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ABSTRACT: Close-range-photogrammetry systems are extremely well suited for three-dimen- 
sional analysis of displacements and deformations of engineering objects and structures. The 
paper presents a new method of analysis where displacements and deformation of an object 
are identified with the velocities of a network of object-points. Following their least-squares 
estimation, the velocities are decomposed into global rates of displacement and deformation 
of the object and into residual components. Various systems of measurements are studied 
and their potential for estimating the above parameters is evaluated. Mathematical models 
of adjustment are discussed sche~naticall~, including linear constraints needed to define the 
reference system. 

INTRODUCTION: KINEMATICS OF A NETWORK 
OF POINTS 

A NALYSIS OF DISPLACEMENTS and deformations by 
close-range photogrammetry is not different in 

principle from that based on geodetic measure- 
ments. The identity of the parameters, the need for 
solving the datum problem (see Appendix B), and 
many other computational details are practically the 
same. Close-range photogrammetry, however, com- 
mands two typical and important advantages as 
shown by Fraser (1982): 

through a proper choice of the supplementary mea- 
surements, the need for a direct contact with the 
object which is being analyzed can be avoided; and 
the photogrammetric document (the photograph) 
remains available for "second thought" measure- 
ments of additional object points at later stages of 
the analysis. 

At the outset we assume the existence and acces- 
sibility of a Cartesian coordinate system (XYZ) 
which is stable. I t  serves as a reference for de- 
scribing the position, the orientation, and the mo- 
tion of objects or structures which are being inves- 
tigated. Through a process of discretization we ac- 
tually investigate the behavior (with respect to XYZ) 
of a network of points which have been marked on 
that object. 

Any point in the network is conceived as being 
in a state of motion with respect to the reference 
system. If we assume the velocities to be constant 
over a specified time interval, we can write the basic 
kinematic equation of the network as follows: 

where XT = (x,y,z,x,y,z,x, . . . ) j ;  

5,s are vectors containing the Cartesian 
coordinates of the net points at the 
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given moment Tj and at the standard 
epoch To, respectively; and 

%? = (k1Q1~l%2~2 . . .) is a vector of velocity 
components of the net points. 

Equation 1 can be written differently as follows: 

The velocities are assumed to be constant. As a 
result, Equation 2 is valid for any two epochs of 
time; for example, T,  and T ,  instead of To and T,. 
In this paper we adopt the linear velocities model 
as the only practical alternative in cases of small and 
variable accelerations. The validity of the linear 
model has to be tested, however, as an integral part 
of the computational process. 

In displacement and deformation analysis we are 
interested in the variations in point coordinates 
which have taken place between two given epochs 
of time. Thus, according to Equation 2, only point 
velocities are needed for our analysis while the stan- 
dard epoch coordinates can be regarded as nuisance 
(irrelevant) parameters (Papo and Perelmuter, 
1983). The velocities of points in a network can be 
easily decomposed into a systematic (homogeneous) 
component (see Appendix A) and into residual (in- 
dividual) velocities. The homogeneous component 
is parameterized by the rates of translation and ro- 
tation of the network with respect to the XYZ 
system and by its rates of deformation (strain and 
shear) which are independent of XYZ. 

Assuming the availability of appropriate measure- 
ments (see next section), analysis of deformations 
according to the proposed method is performed in 
two steps: 

(1) estimation of object-point velocities and respec- 
tive covariance matrix from least-squares processing 
of the measurements, and 
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(2) derivation of displacement and deformation pa- TABLE 1. GEOMETRIC CLASSIFICATION OF MEASUREMENTS 
rameters from the object-point velocity field as fol- I N  3-D 
lows (Mase. 1970): 

\ - - - ~ - - ?  -~~ r 
- - -  Measurements Number of Dependence on 

rates of translation x . y , i  Points the Reference 
rates of rotation rx,ry, rz Type Description Involved XYZ System 
rates of deformation (strain) d,,,d,,,dzz 

1 s~at ial  distance 2 none 

As the rates of translation and rotation are defined 
with respect to to XYZ, it is imperative to be more 
specific about its realization. It is common practice 
to select a subset of the network points (reference 
points) which are characterized by their stability or 
equivalently by having small (insignificant) veloci- 
ties. As shown in Papo and Perelmuter (1983), 
through free-net constraints which are imposed on 
the velocities of those points, we define an XYZ 
system such that the rates of translation and rotation 
of the reference points are identically zero. The con- 
sistency in the behavior of the reference points is 
tested with the introduction of each new batch of 
measurements. 

We should note that in close-range photogram- 
metry there are three different types of points in- 
volved in deformation analysis as follows: 

R, reference points ---define the reference XYZ 
system 

P, object points -represent the object 
which is being analyzed 

0, projection centers -are the principal points of 
the photogrammetric bun- 
dles. 

