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ABSTRACT: This paper focuses on computer-assisted analysis of multitemporal Landsat data 
of a semi-arid area of Nigeria to examine the possibilities and constraints of digital classifi- 
cation of land uselland cover. The procedure followed includes sub-area creation, image to 
grid and image to image registration, various enhancement techniques, and a supervised 
classification technique (maximum likelihood). 

Although individual crops could not be mapped owing to land management practices in 
the area as well as the limitations imposed by the characteristics of the data, the nine broad 
land-uselland-cover classes established were tested and found to be separable and statistically 
accurate at above 85 percent. The results indicate that best Landsat acquisition periods for 
the study area are JanuarylFebruary (for dry season inventory) and AugustISeptember (for 
wet season inventory). Differences in densities of tree canopies, mixed cropping of small 
farm plots, varying ground moisture conditions, and atmospheric attenuation are factors to 
be considered in mapping land uselland cover of the study area. 

INTRODUCTION 

0 NE OF THE SERIOUS PROBLEMS inhibiting the pro- 
cess and progress of development in Nigeria 

is the lack of basic resource information (FAO, 1966; 
Mabogunje, 1978; Hunting Technical Services Ltd., 
1981; ILO, 1981; Areola, 1982; Hildreth et al., 1984; 
Adeniyi, 1979, 1984a). Two basic causes of this 
problem are (1) the national perception of resources 
and (2) the "inadequate" recognition, and conse- 
quently, "unavailability" of modern procedures for 
the collection and presentation of basic resource in- 
formation. 

It is generally and locally believed that Nigeria is 
blessed with a plentiful supply of land. This percep- 
tion has led to the false philosophy of inexhausti- 
bility as well as the failure to recognize that neither 
the environment as such nor parts of the environ- 
ment are resources until they are capable of satis- 
fying human needs (Zimmermann, 1951). Because 
resources only become available to a society through 
the combination of increased knowledge and ex- 
panding technology, the presence of abundant land 
area in Nigeria is nothing more than "neutral stuff' 
until means are devised to apprise and evaluate the 
lands prior to their utilization. 

Remote sensing technology has revolutionized 
the methodology of resource surveys. In Nigeria, 
this method has been applied largely through ad hoc 
arrangements. Most applications have been based 
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on visual analysis of imagery (Bejarano and Okoye, 
1979). In spite of these ad hoc arrangements, much 
research is still needed to document the possibilities 
and constraints of applying remotely sensed data, 
especially Landsat MSS data, to resource surveys in 
Nigeria. 

The main objective of this paper, therefore, is to 
examine the applications of computer-assisted anal- 
ysis of multitemporal Landsat ~ s s  data for land-use1 
land-cover classification of a semi-arid area of Ni- 
geria. Specifically, the paper investigates the pos- 
sibilities and the constraints of digital classification 
of land uselland cover during both dry and wet sea- 
sons with a view to providing general guidelines for 
operational procedures. 

THE STUDY AREA 

The Bakolori irrigation project area, located in 
the Talata Mafara and Maradun local government 
areas of Sokoto State, is selected for this study. The 
area (97650 hectares), located within the Sokoto- 
Rima Basin, lies approximately within longitudes 
5'53'E and 6"201E and latitudes 12"301N and 
12"501N (Figure 1). 

The area is semi-arid with mostly hot and dry 
weather which creates two distinct seasons- 
prolonged dry season (October to May) with a short 
wet season (end of May to early October). While 
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THE BAKOLORI IRRIGATION PROJECT AREA. 

SPRINKLER IRRIGAT 

Y 

FIG. 1. A design and the location map of the Bakolori Irrigation Project Area. (Note: The expected 
size of the Bakolori reservoir is shown on the map. The size and shape of the reservoir as of 
10 June 1980 is shown in Figure 3 (bottom) and Plate 1. The grid interval is one kilometre.) 

over 75 percent of the annual rain falls between 
July and September, November to February are 
virtually without rain. Within the Sokoto-Rima Ba- 
sin, the wet season varies from 180 days in the 
south (Yelwa area) to less than 110 days in the north. 
The mean annual potential evapotranspiration is 
over 1800 mm while the mean annual water deficit 
is above 750 mm (Adejuwon, 1971). Thus, although 
temperatures are generally sufficient in the dry 
season to allow plant growth, insufficient rainfall and 
high evapotranspiration limit cropping activities, 
without irrigation, to the wet season. 

The study area lies wholly within the Sudan Sa- 
vanna belt. The Sudan Savanna is dominated by 
mixed woodland-a vegetation of small trees with 
light canopies. The grasses are generally short (1 to 
1.5 m) except the acquatic types. Gallery forests, 
called thickets, are found along rivers. 

The traditional activity of most of the people in 
the basin is subsistence agriculture and herding. 
There are two forms of farming activities-per- 
manent cropping and once-a-year cropping. Year 
round farming is carried out in the low-lying areas 
that are subject to seasonal flooding or water-log- 
ging along the banks of rivers or depressions 
(such areas are locally called "fadama"). The once 
a year farming is carried out in the old terraces ad- 
jacent to the fadama land. Crops such as maize, 
cotton, millet, guinea corn, cowpea, and groundnut 
are grown. Farm sizes are generally small, ranging 
from 0.2 ha to 0.9 ha in the fadama areas while the 
average for the upland is about 0.53 ha (Iliya and 
Sidhu, 1982). However, households may have sev- 
eral of these plots scattered between the upland and 
the fadama areas. 

tion. Farm plots vary from 0.25 to 1 hectare and 
0.16 to 0.5 hectare for the surface and sprinkler ir- 
rigation areas, respectively. The farmers are given 
as many plots as the number they had before or as 
they could cope with, but the plots are also scat- 
tered all over the project area (Iliya, 1981). Thus, 
fragmentation prevalent prior to the project is still 
maintained. 

