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ABSTRACT: The quantitative use of remote sensing satellite images in many applications re- 
quires that the geometric distortion inherent in these images be corrected, or rectified, to 
a desired map projection. The most widely used technique relies on ground control points 
to empirically determine a mathematical coordinate transformation to correct the geometry. 
In this paper, using the method of least squares, expressions for the accuracy of the geometric 
transformation and of the rectification of the satellite image to a map projection are derived. 
Explicit relations between the global accuracy of the transformation and the number, loca- 
tion, and local accuracy of the ground control points are obtained. The results are applied 
to the correction of a Landsat MSS image. 

INTRODUCTION 

T HE QUANTITATIVE USE of remote sensing satellite 
images in many applications requires that the 

geometric distortion inherent in these images be 
corrected, or rectified, to a desired map projection. 
Rectification is necessary when the output products 
of image analysis are to be overlayed on a map or 
merged into a geographic data base. The most 
widely used rectification technique relies on the use 
of ground control points (GCPS) located in the image 
and the corresponding map in order to empirically 
determine a mathematical coordinate transforma- 
tion to correct the geometry. 

It is generally accepted that the number, location 
accuracy, and spatial distribution of GCPS influence 
the accuracy of the correction, but a quantitative 
analysis has not been reported in the literature. 
Bernstein (1976) presented a graph of the root- 
mean-square GCP error as a function of the number 
and accuracy of GCPS used, but did not publish the 
analysis leading to the graph. Ford et al. (1978) 
showed that the GCP mean-squared error is propor- 
tional to the image GCP error variance and the de- 
gree of the transformation polynomial, and inversely 
proportional to the number of GCPS. Forster (1980) 
reported residual errors for a correction example 
using 100 GCPS. The optimal distribution of GCPS is 
generally thought to be uniform over the entire 
image. This optimal distribution has been analyzed 
by Orti (1981) for an analytic correction of Landsat 
MSS images. 

In this paper, we interpret the problem of geo- 
metric correction within the context of the general 
method of least squares by developing a statistical 

model of the transformation. Using known results 
from the method of least squares and derivations 
based on the model, we obtain expressions for the 
transformation coefficients and for the accuracy of 
the geometric transformation using these coeffi- 
cients. The reliability of the transformation is ana- 
lyzed and the error at every point in the map space 
is then estimated and expressed quantitatively as a 
function of the number, location, and measurement 
uncertainty of a specific set of GCPS. TO provide 
guidance in the choice of a set of GCPS to achieve a 
desired transformation accuracy, statistical models 
for the spatial distribution of GCPS are developed, 
and expressions for the estimated error in the trans- 
formation are derived from this model. An example 
of application of the methodology to the geometric 
correction of a Landsat MSS subimage is presented 
and discussed. 

REVIEW AND DISCUSSION OF 
GEOMETRIC CORRECTION 

The geometric distortion of satellite images is due 
to the combined effects of the platform, the sensor 
operation, the scene, and the geometry of the map 
projection being referenced. The principal sources 
of distortion and estimates of the degree of com- 
pensation required for each have been described for 
Landsat MSS images (Bernstein, 1976; Van Wie and 
Stein, 1977). There are two general approaches to 
the rectification of this distortion: analytic correction 
and least-squares transformation. The analytic ap- 
proach is based on a mathematical model of the 
image formation that results from the relative geo- 
metrical configuration of the scene, the platform, 
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and the sensor. The parameters of this model are 
calculated from orbital data or are estimated from 
information in the acquired image, as described for 
Landsat MSS images by Horn and Woodham (1979) 
and Sawada (1981). This approach often does not 
provide correction at the desired level of accuracy, 
due to inadequacies of the model, to errors in the 
estimation of model parameters, and to unmodeled 
random distortion. 

