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The Effects of Image Noise on Digital 
Correlation Probability 
For different correlation functions, an analytical expression for the 
relationship of correlation probability to image signal-to-noise ratio 
(SNR) is derived from statistical investigations. 

INTRODUCTION 

I N REMOTE SENSING, digital techniques are standard 
methods used in image processing. However, 

conventional' photograinmetry is also showing an 
increasing tendency towards digital image evalua- 
tion, substituting automatic components for the 
huinan operator. 

One central problem is the automation of the 
human eye's capability, especially that of stereo- 
scopic viewing and object identification. The digital 
computer controlled solution of this proble~n leads 
to the use of correlation techniques. The notation 

same area. In photograinmetry these parallaxes can 
be used to derive a terrain model or to produce an 
orthophoto; in remote sensing they serve for image 
rectification or change detection. For the latter case 
the Institute of Photogrammetry at Hannover Uni- 
versity developed the software correlation-rectifi- 
cation system DISCOR (Digital software correlator for 
image rectification) (Ehlers, 1983). 

One main disadvantage in the correlation process 
is the possibility of incorrect parallax calculation, 
especially in images with a low signal-to-noise ratio 
(SNR). In photogrammetry the influence of image 
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"correlation" is used in a generalized sense as a 
method for point or object identification. Therefore, 
different objective functions for the correlation pro- 
cess are feasible and are already in practical use 
(Ehlers, 1983). 

The correlation process detects parallaxes, Ax and 
Ay, for homologous points in different iinages of the 
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noise on correlation or pointing precision has been 
investigated, for example, by Fijrstner (1982) and 
Trinder (1982). 

On the other hand, in remote sensing the main 
problem is not precision but rather the probability 
of the correlation function. Due to different sensors, 
different scales, and different recording conditions 
of remote sensing imagery, the identification of ho- 
mologous points is very difficult. Remotely sensed 
images are often contaminated by noise and have to 
be preprocessed before further evaluation (Ehlers, 
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FIG. 1. Aerial photography (frame camera). 

1982a). An example is given in Figures 1 to 3 .  
Figure 1 shows a photographic image (frame 
camera) of the city of Cologne, West Germany. Fig- 
ures 2 and 3 show the same area on Landsat and 
Seasat imagery. The seasat radar channel, in partic- 
ular, contains a high noise level. 

In this paper the effects of image quality on cor- 
relation probability will be investigated in order to 
estimate the connection between both variables. 
One main aim here is to determine the correlation 
function with the smallest probability of failure. This 
is tested with five different objective functions in an 
empirical-statistical manner on the DISCOH system 
that is a part of the Hannover digital image processing 
system MOBI-DIVAH (Dennert-MSller et a!., 1982). 
Although the MOBI-DIVAH system was developed for 
remote sensing imagery, the results of the study 
should be applicable to other tasks such as those 
associated with photogrammetry. 

IMAGE AND NOISE \IOI>EL 

In remote sensing the ground signal is changed 
before and during the recording process. The orig- 
inal image signal g (x, y)  is disturbed by various 
factors, e.g., the atmosphere, intensity of light, 
sensor sensitivity, digitization, etc. Errors due to 
these factors can be divided into recording (in- 
cluding atmospheric effects) and quantization er- 
rors. In the following we assume that atmospheric 

and recording processes add random noise, n', to 
the original signal. Thus, the recorded signal, g', 
can be written as 

g' ( x ,  y )  = g ( x ,  y) + n' (x, y).  (1)  

Analogtdigital transformation produces two ef- 
fects. The finite scanning aperture size causes low 
pass filtering superposed with additional electronic 
noise (Castleman, 1979): i.e., 

g " ( x , y ) = g f * h " ( x , y ) + n " ( x , y ) .  (2) 

substituting Equation 1 into Equation 2, the digi- 
tized signal g" can he written as 

g" ( x ,  y)  = g * h ( x ,  Y) + n (x, Y )  (3) 
using the abbreviations n = n' * h" + n" and h = 
h". t 

Hence, the digitized image signal g" consists of a 
filtered deterministic part, g * h, and a stochastic 
component, n. 