METHODOLOGY 
DATA SOURCES AND THEIR CHARACTERISTICS 

Table 1 shows the type and characteristics of the 
data sources used in this study. Multitemporal 
Landsat computer compatible tapes (CCTS) were the 
primary sources of data. The available dry and wet 
seasons Landsat CCTS were acquired for the digital 
classification and mapping of land uselland cover 
during the two seasons. 

Radar mosaics (1:250,000) and vegetation maps 
derived from them were used to delimit the study 
area. The radar mosaic depicts clearly the broad 
landform types and the major settlements. 

Aerial photographs and topographic maps cover 
only the western half of the study area. The topo- 
graphic map (sheet 31) for the eastern half of the 
study area was still under compilation. The Bakolori 
irrigation project design map (redrawn and shown 
in Figure 1) was used for general orientation and for 
the geometric registration of the Landsat subscenes 
covering the study area. In addition to these data 
sources, two brief reconnaissance surveys of the 
study area were carried out in December 1983 prior 
to the analysis and in September 1984 after the dig- 
ital processing. 

The Bakolori project area is designed to provide 
imgation water for 23,200 ha (net) out of which 33.6 
percent will be served with surface irrigation and IMAGE SysTEM 
the rest by sprinkler irrigation. Out of the area to The main processing of the multitemporal 
be served with surface irrigation (7,800 ha), about Landsat MSS data was carried out on the Dipix image 
41 percent are planned to be used for rice produc- system (A Resource Image Exploitation System- 



TABLE 1. DATA SOURCES AND THEIR CHARACTERISTICS 

Type Date Scale Cloud Quality Code Aquisition Source 
- 

Landsat-1, MSS 7 Nov 1972 1:3,369,000 0% 5888 8110709255500 Eros Data Centre, 
(ccv Sioux Falls, SD. U.S.A. 

Landsat-2, MSS 7 Dec 1975 1:3,369,000 0% 8888 8231909120500 Federal Dept. of 
CCT Forestrv. Ibadan 

Landsat-3, MSS 
CCT 

X-band (3 cm) 
Radar Mosaic 

Vegetation Map 

Aerial Photos 
(Black and White) 

Topographical 
Map 

10 Jun 1980 

Nov 1976 

Nov 1976 

Puld 1978 1:50,000 
Based on 1962 
Air Photos 

N A 

, . 
(Nigeria) 

83082809062XO Federal Dept. of 
Forestrv. Ibadan , . 
(Nigeria) 

ND31-16 and Federal Dept. of 
ND32-13 Forestry, Ibadan 

(Nigeria) 
ND31-16 and Federal Dept. of 

ND32-13 Forestry, Ibadan 
(Nigeria) 

Sheet 30 Federal Survey Dept. 
Lagos (Nigeria) 

Sheet 30 S.E. Federal Survey Dept. 
Lagos (Nigeria) 

Bakolori SRDDA Project ofice, 
Irrigation Talata Mafara, Sokoto 
Project State, (Nigeria). 
Design Map 
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FIG. 2. A flowchart of the procedure for interactive dig- 
ital image processing. 

ARIES 11) at the Faculty of Environmental Studies, 
University of Waterloo, Waterloo, Ontario, Canada. 
Part of the processing was also carried out on the 
Image Analysis System (CIAS) at the Canada Centre 
for Remote Sensing (CCRS) in Ottawa. CIAS and 
Dipix descriptions have been given by Goodenough 
(1979) and Shindler (1982), respectively. Figure 2 
illustrates the procedure followed. 

1 SUB-AREA CREATION 

The whole Landsat scene for each date was loaded 
into the VMA (Video Memory Array), then viewed 
through the color monitor (cM). With the use of 
cursor and roam functions on the bit-pad of the 
Dipix system, line and pixel coordinates of the top 
left and the bottom right corners were recorded. 
The vegetation map and the Bakolori project design 
map were consulted for the choice of the comers. 
The sub-area so created contained original radio- 
metric data. The first sub-area for each date was 
made larger than the area of interest. After the sub- 
areas had been geometrically corrected, new sub- 
areas were then created through the same proce- 
dure. 

1 GEOMETRIC CORRECTION 

Two forms of geometric corrections were carried 
out: (i) Image to grid and (ii) image to image. 

Image to grid registration requires visual identi- 
fication of identical points on the image and on the 
map. Coordinates of points identified on the map 
(Eastings and Northings) are then used for the poly- 

RING & REMOTE SENSING, 1985 

nomial transformation. Because the study area had 
not been completely covered by topographic maps 
and the vegetation map covering the area had only 
the Northings, the gridded 1:100,000 project design 
map (Figure 1) was therefore used for the registra- 
tion. The grid interval on the map is 1,000 m. 

The 1980 Landsat MSS which was relatively and 
temporally compatible to the design map was reg- 
istered to the map grid. The map contained fewer 
roads than the image and some of the roads on the 
map were not visible on the image. In addition to 
using road intersections, some other landmarks 
were also used. 