In the least-squares transformation approach, the 
image distortion is modeled empirically as a map- 
ping transformation from the desired map projec- 
tion coordinates to the acquired image coordinates. 
The mapping function is generally chosen to be a 
bivariate polynomial, first employed by Markarian 
et al. (1973). Denoting the map coordinates by 
(xl,xJ and the image coordinates by (yl,y2), the map- 
ping functions are given by 

where q is the degree of the polynomial and {aJk) 
and {bJk) are unknown transformation coefficients. 
The choice of q is dependent on the degree of non- 
linearity of the distortion. The degree q must be 
large to correct highly localized distortion, at the 
expense of an increase in the sensitivity to modeling 
errors. In recognition of this problem, Yao (1973) 
proposed a correction algorithm employing a series 
of piecewise biquadratic mappings constrained such 
that a smooth approximation could be obtained over 
the entire image. 

The transformation coefficients are determined 
from a set of GCPS, which are physical features that 
can be accurately located in the image and on a 
corresponding map. Typical GCPS are highway in- 
tersections, airports, land-water interfaces, or field 
boundaries located with the aid of an interactive 
display or printer output in the form of shade prints 
(Van Wie and Stein, 1976; Forster, 1980) or en- 
hanced curvilinear features (Ford et al., 1983). Au- 
tomated location techniques include the sequential 
similarity detection algorithm (Barnea and Sil- 
verman, 1972), adapted for use on Landsat images 
(Bernstein, 1976; Kaneko, 1976), and an edge cor- 
relation method (Van Wie and Stein, 1976). 

The transformation coefficients are chosen to min- 
imize the sum of squared errors between the image 
GCPS and the transformed map GCPS. The estimation 
of the coefficients has been shown to be a problem 
in multiple regression (Ford et al., 1978; Forster, 
1980). The image geometry is corrected by defining 
a rectangular interpolation grid in the map coordi- 
nates and applying the mapping transformation to 

each grid point to locate the point in the image. In 
general, this location falls between pixels in the ac- 
quired image and some form of interpolation or re- 
sampling is required to determine the intensity in 
the corrected image. Interpolation methods em- 
ployed include the nearest neighbor, bilinear inter- 
polation (Bernstein, 1976), and cubic convolution 
(Rifman, 1973). 

LEAST-SQUARES COORDINATE 
TRANSFORMATION 

Geometric correction can be interpreted as a 
least-squares coordinate transformation problem, 
and the known results from the method of least 
squares can be applied to the problem. In this sec- 
tion, we briefly summarize the basic results from 
the least squares method, primarily to introduce our 
notation, which is a matrix form of the notation of 
Wolberg (1967). For derivations of the basic results, 
refer to the texts by Mikhail (1976) and Wolberg 
(1967). 
\ - - -  -, 

It is assumed that the mapping of map coordinates 
to image coordinates is accurately modeled by the 
transfoimation of Equations 1 and 2, which can be 
expressed in the form 

where +(x) is a p x 1 vector of polynomial functions 
of the map coordinate vector x, and aj is a p x 1 
vector of unknown coefficients. The n x 1 vector of 
image GCP observations, yj, is assumed to be fixed 
but subject to measurement errors due to the lim- 
ited image resolution and the resulting d81culty in 
locating the GCP features. The image GCP measure- 
ments are assumed to be statistically independent, 
so the n x n covariance matrix Xj  will be diagonal. 
The variances of the measurement errors can be 
estimated when the GCPS are located. The uncer- 
tainty in the map GCP locations, x,, i = 1, 2, . . . , 
n, is proportionally much less than the uncertainty 
in the image GCP locations, and will be assumed to 
be negligible. 

The least-squares problem is to determine the es- 
timated transformation coefficient vector, kj, that 
minimizes the weighted sum of the squares of the 
residuals 

where Wj is the n x n weight matrix, taken to be 
the inverse of the image GCP covariance matrix, 
I;:'; and rj is the n x 1 vector of residuals 

and qj is the estimated image GCP location vector. 
Defining the n x p matrix of transformed ob- 

served map GCPS as @, where the ith row of @ is 
+T(~i ) ,  the estimated image GCP location vector is 
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yj = @ &,. (6) 

This is a linear least-squares problem, where 
the estimated transformation coefficient vector is 
given by 

This result is similar to the expression given by Ford 
et al. (1978), except for the introduction of the 
weight matrix. 