ESTIMABLE PARAMETERS AND DATUM 
DEFECT IN A SYSTEM OF MEASUREMENTS 

In this section we present the results of studying 
the datum defect of typical close-range photogram- 
metry systems and the identity of parameters of dis- 
placement and deformation which can be estimated 
(see Appendix B). The datum defect is associated 
with the inherent inability of a particular system of 
measurements to completely define the reference 
XYZ system. 

Table 1 shows six types of elementary measure- 
ments between points in three-dimensional space 
made with respect to the XYZ system (Papo and 
Perelmuter, 1982; Papo and Shmutter, 1978). A di- 
rectly measured spatial angle is a special case of the 
type-2 measurements where there are only two di- 
rections in the bundle. Measurements consisting of 
x,y photocoordinates and processed under the as- 
sumption that the photogrammetric system satisfies 
the collinearity conditions and the inner orientation 
parameters of the camera are perfectly known would 
result in a typical bundle of directions. Note that 
some of the measurement types are interrelated. 
For example, a combination. of type-2 and type-6 
measurements is equivalent to type-4 and type-5 
measurements. 

Eight different systems of elementary measure- 

2 burhle of directions 3 or more none 
3 elevation difference 2 Z axis 
4 vertical angle 2 Z axis 
5 azimuth 2 XYZ axes 
6 bundle orientation 3 or more XYZ axes 

ments were studied in terms of their datum defect 
and the identity of estimable parameters. The re- 
sults are shown in Table 2. The datum defect is par- 
titioned according to the need for defining the or- 
igin, the orientation, and the scale of the reference 
XYZ system. The types of points involved in the 
measurements are marked in the Table by "+ ". In 
those cases where the particular type of points is 
immaterial, " + / + " has been marked indicating that 
either type could be measured. It is assumed that 
the specified types of measurements have been 
made at two or more different epochs (Niemeier, 
1981) and that there are no configuration defects. 

We summarize the contents of Table 2 by the 
following remarks: 

The photogrammetric bundles serve only as a flex- 
ible binder between the network points. They 
monitor variations in its form without introducing 
any scale bias (system 1). 
A reduction in datum defect for orientation can be 
obtained by the measurement of elevation differ- 
ences or of vertical angles. However, the elevation 
differences, which are given conventionally in units 
of distance, do not have any effect on the scale de- 
fect (system 3). 
One or more directly measured spatial distances at 
two or more epochs eliminate the datum defect 
associated with scale-change and enable a complete 
solution of translation- and deformation-rates. 
In systems 1 and 4, where no measurements to the 
reference points were made, the datum defect is 
corrected by constraints imposed on the object- 
point velocities (instead of the reference-point ve- 
locities). 
Reduction of the datum defect and increase in the 
number of estimable parameters is achieved 
through direct measurements of types 3 through 5 
where the particular group of points involved in 
those measurements is immaterial (systems 7, 8). 

MODELS FOR LEAST-SQUARES ESTIMATION 
OF VELOCITIES 

We turn our attention first to some technical as- 
pects of the photogrammetric measurements and 
their combination with direct field measurements. 
The photogrammetric camera can be set on a tripod 
or can be carried on an airplane or on a helicopter. 
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TABLE 2. ESTIMABLE PARAMETERS AND DATUM DEFECT 

Points Estimable Datum 
Measurements Involved Parameters Defect 

System Type Description R P 0 TRAN ROT DEFO ORIG ORNT SCL 
- 

1 2 photo-bundles + + 5 3 3 1 
2 2 photo-bundles + + + 2 3 5 3 3 1 
3 2 photo-bundles + + + 2 3 5 3 1 1 

3 elevat-differ + / + I +  
4 2 photo-bundles + + 6 3 3 

1 spat-distance + / + 
5 2 photo-bundles + + + 6 3 3 

1 spat-distance + / + / + 
6 2 photo-bundles + + + 6 3 1 

1 spat-distance + / + / + 
31 elevat-differ + / + / + 

14 vertical-angl + l + / + 
2 photo-bundles + + + 3 
1 spat-distance + 
6 bundle-orient + + 
2 photo-bundles + + + 3 
1 spat-distance + / + / + 
31 elevat-differ + I + / +  

14 vertical-angl + / + / + 
5 azimuth + I + / +  

Without loss of generality, we limit our discussion 
to non-simultaneous photographs so that the index 
j of the epoch of measurements (T,) identifies the 
particular bundle of directions. 

In aerial photogrammetry the projection center 
0, is in a state of motion which makes direct mea- 
surements involving 0-type with P-type and R-type 
points difficult if not impossible. The bundle ori- 
entation angles are treated as free variables or as 
weight-constrained parameters (measurements) de- 
pending on the availability of auxilliary information. 