Geometric registration was carried out using the 
image registration and resampling package of the 
Dipix system. After several attempts, 17 points 
were used with the third-order polynomial transfor- 
mation. The standard error of pixel estimate is 40.52 
m and that for the line is 37.99 m. Thus,image to 
grid registration was accomplished with an error of 
less than 50 m. The original pixel ground resolution 
was then resampled to 50 m by 50 m. 

The image to image registration follows the same 
procedures as the image to grid except that, instead 
of reading the coordinates of points from a map, the 
cursor is placed on the identical points identified on 
the slave image (i.e., the image to be registered) 
and the master image which have been loaded au- 
tomatically by the image to image registration pro- 
gram. 

The 1975 and 1972 Landsat MSS images were in- 
dividually registered to the geometrically corrected 
1980 image. The image to image registration pro- 
gram allows only one Landsat band from each of the 
two Landsat MSS data to be loaded onto the CM. The 
registration was time consuming because of the fol- 
lowing reasons: (1) the master image was a wet 
season image whereas the two to be registered were 
dry season images; (2) the change in land use, con- 
sequent on the irrigation project, had altered the 
land cover on the 1980 image (the roads in the 
master image were absent on other images), (3) the 
shape of the river that crosses the area was, in sev- 
eral places, different owing to natural movement of 
the channel, and (4) use of only one band each from 
each Landsat MSS image further enhanced the above 
problems (see Figures 3 and 4). 

In spite of these problems, 20 and 22 points were 
used for the 198011975 and 198011972 registrations, 
respectively. The standard error of estimates for 
pixel and line are 1.14 and 1.0 respectively for 19801 
1975 and 0.99 and 0.94 for the 198011972, The ac- 
curacy achieved for the geometric registration of the 
multitemporal Landsat MSS data is comparable to 
the 1 to 2 pixels achieved by other researchers (Ras- 
mussen, 1982; Zafiryadis, 1982). However, the ac- 
curacies reported here seemed not to be uniform 
for the whole subscene. This non-uniformity is per- 
haps caused by the distribution of the points which, 
in turn, is influenced by the reasons already given 
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above. Also, it should be noted that the accuracy of 
the image to image registration, executed in this 
study, is a function of the accuracy of the master 
image. 

Various digital image processes, including en- 
hancement techniques and unsupervised and su- 

-- --I pervised classification techniques, were carried out 
(see Adeniyi (1984b) for details). This paper reports 
the supervised classification technique only. 

Supervised classification involves three major 
steps: (1) Selection of training areas, (2) generation 
of the spectral signatures for training areas, and (3) 
classification of the sub-scene on the basis of sig- 
natures generated for training areas. Supervised 
classification was carried out both on the Dipix and 
CIAs systems. 

Because of the nature of the data, and the physical 
and cultural settings, only broad classes which re- 

FIG. 3. Geometrically corrected composite (multitem- 
poral) Landsat images of the study area. Upper image, 
7 November 1972; middle image, 7 December 1975; 
bottom image, 10 June 1980. (These images are repro- 
duced from the original color composites.) 

flect the combinatkn of similar land uselland cover 
were considered. This decision allowed the use of 
the 1978 vegetation map, the 1976 aerial photog- 
raphy, and radar mosaics as guides for selection of 
training areas. However, heavy reliance was placed 
on the stereoscopic examination of aerial photos for 
the final selection of training areas (see Figure 5). 

Eight and nine training areas were selected for 
1980 and 197511972, respectively. Additional 
training areas were required for 1975 and 1972, as 
a result of burnt areas not apparent in the 1980 data. 

Selection of the training areas was followed by 

FIG. 4. Multitemporal Landsat images (band 7). The Im- 
ages were created to illustrate the difficulty of image to 
image registration. The 1972 (dry season) image is 
shown on the left and the 1980 (wet season) image on 
the right. Observe the shape of the river on the two im- 
ages. Also note that the roads on the 1980 image are 
absent on the 1972 image (see text for detail). 

FIG. 5. Aerial photograph (taken November 1976 a e- 
produced here at an approximate scale of l :70,0vuj of 
part of the study area: (1) The flood plains (fadama), (2) 
rainfed agricultural land, (3) dug-up wells used locally 
for irrigation during the dry season, (4) settlement, (5) 
River Sokoto (dry), (6) alluvial fans (designated as bare 
surface area in the classified land-uselland-cover map, 
Plate I), and (7) wooded shrublandlthicket. 
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generation of spectral signatures for each training 
area. 

The Interactive Training (IT) function of the Dipix 
system was used. An undecimated color composite 
of each Landsat MSS subscene for each dak  was au- 
tomatically loaded onto the color monitor by the 
task IT for the definition of the training areas. Each 
training area was composed of several small poly- 
gons, depending upon the size and distribution of 
each land-uselland-cover type. The boundary of 
each polygon was drawn by the cursor using the 
write annotation function of the graphic pad. 

Each class as defined by the training area was 
composed of the recording of pixel intensity vectors 
(for bands 4, 5, 6, and 7 of the Landsat subscene). 
Means and the covariance matrix were then calcu- 
lated to develop spectral signatures representing 
land uselland cover from which the training area was 
drawn. These parameters were then examined to 
determine spectral homogeneity of each class. 

Although there is no a priori criteria for rejecting 
a class on the basis of the mean vector and the co- 
variance matrix, some classes where the standard 
deviations seemed to be too high were "purified" 
either by deleting some of the polygons making up 
the original training area or by redefining the entire 
"training polygons." The spectral signatures so gen- 
erated for each training area were then used for the 
maximum-likelihood classification. 