CORRELATION !vlODEL 

Following Equation 3, the two independently re- 
corded and sampled images of the same area can be 
written as 

glff = g * hl + n, and 
g," = g * h, + n,. 

t The symbol '*' is used as an abbreviation for the coil- 
volution operator, i.e., f * g = $?& f ( x ,  y) . g (.yo - .v. 
Yo - Y )  dxdy. 
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FIG. 2. Landsat VSS image. 

The aim of the generalized correlation is to derive 
an unknown geometric transformation between g," 
and g,". Usually this is done by minimizing an ob- 
jective function that measures the distances be- 
tween the grey values in small subimages, the cor- 
relation windows. In addition an image transfor- 
mation is possible. Therefore, objective functions 
for the detection of identical points consist of a 
metric, M, t  for distance measurement and a trans- 
formation parameter, T, for image preprocessing. 
An often used metric, for example, is the sum of 
squared differences between the grey values. T can 
change the image signal (e.g., filtering) and/or the 
coordinates (e. g., considering different perspec- 
tives). The task of objective function is to find Ax 
and Ay such that M will be minimized: i.e., 

(g," (x, Y)), T (g," (I + A 13 Y + A Y))} 
= AMinimum 

A\.& (5) 

OBJECTIVE FUNCTIONS 

Various objective functions for the correlation 
process have been proposed (see, for example Gop- 
fert (1980) and Konecny and Pape (1981)). In the 

t The term "metric" is a mathematical term used for 
distance measurements and is defined as follows: 

(1) M(x,x) = 0 
(2) M(x,y) = M(y,x)f O i f x f  y 
(3) M(x, y) M(x,.z) + M(z, y) 

evaluation of remote sensing imagery (especially 
from satellites), where terrain differences and per- 
spectives can usually he neglected (Konecny, 1976), 
the transformation parameter T affects only the 
image intensities when considering no geometric 
conditions. With this simplification, five of these 
correlation functions are integrated into the DISCOR 
system: 

(a) The 'normal' product moment correlation coef- 
ficient, which is equivalent to a square (Gaus- 
sian) metric. The transformation operator is the 
identity operator. 

(b) The correlation intensity coefficient, which has 
been derived from coherent optical consider- 
ations. The image signals are mapped onto the 
complex plane and the intensity of the complex 
correlation function is computed. The coefficient 
is weighted by a parameter, p , ,  depending on 
the local variances in the correlation windows. 
The metric, M, again is Gaussian, and the trans- 
formation operator, T, is the co~nples exponen- 
tial. 

(c) The same computation formula its in (b) is used, 
but with a weighting parameter, p,, depending 
on the global variances in the whole images. 

(d) The Laplace coefficient, i.e., the sum of the 
absolute differences of the image signals with an 
absolute (Laplacian) metric, M, and the identity 
operator, T. 

(e) The phase correlation coefficient, i.e., the in- 
verse Fourier transform of the normalized cross 
spectrum of both images. Hence, only the pl~osc, 
differences are considered. M again is Gaussii~n. 
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FIG. 3. Seasat radar image. 

and T normalizes the cross sl~ectrum in the fre- lers, 1983). Table 1 lists the objective functions, 
quency domain. their one dimensional unnor~nalized mathematical 

It can be shown, by using Fourier transform theo- expression, the metric, M, and the transformation 
rems, that the functions (a) and (e) are special cases parameter, T. The symbols (-)2 and 1.1 stand for the 
of a generalized filtered correlation function (Eh- Gaussian and Laplacian metric, respectively. 

