com- 
plete, paired comparison of neighborhood ele- 
ments. 

Figure 3 compares the index values derived from 
each of the three methods. The examples represent 
the four possible class frequencies in a 3 by 3 neigh- 
borhood when K equals 2. The NDC method pro- 
duces the same value for all four examples, dem- 
onstrating that the NDC measure of variability is not 
sensitive to changes in class frequency. 

The index derived from the CVN method is dif- 
ferent for each of the four examples; however, two 
results should be noted. First, the value of the 
center pixel has a major impact on the index. For 
example, in Figures 3c and 3d, the value decreases 
from 6 to 5 because one additional pixel in Figure 
3d is identical with the center pixel. Additional ex- 
amples (Figures 4a and 4b) demonstrate that the 
spatial distribution of neighborhood elements 
changes the CVN index, while the index values from 
the NDC and BCM methods are unchanged. Second, 
the CVN method is not sensitive to the number of 
classes in the neighborhood. Although the neigh- 
borhood in Figure 4c contains seven classes, the 
CVN index is the same as the neighborhood which 
contains two classes (Figure 4b). 

The BCM index increases with increasing com- 
plexity of the neighborhood (Figures 3 and 4). The 
lowest index value when K equals 2 is 8; the highest 
value is 20. The BCM technique is the only method 
of the three compared which is sensitive to both the 
number of classes occurring in the neighborhood 
and the frequency of elements in each class. 

The BCM technique is not sensitive to changes in 
the spatial distribution of class values; the method 
produces identical index values for neighborhoods 
with equal values of K andL, regardless of the spa- 
tial distribution of classes within the neighborhood. 
Figures 5a and 5b document this result with an ex- 
ample of two neighborhoods, each containing two 
classes with frequencies of 3 and 6. A second index 
is required which is sensitive to changes in the spa- 
tial distribution of nominal scale data. 

One measure of the spatial distribution of the 
classes within a neighborhood is an index of edge 
between neighborhood elements. Mead et al. (1981) 
suggested two spatial distribution measures in 3 by 
3 neighborhoods: interspersion and juxtaposition. 
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Example 
a 

NDC - 
2 
2 
2 
2 

CVN - 
1 
2 
6 
5 

FIG. 3. A comparison of variability indices for three estimation 
methods, applied to four class frequency possibilities when K (number 
of classes) equals 2. 

Both methods are based on the CVN approach. The 
interspersion measure is the same as CVN; juxtapo- 
sition expands upon CVN by incorporating two 
weights: 

Spatial weighting of edge by pixel location, that is, 
the edges between element 5 and elements 2, 4, 
6, and 8 in Figure l a  (the edges orthogonal to the 
center pixel) are each counted as two edges. The 
edges between the center and diagonal ele- 
ments (elements 1, 3, 7, and 9) are weighted with 
value 1. 
A relative importance value that assigns a rank be- 
tween 0 and 1 to edges between each possible pair 
of classes. 

It is suggested here that an alternative estimate 
of neighborhood edge for use with the BCM index is 
a measure of class value changes between all adja- 

cent neighborhood elements. The edge index need 
not be restricted to comparisons between the center 
and other eight neighborhood elements. Changes 
in nominal class values along rows and columns will 
estimate the total edge occurring within a neigh- 
borhood. A 3 by 3 neighborhood has 12 edges; 
therefore, the edge index ranges from 0 to 12. The 
edges are a subset of the relation R in the binary 
comparison matrix (Figure 6). 

In the example shown in Figure 5, Case One has 
three row changes and two column changes, for a 
total edge index of 5. Case Two changes four times 
across the rows and four times down the columns 
for a total edge index of 8. Although the two cases 
have identical values for K, f,, f,, and BCM, they 
have different edge index values. The edge index is 
sensitive to the spatial distribution of the elements 
in the neighborhood. 

Example X - 11 12 t@r NDC CVN BCM 
a 2 3 6 - 2 3 18 
b 2 3 6 - 2 6 18 

c 7 3 1 1 7 6 33 

FIG. 4. Comparison of variability indices for three estimation methods 
applied to selected examples of 3 by 3 neighborhoods. 



a1 Case I 

Land Cover Classes 

; 
I 
I 

K = 2 ,  f1=3, f 2 = 6  

bl Case ll 

Row Changes Column Changes 

- - Total 

5 edges 

= 8 edges 

FIG. 5. Estimates of orthogonal edge for two examples of 3 by 3 neighborhoods 
with two classes, frequencies of 3 and 6. 