PRECISION OF THE TRANSFORMATION 

In order to have confidence in the geometric cor- 
rection provided by the transformation character- 
ized by the least-square coefficient estimates, we 
need some information on the precision of this 
transformation. One indication of the precision of 
the transformation is given by the uncertainty in the 
coefficient estimate. An estimate of the covariance 
of the least-squares coefficient vector is 

SGj = [cf,Wjcf,] -I .  (8) 

It is significant to note that this covariance is simply 
the inverse of the least-squares normal equation ma- 
trix, and is obtained computationally as the by- 
product of the evaluation of the coefficient estimate 
from Equation 7. This uncertainty is a function of 
the locations of the map GCPS through cf, and the 
variances of the image GCP measurement errors 
through Wj. If the uncertainty in a coefficient is of 
the same order of magnitude as the coefficient es- 
timate, it is clear that this estimate has a low reli- 
ability, or a low level of significance. In this situa- 
tion, the appropriateness of the transformation 
model of Equation 3 must be questioned. 

The precision of the transformation can be eval- 
uated from an estimate of the variance of the esti- 
mated value of the image coordinate y,: i.e., 

where E{ } is the expectation operator and ijj is the 
mean: i. e., 

Substituting the expression for the transformation 
in Equation 3 and the covariance of the coefficient 
estimate from Equation 7, we find 

It is important to note that this expression pro- 
vides an estimate of the error variance at any point 
in the map space for a specific set of GCP observa- 
tions. The effect of the number, location, and ac- 
curacy of the GCPS appears solely through the ma- 
trices cf, and w,. Equation 9 can be interpreted as 
an error surface in the map space, and some general 
properties of this surface can be inferred. Because 

the expression (Equation 9) is positive definite and 
is a polynomial form of fourth degree in x for a set 
of biquadratic mapping functions, we can infer that 
along any line in map space it can either have only 
one local minimum, or two local minima and a local 
maximum, as shown in Figure 1. 

The "goodness of fit" of the transformation can be 
assessed from the weighted sums of squared re- 
sidual error, ], and ],. These sums have a chi- 
squared distribution with n - p degrees of free- 
dom, and the confidence region at a significance 
level a is 

where x2,,-p is the value of the chi-square distri- 
bution at significance level a and n - p degrees of 
freedom. For example, for a = 0.05 and n - p = 
25, X2,,-p is 37.65. Thus, we expect JJ(n - p) to 
exceed 1.51 in 5 percent of all observations for 
which n - p = 25. If]. is not within this confidence 
region, there is cause tor concern about the choice 
of the transformation model. 

MEANSQUAREDERRORS 

Two easily interpreted indicators of the precision 
of the transformation are the apparent and true 
mean squared errors discussed by Ford et al. (1978), 
which can be derived from the model by assuming 
that all of the image GCP observation error variances 
are equal. The apparent or residual mean squared 
error is 

Under the assumption of equal error variances, the 
weight matrix becomes 

Equation 4 reduces to 

(a) (b) 

FIG. 1. Possible forms of $j along a line in map space. 



Observed Image GCPs 
Observed Mar, GCPs 

Estimated 
Image GCPs - 

Locations Locations Std Devs Locations Residual Errors 
GCP (UTM-kilometres) (pixels) (pixels) (pixels) (pixels) 
No. 

and the apparent mean squared error is 

Because J j  is chi-square with n - p degrees of 
freedom, it has an expected value of n - p and we 
have 

The true mean squared error is 

and taking the expectation 

Thus, as n increases, the apparent mean squared 
error at the GCPS approaches the variance of the 
image GCP observation error, and the true mean 
squared error falls off as l ln.  Assuming a variance 
u; = 1 (pixel" for the image GCPS, we see that to 
get the true mean squared error below 114 pixel 
(i.e., errors larger than 1 pixel with low probability), 
we require n = 4p, or more than 20 GCPS for p = 

6. Note that the required number of CCPS is directly 
proportional to the number of coefficients to be de- 
termined. 

EFFECTS OF THE GCP SPATIAL DISTRIBUTION 

To achieve the geometric correction of an image 
at a desired level of accuracy, guidance in the choice 
of a set of GCPS is needed. While the expression for 
the uncertainty in the transformation of Equation 9 
implicitly relates the error in the transformation to 
the number, location, and accuracy of a particular 
set of GCPS, it is dfficult to interpret, because the 
effect of the GCPS enters through the matrices Q, 
and Wj. By developing and analyzing a model for 
the spatial distribution of the GCPS, we can gain 
greater insight on the effect of the GCPS on the ac- 
curacy of the transformation. 