TABLE 1. MOBI-DIVAH OBJECTIVE FLINC:TIONS FOR CORREI.ATIOX 

(b) intensity coefficient 
(local variances) 

(c) Intensity coefficient 
(global variances) 

(d) Laplace coefficient 

Math. exprebslon 
Objective function (unnormalized) Metric T-Operator 

(a) Product~no~nent correlation 
coefficient [1gl(x)g2b + Ax)dx ( ) T(g(x)) = &I 

([~cosPl(~l(x) - g2(x + Ax))dx 

+ ([:sinpl(gl(d - g2(x + Ax))dx 

as in (b) but with p, instead of pl T(g(x)) 
= ~-JP&x~(X) 

J;lgl(x) - g2(x + Ax)ldx T(g(x)) = g(x) 

(e) Phase correlation coefficient 
G(f) 

( . )2 T(G(f )) = - 
IG(f )I 

(G(n = Fourier transform of g(x): GV) = J:,dx) . ~ - ~ + d x  w~th j = v- 1). 
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Of great importance is the classification of the ob- 
jective functions. Which criteria can be used for 
classification? Applicable criteria may be precision, 
sensitivity, convergence, computation time, and 
probability against gross errors. We chose the last 
one as the most applicable. Because what is the 
value of the fastest, most sensitive, and precise func- 
tion, if it is at the wrong point? Therefore, in the 
following section the correlation probability is 
studied using statistical tests with different artificial 
noise distributions. 

CORRELATION P R O B A B ~ L I ~  AND SNR 

I IMAGE MATERIAL 

As a test image, a digitized section of an aerial pho- 
tograph with an original scale of 1:50 000 was chosen 
(Figure 4). Due to the high SKH in photo-graphic 
pictures, this image is used to simulate an undis- 
turbed original ground signal. It is assumed to be 
noise-free. Now random noise of different magni- 
tudes and distributions is added to the reference 
signal according to Equation 3. The mean SKU in 
the noisy images can be estimated from 

where @ is the mean value for the standard devia- I tion of tfie image signal and F,, is the random noise 
mean standard deviation. 

Table 2 shows SNR and noise distribution in the 
20 different noisy test images. 

Figures 5 and 6 show two noisy images with an 
sn-R = 2.6 and 1.0, respectively. The differences can 
be seen more clearly in Figure 7, which shows the 
same line in the reference image and the two dis- 
turbed images. c7 

In the reference image, 20 correlation test points 
have been chosen on the digital DIVAH screen. The 

TABLE 2. SNR AND NOISE DISTRIBUTION 

SNR Distribution* 

* C. = Causbiall distributed. U = Uniform distributed. 

correlation points are the centers of 11 by 11 pattern 
matrices. In the noisy images the corresponding 
search matrices have the same center coordinates 
and a size of 30 by 30 pixels. Within these windows 
the correlation coefficients for all possible pattern 
matrix positions are computed. With the u-priori 
knowledge for correct correlation, we can estimate 
the correlation probability for every objective func- 
tion (Ehlers, 1983). Figure 8 shows the reference 
image with the outlined pattern matrices. 

TEST RESLILTS 

The correlation test shows no significance on the 
applied kind of noise distribution; therefore, we can 

FIG. 4. Reference image (noisefree). FIG. 5. Search image (SNR = 2.6) 
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FIG. 6. Search image (SNR = 1.0). 

combine all the results. Only the SNR values are 
considered. The SNR is computed in every correla- 
tion window and summarized in 18 different SNR 
classes. In eaoh class the correlation probability for 
every objective function is calculated. The results 
can be seen in Table 3. A probability of 0.5, for 
example, means that 50 percent of the correlation 
points in the corresponding SNR class have been rec- 
ognized correctly. 

For an easier interpretation, it is convenient to 
develop a mathematical expression of the relation- 
ship between probability and SNR. 