To remove the speckled effect caused by unclas- 
sified pixels, a post-classification filtering was car- 
ried out. Unclassified pixels were common along 
class boundaries. The post-classification filtering 
program of the Dipix systems allows the operator to 
speclfy the minimum size groups of pixels repre- 
senting any theme (class) which will be allowed to 
remain. This is equivalent to specifying a size for 
the minimum mapping parcel. The program first 
searches for the minimum contiguous pixel size of 
land-uselland-cover unit present in the classified 
image. This information allows the operator to 
speclfy the size of the pixel to be merged with the 
neighboring class. It is possible to indicate the min- 
imum "eat-in-depth for each class but, without ad- ' 
equate information about the behavior of the spec- 
tral reflectance of different features in relation to 
the climatic and soil characteristics, such a proce- 
dure will lead to artifacting. A minimum of five 
pixels was therefore used for all the classes. 

The Dipix system has a software package to su- 
perimpose grid lines at either a 1000-m or 10,000- 
m i n t e ~ a l  on the theme (classified) images; a grid 
interval of 10,000 m was selected. Also, the area 
and the percentage of each land-uselland-cover cat- 
egory were calculated. 

RESULTS AND DISCUSSION 

There is no a priori land-uselland-cover classifi- 
cation scheme for Nigeria; hence, the classification 

employed is pragmatic. Only the major land-use1 
land-cover classes were classified (Table 2). The 1980 
color coded thematic map is shown in Plate 1. The 
classification includes three Agricultural classes, two 
Vegetation classes, and one each for Bare soil, Wet- 
land, Water, and Burnt areas. 

Three points about the classification should be 
noted: (1) The three classes within the agricultural 
category refer only to the land area used for culti- 
vation and not to any specific crop. The reasons for 
this derive from the fact that 

the 1972 and 1975 Landsat MSS data were acquired 
at the end of the dry season when nearly all the 
crops have been harvested; 
the acquisition date for the 1980 Landsat MSS data 
coincided with the start of the wet season when 
farm lands were being prepared for cropping; and 
even if the images were acquired during the middle 
of the growing-seasons ~ a b r y / ~ e b r u - & y  and Au- 
gustlseptember), the complex spatial organization 
of agricultural land, marked by heterogenous as- 
sociation of many crops on small size plots, would 
have made the classification of different crops dif- 
ficult, at least, at the resolution and scale of the 
imagery used. 

(2) Although irrigated farming began in the 1979180 
farming season, cropping patterns had not yet sta- 
bilized sufficiently to permit separate classification 
for irrigated agriculture. For the reason given in (1) 
above, the areas that depict some irrigation activi- 
ties have similar spectral reflectance as the rainfed 
agricultural areas which were under preparation. 
However, the irrigated areas have different spatial 
characteristics (see Figure 3, bottom). (3) The two 
vegetation classes are dominated by shrubs, dotted 
here and there by drought resistant trees. Wooded 
shrubland is characterized by woody communities 
separated by areas of low shrubs. While open, low 
shrubland areas are extensively used for grazing, the 
woodlands are exploited for production of fire- 
woods. 

Given the above situation, the primary concern 
is to examine within-class variability and class sep- 
arability of the land uselland cover established for 
this study. 

Color 
As On the 

Class Description Original 

1 Cultivated Fadama Red 
2 Rainfed Agricultural Land Area 1 Green 
3 Rainfed Agricultural Land Area 2 Yellow 
4 Mixed ShrublandIThicket Orange 
5 Wooded Shrubland Magenta 
6 Bare Soil Cyan 
7 Wetland Dark Blue 
8 Water Blue 
9 Burnt Areas Burgundy 
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There have been many comments on accuracies 
of digital classification of land uselland cover based 
on spectral data alone (Alfredo, 1981; Rasmussen, 
1982; Pokrank and Gaboury, 1983; Satterwhite et 
al., 1984). I t  is therefore pertinent to examine 
briefly the spectral characteristics of the data set vis- 
a-vis the variability of each land-uselland-cover class 
(as defined by spectral signatures of their training 
areas) as well as the separability (or otherwise) of 
the classes. 

Various methods have been devised to examine 
within-class variability and class separability. 
Markham and Townshend (1981) suggested the use 
of coefficient of variation as a measure of the degree 
of spectral heterogeneity (what Townshend (1980) 
called "scene noise"). Confusion and divergence 
matrices (Kalensky et al., 1981) have been used to 
determine the accuracy and separability of classes. 
Similarly, field data are also used. Because of lack 
of temporally compatible ground truth data, the fol- 
lowing methods were adopted: 

I coefticient of variation for within-class variability; 
two tail test concerning the means of the spectral 
signature of the training areas used in defining each 
class; and 

8 confusion and divergency matrices. 

In order to appreciate within-class variability, 
Table 3 and Figure 6 show the characteristics of 
spectral reflectance values in terms of mean (X), 
standard deviation (SD), and maximum and min- 
imum values as well as the spectral range for 
Landsat subscenes of the whole study area. The 
spectral range varies from only 30 to 84 in all the 
Landsat bands. In spite of this relatively narrow spec- 
tral range (see 1980 band 4), standard deviations 
shown in Table 3 are relatively high. The high stan- 
dard deviations of the relatively narrow spectral 
range are an indication of spectral heterogeneity. For 
1980 and 1975, percentages of coefficient of varia- 
tion (SDIX.100) for bands 7 and 5 range from 14.6 
to 31.3. Thus, it was observed, as Satterwhite et al. 
(1984) noted, that the accuracy of a land-cover clas- 
sification in an arid to semi-arid region, such as the 
study area, is conditioned by the spectral range of 

the Landsat bands as well as the environmental 
complexity of the area. 