We now model the G C P ~  as spatially random vec- 
tors, instead of fixed locations. The map GCPS are 
assumed to be random samples of the independent 
variables x, and x,. Two different spatial distribu- 
tions are considered: Gaussian and uniform. 

We will develop this model for a biquadratic 
transformation, where p = 6 and the vector trans- 
formation function is 
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Coordinate y, Coordinate yz 

Coefficients Uncertainty Coefficients Uncertainty 
k & l k  

S61k &2k '&~k 

1 where (7) denotes a sample average over the ob- 
served GCPS. 

GAUSSIAN GCP SPATIAL DISTRIBUTION 

If the GCPS are strongly localized in map space, 
they can be modeled as having a Gaussian spatial 
distribution. While this distribution is not com- 
monly encountered in practice, it is analytically 
tractable and provides useful inferences. Assume 
that the map GCPS are random samples of the in- 
dependent variables x, and x,, where x, is Gaussian 
with mean f ,  and variance 4, and x2 is Gaussian 
with mean ?5, and variance at,. 

Under this assumption, the expected value of the 
least-squares normal equation matrix is 

(Nj) = (aTW,@) 
= tr(W,) diag (l,4,,4p,2u~,,2u~2,uI14J 

where ( . ) denotes expectation with respect to x and 
1 tr is the trace operator. Because (N,) is diagonal, it 

is easily inverted and (Nj)-' is identical to (N7'). 
The expected value of the uncertainty in the trans- 
formation from Equation 9 for the Gaussian case is 

<s;., = +'(XI (N,)-'+(x) 
= [tr(Wj)] - '+T(x)[diag (14) 

1 1 
(1, a,;2, 2 u;~' 2 q 4 ,  ~ ; ~ u q ~ l + ( x ) .  

Substituting the vector transformation function from 
Equation 13 and defining the centered, normalized 
coordinates 

Equation 14 reduces to 

1 
(s& = [tr(Wj)]-l[l + uf + ut + - (uf + u:)~]. 

2 

Defining radius r in the normalized (u,,u,) map co- 
ordinates 

,- = (uf + u;)~'~, 

we have 

This expression is easy to interpret. It indicates that 
the transformation variance is at a minimum at the 
map GCP sample average (f,,f,), increases monoton- 
ically with the radius r, and is dominated by a term 
involving the fourth power of r for large r. If the 
image GCP observation error variances are equal, 
then 

and the transformation variance is shown to be pro- 
portional to the common GCP error variance uj2, and 
inversely proportional to the number of GCPS. 

If a bilinear or d i n e  transformation is an appro- 
priate model of the distortion, Equation 16 becomes 

(s;)~ = [tr(W,)]-'(1 + r2).  (17) 
It should be noted in this case that the error does 
not increase as rapidly with r as in the biquadratic 
case. This indicates that only the transformation 
having an order appropriate to the degree of the 
distortion should be applied, as higher order terms 
can only add uncertainty. 

LOCALLY UNIFORM GCP 
SPATIAL DISTRIBUTION 

In practical applications, the GCPS are often dis- 
tributed nearly uniformly over a region in map 
space. Assuming that the map GCPS are random 
samples of the independent variables r, and x,, and 
are uniformly distributed over a rectangle, then the 
density functions are given by 

1 xjo s Xj s Xjl 

Ahj) = otherwise, j = l>k  
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t Uncertainty (Pixels RMS) 

-2.0 -1.0 0 1.0 2 .o 
Normalized Coordinate u, 

FIG. 2. Transformation uncertainty-biquadratic. 