MATHEMATICAL APPROXIMATION OF CORRELATION 

PROBABILITY AND SNR 

To obtain an analytical expression for the connec- 
tion between noise and correlation probability, P, 
the P-values are plotted versus the corresponding 
logarithmic SNR. We get an S-shape curve with an 

grey value 

FIG. 8. Reference image with outlined correlation 
points. 

almost linear increase in the medium domain (see 
Figure 9). For an analytical formulation, we have to 
approximate the probability functions considering 
the boundary conditions 

lim p = 

SNR-rO 

and 

lim p = 1 
SNR-r- 

An easy analytical solution can be given by the 
'logistic growth curve' 

which was set up first by Volterra for population 
processes (Whiston, 1974). 

For the estimation of the parameters a, and al, 
we consider the expression 

grey value 

0 100 200 300 0 100 200 MO 
p'xel 

0 LOO 2W 3W 

FK:. 7. Line in reference image (left), image with SNR = 2.6 (center) 
and image with S N R  = 1.0 (right). 
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TABLE 3. CORRELATION PROBABILITY AND SNR 

Number of Probability with 
SNR - correlation objective function* 

from-to SNR points a b c d e 
-- - - - 

0.07-0.10 - 2 0.00 0.00 
>0.10-0.15 0.13 14 0.00 0.00 
>0.15-0.20 0.18 17 0.06 0.00 
>0.20-0.27 0.25 18 0.44 0.00 
>0.27-0.33 0.31 16 0.44 0.19 
>0.33-0.40 0.39 16 0.57 0.43 
>0.40-0.45 0.43 14 0.71 0.79 
>0.45-0.50 0.49 13 0.62 0.62 
>0.50-0.60 0.57 17 0.88 0.88 
>0.60-0.70 0.66 17 0.88 0.88 
>0.70-0.80 0.76 12 1.00 1.00 
>0.80-0.90 0.86 17 0.94 1.00 
>0.90-1.00 0.96 12 0.92 0.75 
>1.00-1.50 1.25 46 1.00 1.00 
>1.50-2.00 1.75 24 1.00 1.00 
>2.00-5.00 3.50 56 1.00 1.00 
>5.00-10.00 7.50 42 1.00 1.00 

>10.0 36 1.00 1.00 

* a = Product moment correlation coefficient 
b = Intensity coefficient (local variances) 
c = Intensity coefficient (global variances) 
d = Laplace coefficient 
e = Phase correlation coefficient 

l o g Y  of Equation 7: i.e., 
1  - Y 

Y log - = log y  - log (1 - y) = alx + a, 
1 - Y  

or, in our case, 

P 
log - = al log SNR + a,. 

1 - P  

Figure 9 shows the approximated curves P(SNH) 
for all objective functions according to Equation 8. 
Also, their 95 percent confidence interval and the 
measured probabilities, $, are plotted. The signifi- 
cance of the fits has been verified by chi-square 
testing. 

OBJECTIVE FUNCTION CLASSIFICATION 

To classify the correlation functions, limiting 
values are extracted from Figure 9. The parameter 
So,, So ,, and So, denote the SNR with a proba- 
bility of 5 percent, 50 percent, and 95 percent, re- 
spectively. Table 4 presents the estimated param- 
eters with their upper 95 percent confidence in- 
terval. 

The classification criteria listed in Table 4 allow 
us to come to the following conclusions: 

The best correlation probability is shown by the 
phase correlation method (e). A SNR of 1.5 or lower 
in our images requires the application of this ob- 
jective function to achieve the most probable cor- 
relation. 
The ol~jective functions (a) and (c) have almost the 
same probability of correct correlation showing no 
significant differences. Therefore, other criteria, 

FIG. 9. Probability and SNR of product moment correla- 
tion coefficient (a), intensity coefficient (b), intensity coef- 
ficient (c), Laplace coefficient (d), and phase correlatio~~ 
coefficient (e) (from top to bottom). 

such as those listed in the correlation mode1 sec- 
tion, nlay decide which one has to be used. If the 
image SNR is above 1.5, functions (a), (b), (c), and 
(e) can be employed without preference. 
The correlation intensity function (b) has allnost 
the same formula and an identical theoretical 
background as function (c). However, (b) shows 
worse results in all SNR parameters when com- 
pared with (c). Therefore, it can be neglected in 
the correlation process. 
A poor probability is associated with function (d), 
the Laplace coefficient. Incorrect ~mrrelation oc- 
curs even at an image SNR of 9.0. Although a very 
fast function (Ehlers, 1982b), it shows insufficient 



Objective 95% 95% 95% 
function so 05 confidence so 3 confidence so 5 confidence 

probability and should therefore be handled with 
care in the correlation process. 