In order to investigate the effect of this phenom- 
enon as it relates to within-class variability of the 
classes established for this study, the coefficients of 
variation (CV) were calculated for the spectral sig- 
natures of training areas for some of the land-use1 
land-cover classes for each date. The values for 1980 
are shown in Table 4 for illustration. 

An examination of the CVs reveals a lack of any 
uniform pattern of within-class variability among the 
Landsat MSS bands. However, certain land-use1 
land-cover categories, especially the 1980 data, have 
relatively higher within-class variability indices than 
the other data set. This, of course, is due to differ- 
ences in soil moisture, topography, and rates of veg- 
etation growth resulting from the advent of precip- 
itation. 

Two classes-wetland and water--consistently 
have relatively very high variability indices in two 
of the bands (bands 6 and 7). Variability of the wet- 
land is probably caused by the mixture of sedi- 
mented water and aquatic vegetation. Variability of 
the spectral signature of water is caused by grouping 
the clear, shallow, and deep water and partly sedi- 
mented water into one class. Although there is 
enough spectral disimilarity within the water class 
to allow its breakdown into further classes, this was 
not done in this studv. 

The vegetation classes (shrublthicket and wooded 
shrubland) also have relatively high variability in- 
dices, especially for the 1980 data. As already in- 
dicated elsewhere above, observed variability is 
caused by the differential growth rate of vegetation 
and the presence of open space within the plant 
communities. 

While these variability indices indicate the de- 
gree of homogeneity of each class, they do not pro- 
vide sufficient information concerning the separa- 
bility of classes. Lack of a priori spectral response 
pattern for the different land uselland cover of the 
study area preclude the determination of the 
threshold variability index of each class. 

Two major tests were employed to determine the 
class separability. First, means of spectral reflec- 
tance values within training areas were compared. 

TABLE 3. SPECTRAL REFLECTANCE CHARACTERISTICS OF 
THREE OF THE FOUR LANDSAT (MSS) BANDS FOR THE STUDY AREA 

1980 Landsat MSS 1975 Landsat MSS 1972 Landsat MSS 

Bands Max Min Mean SD Range* Max Min Mean SD Range* Max Min Mean SD Range* 

7 119 18 55.3 8.1 56 41 0 27.5 3.6 25 210 94 159.0 17.7 80 
5 85 29 55.3 10.2 59 93 0 52.1 8.6 48 172 75 123.9 15.2 80 

I 4 56 28 39.3 4.7 30 57 0 34.8 4.2 23 228 123 171.4 16.5 84 

'The spectral ranges are derived from the limits of the central groupings of the spectral intensity of the data as shown in Figure 7. 
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Band 4 

FIG. 6. Histogram for Landsat MSS bands 4, 5, and 7, 10 June 1980, for the study area. 

Means of two sets of training areas were compared Basic requirements for the test are 
at a time. Although each training set should nor- 
mally be  compared against all the others (i.e., 
n(n - 1) combinations, where  n = number  of 
classes), only classes with close spectral character- 
istics were selected for testing (see Table 4). 

the number of samples (in this case pixels) are 
greater than 25, 
the samples are independent of each other, and 
the standard deviation(s) are not equal. 
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TABLE 4. SELECTED CLASS SEPARABILITY TEST (1 980)' 

Class 2 Class 3 
- 
x SD CV(%) 7 SD CV(%) It1 

Band 7 53.33 4.95 9.28 64.17 3.60 5.61 66.34 
Band 6 29.44 1.61 5.47 30.41 1.59 5.23 15.32 
Band 5 56.28 7.01 12.45 71.83 4.64 6.46 70.35 
Band 4 38.01 2.66 7.00 45.47 3.45 7.59 58.75 

PTA 1845 969 

I 
Class 4 Class 5 

Band 7 56.94 3.20 5.62 53.96 3.45 6.56 28.68 
Band 6 24.81 2.54 10.24 23.63 4.01 16.97 10.94 
Band 5 39.27 3.85 9.80 48.73 5.31 10.90 63.96 
Band 4 31.57 1.64 5.19 36.55 2.66 7.28 69.87 

PTA 2478 1776 

Class 7 Class 8 

Band 7 39.29 7.20 17.87 30.97 7.47 24.12 18.20 
Band 6 22.74 5.69 25.02 21.44 8.59 40.06 2.66 
Band 5 37.25 4.56 12.24 69.92 3.64 5.21 133.89 
Band 4 31.49 2.40 7.62 47.77 3.46 7.24 82.18 

? = mean; SD = standard deviation. 
CV = S D L  = coefficient of variation. 
PTA = Number of Pixels in the Training Area. 
'Similar calculations made for 1975 and 1972 are not shown here for lack of space. 