leading to the moments 

- 1 x, = - (xjo + x,,) 2 

1 u2 - - This expression cannot be written in terms of the 
9 - 12 (x,~ - xJoI2 normalized radius r  alone. However, defining the 

normalized polar coordinates 
and the expected value of the least-squares normal 
equation matrix is again found to be diagonal: i.e., u, = r  cose 

u, = r  sine, 
9 9 

(N,) = tr(Wj) diag(l,cr:,,~:~, 5 <,, 5 u:,,u:,u~J. the expression becomes 

Using the normalized coordinates from Equation ('2~ = [tr(wj)l-l (18) 
15, the expected value of the uncertainty in the 5 [ 1 + r 2 + g r 4 - -  
transformation for the uniform case is 

r (1 - cos 48)) 
72 
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FIG. 3. Original Landsat band 4 subimage of Austin, I 
Texas. FIG. 4. Geometrically corrected Landsat subimage. 

The error distribution is slightly anisotropic with a 
minimum for cos 40 = - 1 or 0 = a14 + kn12. Along 
the normalized coordinate axes (8 = 0 or d 2 ) ,  this 
reduces to 

which is very similar to the result given in Equation 
16 for the Gaussian GCP spatial distribution, the only 
difference being the slightly larger coefficient of the 
r 4  term in the uniform case. 

Comparing results for the Gaussian and uniform 
spatial GCP distributions, we can conclude that the 
error in the transformation is not strongly influ- 
enced by the form of the spatial GCP distribution, 
but is controlled by the number and spatial vari- 
ances of the GCPS. TO minimize transformation er- 
rws, GCPS should be selected so that the spatial vari- 
ances are large. 

APPLICATION TO LANDSAT MSS DATA 

We have applied the results obtained to the geo- 
metric correction of a Landsat MSS subimage near 
Austin, Texas. We applied the biquadratic transfor- 
mation ( p  = 6) ,  using the mapping functions of 
Equation 13, and compared it to the &ne transfor- 
mation ( p  = 3), which Horn and Woodham (1979) 
have shown to be an appropriate transformation for 
Landsat subimages if small, second order effects are 
neglected. 

c 2  

Using line printer output of enhanced curvilinear 
features from bands 5 and 7 (Ford et al., 1983), 25 
GCPS were acquired from the 410 by 512 pixel 
Landsat subimage, as listed in Table 1 .  We have 
found that GCPS can be located with this method 
with an error standard deviation of 0.6 pixels. For 

GCPS that are more difficult to locate, we assign a 
larger estimate of error standard deviation, as was 
done for GCPS number 3 and 12 listed in Table 1. 
The map GCP locations given in Table 1 are in uTM 
coordinates in kilometres, acquired from USGS to- 
pographic maps (7% minute series) using a digital 
tablet. 

For the biquadratic transformation, the coeffi- 
cient vector computed from Equation 7 is given in 
Table 2. The estimated image GCP vectors, f j ,  from 
Equation 6 ,  and the residual vectors, rj, from Equa- 
tion 5 are given in Table l. 

The residual errors are used to detect gross errors 
in the acquisition of CCP locations. If a residual is 

as an error surface image. 
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greater than three times the corresponding error 
standard deviation, that is, if 

then that GCP is considered as "suspect," and is ex- 
amined to determine if an error was made in deter- 
mining its location in the image or map. Graphics 
overlays on the image, showing the observed and 
estimated image GCP locations, are helpful in de- 
termining errors. As in all statistical problems, care 
must be taken in all decisions to remove outliers. 
All prior knowledge, such as alteration of GCP fea- 
tures from new construction or terrain induced dis- 
tortion, must be taken into consideration in these 
decisions. These problems were not present in the 
example, as the residuals were all within two stan- 
dard deviations. 

The goodness of fit of the transformation is then 
considered. The weighted sums of square errors per 
degree of freedom for the example are 

which pass the chi-squared test at a 0.05 significance 
level, indicating a good fit. However, the uncertain- 
ties of the coefficients, Sg from Equation 8 given in 

Table 2 indicate some problems. Note that the un- 
certainties of the quadratic coefficients (k = 3,4,5) 
are of the same order of magnitude as the coeffi- 
cients. This indicates that we have little confidence 
in the quadratic coefficients and that we would ob- 
tain better results from a bilinear or &ne transfor- 
mation. 