With these limiting values, it is possible to control 
the application of objective functions in an auto- 
matic manner. If the SNR is known, it is possible to 
decide which correlation function can be chosen and 
to estimate its a-priori correlation probability. Thus, 
the image SNR is all that an automatic correlation 
controller needs to know. But how can it be calcu- 
lated if image and noise are almost inseparable? 

ESTIMATION OF IMAGE SNR 

The crucial point of such an investigation is to find 
a good SNR estimation because, normally, the inten- 
sity and distribution of noise is unknown. Therefore, 
simplifying assumptions must be made to derive 
SNR values from noisy image signals. 

A-posteriori SNR estimation can be done using the 
values of maximum correlation of grey level differ- 
ences (Forstner, 1982; Trinder, 1982) but, by doing 
so, we cannot avoid incorrect correlation. There- 
fore, we need an a-priori noise estimation. 

SNR estimation per correlation point. Typical 
power spectra of aerial photographs show an expo- 
nential decrease with increasing frequency (Helava, 
1978): i.e., 

P, V) is the power spectrum of the image signal g at 
the frequency f, which can be measured in lines or 
linepairs per mm. The parameter a > 0 is an image 
specific constant. 

We assume that all superimposed disturbance ef- 
fects can be regarded as white noise n, i.e., having 
a constant power spectrum 

where P ,  is the noise power spectrum, and No" is 
the constant intensity. The power spectrum of 
image and noise is shown in Figure 10. 

The variances a,: for noise and a,' for the image 
can be estimated by 

Thus, the SKR is calculated as 

Using Equation 11, the SNR can be computed in 
every correlation window, and P can be estimated 
from Eauation 8. But the calculation of Nn2 and a is 
time consuming, requiring a Fourier transformation 
and user interaction. However, the DISCOR system 
allows an easier and faster way for SNR estimation. 

Global SNR estimation. Again, noise is assumed to 
be white and also constant over the whole image. 
Thus, can be estimated in a representative 
image area according to Equation 10. This a," is 
considered to be valid for all correlation windows. 
Image and noise can be regarded as independent 
stochastic variables. Hence, the variance, a,", of the 
undisturbed signal, g, can be calculated as the dif- 
ference between ugt2, the variance of the disturbed 
signal g', and a,? i.e., " - an" 'r" - N " 

ac 0 

So a simple variance computation in a correlation 
window yields the corresponding SNR: 

SNR = 

Equation 12 is used to estimate the a-priori prob- 
ability, P ,  to avoid incorrect correlation. 

With the presented formulas for correlation prob- 
ability and image SNR, an a-priori estimation of the 
expected correlation accuracy can be given. Based 
on the image quality in a correlation window, it is 
possible to decide which objective function should 
be used and to calculate the probability of correct 
(or incorrect) correlation. 

If a correlation point shows too low an SNR, it can 
be neglected or the SNR (and the correlation prob- 
ability) can be increased by low pass filtering or by 
extending the correlation window (Ehlers, 1983). 
Based on Equation 8, correlation probability is a 
function of only one variable: the SNR. All known 
methods to raise correlation probability, e.g., fil- 
tering or enlargement of the correlation window, 
are accomplishing nothing more than increasing the 
local SNR at the correlation point. 



EFFECTS OF IMAGE NOISE ON CORRELATION PROBABILITY 

Intensity 

Tt 
with a software solution conveniently embedded 
into a digital image processing system. 

Castleman, K. ,  1979. Digital Image Processing, Prentice- 
Hall, 429 p. 