These requirements are satisfied by the data. Thus, 
the standard deviation(s) of the sampling distribu- 
tion of the means (T) was estimated from 

S(xl - x2) = ds?1N1 + SiIN2 and 
t = (q - %2)ls(Tl - z2) 

where N ,  + N ,  - 2 is the degree of freedom, N ,  and 
N,  the number of pixels in the classes being com- 
pared, and Ho (i.e., no significant difference be- 
tween the means) would be rejected when lt/ 2 ta; 
a = 0.01. This test was applied to six classes (two 
at a time). Results for 1980 only are also shown in 
Table 4. The results for each of the dates show that 
all the classes, as defined by their training areas, 
were significantly separable at 99 percent proba- 
bility. Only wetland and water (band 6, 1980) and 
shrublthicket and wooded shrubland (band 5, 1972) 
are less defined than the other classes in all the 
bands. This is understandable given the reason re- 
garding their within variability indices as discussed 
above. 

However, this result does not eliminate the pos- 
sibility of overlap. What it does mean is that the 
broad classes are significantly defined. This is ex- 
pected because the heterogeneity of land-uselland- 
cover classes tends to average out at lower spatial 

resolution. The averaging effect reduces, according 
to Townshend (1980), the size of the spectral space 
for any given cover class. In particular, the aver- 
aging effect is greater in the more complex environ- 
ments such as the study area. Recognition of this 
effect guided the creation of the broad classes. This 
explains why the classes resulting from this study 
are significantly separable. The result also stresses 
the need to integrate the environmental attributes 
of a place with the resolution of the data base in 
establishing land-uselland-cover classification 
schemes. 

The second test further examined the separability 
of the classes was the confusion and divergence ma- 
trices using the CIAS system at the CCRS. Because of 
limitation of the size of the Landsat subscene that 
can be loaded on3 the CIAS w color monitor (512 by 
512), only the western half of the study (420 by 510) 
was used. The same training areas used on Dipix 
system was also used on the CIAS for the maximum 
likelihood classification. The test was carried out 
only for the 1975 and the 1980 data set. The results 
are shown in Tables 5 (A and B) and 6 (A and B)*. 

* The author had limited time on the CIAS system; hence, 
the use of 1980 and 1975 data set for this test. 
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TABLE 5 A .  CLASS SEPARABILITY-CONFUSION MATRIX (1 975) (TRUE CLASS ACROSS) 

Water Wetlands Bare Soil Uplands I Uplands I1 Fadama ShrubfI'hicket 

Unclassified 
Water 
Wetlands 
Bare soil 
Uplands I 
Uplands I1 
Fadama 
Shrubtthicket 

Weighted Mean Classification Accuracy = 89.59 
Weighted Standard Deviation = 7.18 
Standard Error of the Mean = 2.71 
STD. ERR. of the Mean = (Weighted STD. DEV.)ISQRT (No, of Classes) 

Water Wetlands Bare Soil Rainfed I Rainfed I1 Fadama ShrubfI'hicket 

Water 0.00 
Wetlands 114.33 0.00 
Bare soil 282.79 332.37 
Rainfed I 288.03 249.09 
Rainfed I1 221.99 102.29 
Fadama 227.43 20.84 
Shrublthicket 224.09 34.08 

Only water does not overlap with any class. The shrub and grasses. The accuracies of these two 
1975 result shows that the fadama and the shrub/ classes are higher in 1980 (wet season). However, 
thicket class have a relatively large percentage of there is a relatively large percentage of overlap be- 
overlap. Indeed, the spectral characteristics of the tween the more moist (upland) rainfed agricultural 
two classes are rather similar, particularly where land area 1 (see Plate 1 and Table 2) and the fadama. 
they are adjacent to each other. As already noted, These two classes are usually located adjacent to 
a large proportion of the fadama is dominated by each other. 

TABLE 6A. CLASS SEPERABILITY-CONFUSION MATRIX (1980)  

Water Wetlands Bare Soil Rainfed I Rainfed I1 Fadama Shrub & Thicket 
- - 

Unclassified 0 
Water 100 
Wetlands 0 
Bare soil 0 
Rainfed I 0 
Rainfed I1 0 
Fadama 0 
Shrub & thicket 0 

~p - 

Weighted Mean Classification Accuracy = 95.07 
Weighted Standard Deviation = 3.99 
Standard Error of the Mean = 1.51 
STD. ERR. of the Mean = (Weighted STD. DEV.)/SQRT (No. of Classes) 

Water Wetlands Bare Soil Uplands I Uplands I1 Fadama Shrub & Thicket 

Water 0.00 
Wetlands 95.28 0.00 
Bare soil 1490.35 1265.47 0.00 
Uplands I 234.19 127.33 40.81 0.00 
Uplands I1 101.61 37.18 252.43 31.17 0.00 
Fada~na 49.43 26.61 472.47 48.17 9.96 0.00 
Shrub & thicket 144.76 40.26 426.06 74.11 27.78 26.28 0.00 
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Separation of classes in spectral space is indicated 
by the covergence matrix (Tables 5B and 6B). Some 
classes are separated by large spectral space (e.g., 
water and bare soil in 1980). Given the relatively 
narrow spectral range of the data set, the result con- 
firms the separability of the classes. However, the 
spectral space between fadama and shrublthicket is 
lowest in 1975 (dry season) while it is lowest be- 
tween fadama and the more moist (upland) rainfed 
agricultural'land area 1 in 1980. This again confirms 
the overlap within these classes in Tables 5A 
and 6A. 

Another method which could have further estab- 
lished the accuracy is comparison of the classifica- 
tion with the vegetation map derived from radar 
imagery in 1978. Unfortunately, the map is not tem- 
porally compatible with any of the data sets used for 
this studv. 