To assess the accuracy of the transformation, we 
define the total transformation uncertainty as 

where si,, j = 1,2, is given by Equation 9. 
Equivalent definitions can be made for (s), from 
Equation 16 for the Gaussian GCP spatial distribu. 
tion model and for (s), from Equation 18 for the 
uniform GCP model. These uncertainties are plotted 
along the horizontal line through the origin in the 
normalized coordinates of Equation 15 (u, = 0) in 
Figure 2. Note that s does have two local minima 
as was suggested in Figure 1. The actual uncer- 
tainty, s, is greater than the estimated uncertainties 
( ( s ) ~  and (s),) because of the contributions of the off- 
diagonal terms of [@TW,@] - '. 

The original Landsat subimage (band 4) is shown 
in Figure 3, and the corrected image, using the 
transformation from Table 2 and bilinear interpola- 

Observed Image GCPs 
Observed Map GCPs 

Estimated 
Image GCPs 

Locations Locations Std Devs Locations Residual Errors 
GCP (UTM-kilometres) (pixels) (pixels) (pixels (pixels) 
No. 
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Coordinate yl Coordinate yp 

Coefficients Uncertainty Coefficients Uncertainty 
lC &lk St i lk  &2k S -  a2k 

1 297.417 0.123 183.213 0.120 
2 17.1477 0.0233 - 2.1850 0.0229 
3 -4.0827 0.0164 -12.3173 0.0155 

tion (Bernstein, 1976), is shown in Figure 4. The 
uncertainty in the transformation from Equation 19, 
and the map GCPS are shown as an error surface 
image in Figure 5, where higher intensity indicates 
larger uncertainties. The coordinates of Figure 5 are 
the same as those of Figure 4. Note how the map 
GCPS control the shape of the error surface. 

For the bilinear or aEne transformation, p is 
equal to 3 and the mapping functions of Equation 
13 are applied for k = 1,2,3. The transformed GCPS 
are listed in Table 3 and the transformation coeffi- 
cients are listed in Table 4. Note that the residuals 
are larger than in the biquadratic case, although 
they ae within three standard deviations. The 
weighted sums of squared errors per degree of 
freedom are 

which are again higher than for the biquadratic case, 
but still within the chi-squared confidence interval. 

The uncertainty in the transformation along the line 
u, = 0 is shown in Figure 6. Note that these un- 
certainties are considerably below those shown in 
Figure 2 for the biquadratic transformation. The ac- 
tual uncertainty s and the estimated uncertainty (s) 
are in close agreement as the off-diagonal terms of 
[@WJ@]-' in Equation 9 do not contribute signif- 
icantly to s in this case. 

CONCLUSION 
We have analyzed and quantified the errors in 

the least-squares transformation approach to geo- 
metric correction of satellite images. In particular, 
the estimated error in the transformation can be 
computed at every point in the map space for a 
specific set of GCPS. This is useful in a trial and error 
procedure for adding GCPS as a function of the 
number, location, and measurement errors of the 
GCPS to an initially selected set of GCPS. The statis- 
tical analysis of the transformation is useful in two 
ways. First, it shows that the error increases rapidly 
as a function of the distance from the GCP centroid. 
For a biquadratic transformation, the error is pro- 
portional to the fourth power of this distance. Sec- 
ondly, it relates the error parameters to the region 
where GCPS are acquired and therefore provides 
guidance for the selection of a set of GCPS. An im- 
portant conclusion is that the degree of the poly- 
nomial transformation must be determined from an 
analysis of the degree of the distortion in the image. 
Increasing the degree of the transformation results 
in a decrease in the residual errors between the 

1 Uncertainty (Pixels RMS) 

I I I 

-2.0 -1.0 0 1 .o 2 .o 

Normalized Coordinate u, 

FIG. 6. Tra.nsformation uncertainty-bilinear. 
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observed and estimated GCPS, but does not neces- 
sarily decrease the actual errors between the ob- 
served and true GCPS, due to the uncertainties of 
the higher order coefficients. 
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