Dennert-Moller, E., M. Ehlers, D. Kolouch, and P. Loh- 
mann, 1982. Das digitale Bildverarbeitungssystem 
MOBI-DIVAH, Bildmessung und Lufibildwesen 50, 
pp. 201-203. 

Ehlers, M.,  1982a. Increase in Correlation Accuracy by 
Digital Filtering, Photogrammetric Engineering and 

f 
Remote Sensing, Vol. 48, pp. 415-420. 

FIG. 10. Power spectrum of image and noise. 

The values of the correlation maxima have no in- 
fluence on the correlation probability. This corre- 
sponds with previous results (Ehlers, 1982a). 

Naturally, this study tries to answer only one 
question about correlation quality. Simplifying as- 
sumptions for noise and signal have had to be made 
in order to derive an analytical expression for prob- 
ability and SNR. Geometrical differences have not 
been considered and different quantization errors 
have not been investigated. Finally, the definition 
of SNR includes only the image variances, neglecting 
such important features as texture parameters, edge 
direction, significant patterns, etc. Therefore, the 
SNR definition should be generalized in this sense. 

Thus, Equation 8 is just one mosaic stone of a 
sufficient mathematical description of something the 
human eye can solve in an unconscious way. One 
result of this paper is that we must consider objec- 
tive functions other than solely the normal correla- 
tion coefficient. The phase correlation method 
shows less susceptibility to low SNR and should, 
therefore, be applied in noisy images. So future cor- 
relation systems should be open to include these 
and prospective results. They should contain the 
opportunity to generalize the objective function, 
i. e., the metric and the transformation operator. 
Also, picture preprocessing and variable choice of 
window size should be feasible. This is only possible 

, 1982b. Digital Image Processing of Remote 
Sensing Imagery: A Comparative Study on Different 
Functions in Correlation Process, Proc. of the Intern. 
Symp. Comin. VII, ISP, Toulouse, pp. 71-77. 

, 1983. Untersuchungen uon digitalen Korrela- 
tionsuerfahren zur Entzerrung oon Fernerkundung- 
saufnahmen, Wissenschaftliche Arbeiten der Fach- 
richtung Ver~nessungswesen der Universitat Han- 
nover, Dissertation, 247 p. 

Forstner, W., 1982. On the Geometric Precision of Digital 
Correlation, Proc. of Comm. III, ISP, Helsinki, pp. 
176-189. 

Gopfert, W., 1980. Image Correlation and Change De- 
tection, Proc. of XZVth Congress of ZSP, Vol. 23lB3, 
Comm 111, pp. 246-255. 

Helava, U. V. 1978. Digital Correlation in Photogram- 
metric Instruments, Photogratnmetria 34, pp. 19-41. 

Konecny, G . ,  1976. Mathematical Models and Procedures 
for the Geometric Restitution of Remote Sensing Im- 
agery, Working Group Rep. IIZ.l, XIIIth Congress of 
ISP, Helsinki. 

Konecny, G., and D. Pape, 1981. Correlation Techniques 
and Devices, Photogrammetric Engineering and Re- 
mote Sensing, Vol. 47, pp. 323-333. 

Trinder, J. C., 1982. The Effects of Photographic Noise 
on Pointing Precision, Detection, and Recognition, 
Photogrammetric Engineering and Remote Sensing, 
Vol. 48, pp. 1563-1575. 

Whiston, T. G., 1974. Lije is Logarithmic. Advances in 
Cybernetics and Systems, Gordon and Breach. 

(Received 30 April 1983; revised and accepted 18 No- 
vember 1984) 

COVER PHOTOS NEEDED 

Photographs suitable for the cover of Photogrammetric Engineering and Remote Sensing are 
needed. Either black-and-white or color may be used; however, because color reproduction is costly, 
we request that the donors of color material if at all possible cover the additional cost (approximately 
$700). Please submit cover material to the Cover Editor, American Society of Photogrammetry, 210 
Little Falls Street, Falls Church, VA 22046. 