It is, however, pertinent to further remark that, 
although field work carried out both in 1983 and 
1984 did not coincide temporally with the data used, 
the areas classified as agricultural lands were found 
to be under cultivation in 1984. Further inquiries 
from local farmers also confirmed the accuracy of 
the digital classification of agricultural land. 

Although broad categorization of land uselland 
cover has been successfully achieved in this study, 
several fine details are generally lost in the process. 
It was noted that spatial resolution has greater effect 
on small sized, irregularly shaped, or narrow linear 
features. In addition, locations of these small linear 
features has direct effects on their classification ac- 
curacy. For instance, River Sokoto had water in cer- 
tain locations in 1972 but because of the narrowness 
of the river, vis-a-vis the spatial resolution of the 
Landsat MSS data, those portions were classified 
with classes occupying the larger proportions of ad- 
jacent spectral space. Another example is the set- 
tlement. The settlements are mostly located within 
the agricultural land. Because they are small in areal 
extent and roofed with grass stocks, their spectral 
signatures (Figure 5) do not differ much from sur- 
rounding agricultural lands. 

These phenomena account for the usual unclas- 
sified pixels which were found to be common on the 
boundaries of the classes occupying relatively large 
area. Prior to post-classification filtering, percent- 
ages of unclassified pixels were 7.27, 7.39, and 3.69 
for the 1980, 1975, and 1972 data, respectively. By 
filtering, several of the small-sized, irregularly 
shaped, linear features were often merged to the 
adjacent large classes. Thus, the spatial organization 
of features, particularly as it relates to the size and 
position of objects in the feature space in relation 
to the location of other objects is very important for 
classification. Effects of this phenomenon can be 
partially eliminated by digitally registering the clas- 
sified data to a base map containing roads and set- 
tlements which have been visually identified and 
manually delineated. 

Distribution of the interpreted land uselland 
cover during the three periods under consideration 
is shown in Table 7. Agricultural lands dominated 
the study area by occupying 51.3 percent in 1972, 
66 percent in 1975, and 64.1 percent in 1980. In all 
the years, rainfed agricultural land is nearly twice 
as large as the cultivated area of the fadama (Plate 
1). Based on field observation and the agricultural 
statistics, millet is found to be the most prominent 
crop grown in the study area (Table 8). Although 
cow peas and other crops are grown on the millet 
fields (when the latter have reached maturity), the 
fact that millet is contiguously grown by nearly all 
the farmers indicates the possibility of digitally map- 
ping the areas where they are grown. This, of 
course, depends on the availability of Landsat MSS 
data during the middle of the growing season (Au- 
gust-September). 

Shrublthicket and the wooded shrubland occu- 
pied more than 25 percent of the study area. In 
these two classes, pockets of farmland are present; 
but because of their small sizes as well as their hag- 
mentation, they have not been classified separately 

TABLE 7. LAND-USE AND LAND-COVER STATISTICS 

1972 1975 1980 
Class 
Nos. Hectares % Hectares % Hectares % 

1 19789.0 20.3 18258.3 18.7 20875.0 21.4 
2 13801.3 14.1 22939.3 23.5 26143.8 26.8 
3 16493.0 16.9 23613.5 24.2 15518.5 15.9 
4 12610.3 12.9 7628.8 7.8 7905.5 8.1 
5 20180.0 20.7 16129.3 16.5 18971.3 19.4 
6 2689.0 2.8 3642.3 3.7 1757.8 1.8 
7 2315.8 2.4 1045.3 1.1 2773.0 2.8 
8 113.8 0.1 171.3 0.2 3705.5 3.8 
9 9564.3 9.8 4186.5 4.3 - 

Total 97650 100 97650 100 97650 100 
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PLATE 1. Land-uselland-cover map of the study area. (1) Cultivated fadama, (2) rainfed agricultural land area 1,  (3) 
rainfed agricultural area 2,(4) mixed shrubland thicket, (5) wooded shrubland, (6) bare soil, (7) wetland, (8) water 
body. (The interval between the main grid lines on the map is 10 km.) 

except where contiguous farm plots are large 
enough. Other features of the land-usenand-cover 
distribution include 

The decreasing bare soil area in 1980 (wet season). 
It is however possible that the larger bare soil area 
reported for 1972 and 1975 (dry seasons) was caused 
essentially by climatic variation. Some of the areas 
may become vegetated or cultivated during the wet 
season. 
The increasing area occupied by surface water in 
1980. This again was due to the new Bakolori res- 

Crop 
Yield 

Hectarage (Tons) 

Rice 
Maize 
Millet 
Guinea Corn 
Wheat 
Cowpea 
Vegetable 
Ground-nut 
Cotton 
Sweet Potato 
Others* 

Total 3,276 5,906.5 

Source: Extracted from the report prepared by the Bakolori Irrigation 
Project Office, Talata Mafara, 1983. 

w = wet season; d = dry season; wd = wet and dry seasons. 
'These include sweet potato, tomato, onion etc. 

.'\ 
IMO COVER MOP 
IF LONOSOT USS JUNE 10 1980 

ervoir. This reservoir has not been shown in any 
national or state map. The reservoir was separately 
classified in order to estimate its (1980) area. It oc- 
cupied 2442.5 hectares, that is, 65.9 percent of the 
total surface water area in June 1980. 
The large burnt areas in 1972 and 1975. These 
burnt areas occur around wetland areas which sup- 
port tall grasses. 