APPLICATION OF BCM 
The BCM technique was applied to a portion of a 

digital land-cover classification of the Kenai National 
Wildlife Refuge, Alaska. First, the land-cover 
classes were aggregated into major groups approxi- 
mating physiognomic categories (Plate la) and then 
the BCM index was computed using the aggregated 
classes. 

The index values present a spatial pattern (Plate 
lb). The pattern contains areas of homogeneity 
(purple), edges between major land-cover classes 
(blue-green), and focal points of neighborhoods with 
high land-cover variability (yellow). Examples of ho- 
mogeneous regions are the forested areas (dark 
green) and the lakes (blue) in the upper left, as well 
as the peatlandslwetlands (yellow) in the lower 

FIG. 6. Location of orthogonal edge relations in the bi- 
nary comparison matrix. 

right, of Plate la. The transition zones between 
major land-cover types appear as linear features 
(blue-green) in Plate lb.  The upper right portion of 
Plate l a  contains many small land-cover regions; 
this condition produces the points of high variability 
(yellow) shown in Plate Ib. 

Figure 7 is a histogram of the numerical distri- 
bution of index values. About 40 percent of the 
pixels occur in homogeneous neighborhoods (BCM 
= 0). Ten percent of the pixels are located in neigh- 
borhoods with index values greater than 23. The 
maximum index value in this example is 34. High 
values of BCM represent increasing neighborhood 
complexity as a function of the total number of 
classes and the distribution of the neighborhood ele- 
ments between the classes. 

The binary comparison matrix is a technique to 
estimate neighborhood variability of nominal scale 
data in a raster format spatial data base. The method 
implements a binary operator in a 3- by 3-neigh- 
borhood function. The index is sensitive to both the 
number of classes occurring in a neighborhood and 
the frequency of neighborhood elements in each 
class. An examination of the topological character- 
istics of BCM, compared with the characteristics of 
the NDC and CVN indices, demonstrates the dif- 
ferent aspects of variability measured by the three 
methods. 

The index is not sensitive to the spatial distribu- 
tion of land-cover class values; it does not measure 
edge. However, a subset of the relations in the bi- 
nary comparison matrix can be extracted to estimate 
edges internal to the neighborhood. The edge index 
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PLATE. 1 (a) Aggregated land-cover classes for a portion of the Kenai National Wildlife Refuge, Alaska. Dark green 
= Eorest, light green = shmb, yellow = peatlandsiwetlands, brown = grasses and disturbed areas, blue = water. 
(b) Spatial pattern of BCM index values for a portion of the Kenai National Wildlife Refuge, Alaska. Purple = homo- 
geneous areas, blue - green = edges between areas, yellow = points representing neighborhoods with high land- 
cover variability. 

values are sensitive to the spatial distribution of source analysts interested in portraying landscape 
class values in the neighborhood. variability as a part of a land management plan. In 

The technique has been implemented in two addition, digital images of the BCM index have been 
raster systems-the Interactive Digital Image Ma- included in a data base containing telemetry data, 
nipulation System (IDIMS) and the Remote Infor- land-cover categories, and terrain variables to char- 
mation Processing System (RIPS). Results of the spa- acterize wildlife utilization regions. 
tial operator have been presented as maps to re- Neighborhood variability is a parameter impor- 

#W IIQU 

FIG. 7. Distribution of the BCM index derived from a classification cov- 
. ering a portion of the Kenai National Wildlife Rehge, Alaska. 
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tant to resource analysis applications of geographic 
information systems. Variability of nominal scale 
data can be measured in a geographic information 
system with neighborhood operators. The binary 
comparison matrix provides a variability statistic 
which quantifies the complexity of a neighborhood 
as a function of the number of classes and the dis- 
tribution of neighborhood elements between the 
classes. The technique has utility both as a map 
product and as a variable in resource modeling ap- 
plications. 
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