CONCLUSION 
The primary objective of this exploratory study 

was to examine the digital classification of land use1 
land cover of a semi-arid area of Nigeria-the Ba- 
kolori irrigation project area-using multitemporal 
Landsat MSS data. Landsat MSS computer compat- 
ible tapes (CCTS) were the primary data used. Aerial 
photographs and radar mosaics were used as com- 
plementary sources of data. 

These data sources are not necessarily the best 
options for an operational resource investigation for 
several reasons which include: (1) because of the 
climatic variations and its effect on crop calendar, 
an AugustISeptember (mid-wet season) and January1 
February (mid-dry season) Landsat data would have 
been the most ideal for the land-uselland-cover clas- 
sification of the study areas; and (2) none of the sup- 
plementary data sources was temporally compatible 
with the Landsat data. Notwithstanding these lim- 
itations, the data are considered suitable for this 
exploratory study. 

The major findings of the study reveal that 

The computer-assisted classification of Landsat MSS 
images can provide rapidly, basic, up-to-date, lo- 
cation specific, as well as quantitative data on broad 
categorization of land uselland cover for the semi- 
arid areas of Nigeria. 
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As much as possible, soil and landform character- 
istics in addition to spatial and spectral resolutions 
should be integrated for the classification of land 
uselland cover. Specifically for the study area, dif- 
ferences in the density of tree canopy, mixed crop- 
ping of small farm plots, varying ground moisture 
conditions, and atmospheric attenuation are factors 
which influence the classification as well as causing 
misclassification. 
The difficulty of mapping individual crop types in 
the study area is not only caused by the limitations 
imposed by the Landsat resolution factor and the ". ~nappropriateness" of the data used in terms of 
their dates of acquisition, it is also caused by the 
small sizes of farms and the mixed cropping being 
practiced in the area. Short of developing a new 
technology that will be suitable for such land man- 
agement practices, greater benefits will be derived 
from the current and the near future remote 
sensing technology by the modification of the cur- 
rent agricultural land management practices in the 
area. Apart from the need to remove the culturally 
induced fragmentation of farmlands, the uncon- 
trolled grazing and exploitation of the scant wood- 
land areas further enhance the harsh climatic sit- 
uation. These activities not only expose the soil to 
higher evapotranspiration, but also enhance the 
southward desertification process and the reduc- 
tion in the available productive land. 
In spite of the second and third factors above, the 
land-uselland-cover classes established for the 
study area are quite separable and statistically ac- 
curate. Also, the result has provided a useful base 
for future land-uselland-cover change analyses of 
the area. 
The best periods for Landsat MSS acquisition for the 
classification of land uselland cover of the study 
area are JanuaryIFebruary for dry season inventory 
and AugustISeptember for wet season inventory. 
The knowledge of traditional photointerpretation is 
a necessary prerequisite for the optimal application 
of computer-assisted analysis of Landsat MSS for 
classification of land uselland cover of the area. 
Also, appropriate field surveys should be carried 
out to coincide with the Landsat overpass of the 
study area (lacking in resource data) so as to provide 
a more reliable way of cross-checking and modi- 
fying the result of digital classification. A major con- 
straint found in the study area is the lack of ade- 
quate motorable roads to enhance field work ac- 
tivity. Apart from the recently established irrigated 
area, most of the settlements are only accessible by 
foot or on camels. 
For long-term usage, especially for quantitative 
analysis and for change detection, the registration 
of the Landsat MSS data to the national grid is nec- 
essary. Because relatively current topographic 
maps are required for the registration, national 
classification of land uselland cover in Nigeria will 
face some daculties because of the lack of com- 
plete topographic map coverage and the age of 
most of the available maps. 
Although hard copy of the classification resulting 
from digital analysis of Landsat MSS can be provided 
rapidly to the resource planner in the form of color 
coded thematic maps in variety of scales, more car- 
tographic processing is necessary than was 

achieved in this study in order to provide the ad- 
ditional information that will make the products 
more colnprehensible (e.g., roads, place names, 
etc.). 
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Forum 
Optimum Sampling for Digital Terrain Models: 

A Trend Towards Automation 

I T IS WITH INTEREST that I recently came across an 
article by 0 .  0 .  Ayeni titled "Optimum Sam- 

pling for Digital Terrain Models: A Trend Towards 
Automation" (PEGRS, November 1982, pp. 1987- 
1994). In this article Ayeni is examining some of the 
approaches to spatial sampling and the tradeoffs for 
aligned/unaligned, stratified, and random sampling 
frames. Further in his analysis he suggests the pos- 
sibility of a ". . . seventh sample pattern-the un- 
aligned systematic stratified random pattern . . ." 
which ". . . was found to be most efficient in nearly 
all of the terrains investigated." 

This sampling frame is remarkably similar to the 
stratified systematic unaligned sampling frame pro- 
posed by Berry and Baker (1968) about 15 years 
earlier. It is interesting to note that Berry and Baker 
came to essentially the same conclusion when they 

said ". . . ifthe shape of the autocorrelation function 
is unknown and linear trends or periodicities may 
occur, addition of stratification and randomization 
to the systematic sample to produce a stratified sys- 
tematic unaligned sample appears to yield both 
greatest relative efficiency and safety to estimation 
procedures." Perhaps Berry and Baker's findings 
will add a bit of perspective to Ayeni's results. 
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