In terrestrial photogrammetry it is convenient to 
perform measurements which involve the projec- 
tion centers 0,. In many terrestrial cameras the 
measurement of bundle orientation angles is 
straightforward. 

A typical close-range-photogrammetry campaign 
of measurements for displacement and deformation 
analysis is defined as a series of metric photographs 
taken together with other field measurements. Such 
a campaign can last anywhere from a few seconds 
up to a number of years. 

We should note an interesting difference between 
the various point groups which are involved in the 
analysis: 

group P are by definition four-dimensional points. 
Their velocities are perceived as the primary ob- 
jectives of deformation analysis. 
group R are also four-dimensional points. How- 
ever, in order to qualify as reference points, their 
velocities have to be insignificant. Their signifi- 
cance is tested by an F-test of hypothesis (H,: X, 

= 0). Thus, in terms of the null-hypothesis, those 
points are defined actually in three dimensions. 
group 0 are by definition three-dimensional points 
as their principal function as projection centers of 
the photogrammetric bundles is instantaneous. 
They are defined only at the moment of exposure. 

The complete list of parameters pertaining to a 
typical deformation analysis problem is as follows: 

Xp standard epoch (To) coordinates of P-type 
points 

X, standard epoch (To) coordinates of R-type 
points 

XoJ coordinates of 0, (projection center of the 
T, bundle) 

XQ, orientation angles of the 5 bundle 
?i, velocities of the P-type points 
A,, velocities of the R-type points 
A,, velocities of the R-type points 

The partitioning of 8, into %,, and kR2 is required 
by the particular method of imposing free-net con- 
straints which in turn is inherent in the definition 
of the XYZ reference system (Perelmuter, 1979; 
Papo and Perelmuter, 1982). $, is of size d equal 
to the datum defect of the particular system of mea- 
surements as shown in Table 3. 

A detailed derivation of partial derivatives of the 
measurements in Table 1 with respect to the above 
parameters would be contra-productive in mis- 
placing the emphasis from the main issues of this 
paper. Table 3 presents a schematic substitute of a 
partial derivatives matrix, including constraints 
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TABLE 3. SCHEMATIC PARTIAL DERIVATIVES MATRIX WITH CONSTRAINTS 

3 3 . 3 3 . 3k 3m-d d 3k 3m-d d 
Parameters 

X ~ l  %2 . %l %2 . 'P ' ~ 1  x~ '~1 xR9. 
Measurements Type 

photo-bundle T1 

photo-bundle T2 

orien-bundle T 1  

spatial distn 
elevation diE 
vertical angle 

spatial distn 
elevation diE 
vertical angle 
azimuth 

- -  

/ / I  1 / 1 1  I l l  / / I  1 / 1 1  / I /  

/ I /  . 1 1 1  / I / /  I l l  I l l  I l l 1  / / I  

/ I /  I l l  . 
/ / I  / / I  . 
I l l  / / I  . 

I l l  / / / I  / / I  / / I  / / / I  / I /  
. I / /  1 / 1 1  / I /  / / I  1 / 1 1  I l l  
. I / /  l l l l  I l l  / / I  1 / 1 1  1 1 1  
. / I /  l l l l  / I /  / I /  1 / 1 1  / / I  

Weight Constr. I  / / d 

Free Net Constr. / / / / I / / /  d 

which are i m ~ o s e d  on some of the Darameters. The normal eauations formed for all of the above Daram- 
datum defect of the various observational syste~ns is e ters  are  reduced by folding-in the  nuisance 
eliminated by imposing two types of constraints as (Xpj,Xoj) and the datum (x,,,*,,) parameters. The 
follows: nuisance parameters X, and X,, are not folded- 

in as they are common to all the Tj batches. The *,, 
weight constraints are applied on d of the XR CO- parameters are evaluated from $, through Equation 
ordinates (XRZ) for defining the XYZ system at the 6. Each new update (Tj) of *, and k, is subjected To epoch, and 
d free-net constraints are applied on the jl, to the following testing and transformation proce- 
ities in order to define XYZ as a reference frame dures: 
for rates of translation and rotation. 

The free net constraints minimize the sum of 
squares of the reference-point velocities as shown 
in Perelmuter and Papo (1983). 

Equation 4 is transformed (through differentia- 
tion) into d independent linear conditions which are 
to be satisfied by the 9, velocities 

where [C,C2] is ~ e l m e r t ' s  transformation matrix. 

The consistency of the R-points' motion is tested 
through an F-test null-hypothesis imposed on the 
XR velocities. A rejection of the null-hypothesis sig- 
nifies that one or more of the R-points deviate sig- 
nificantly in their motion as compared to the other 
R-points. Those points are identified and are trans- 
fered temporarily from the R-group. 
The P-type points are partitioned as necessary into 
P-subgroups according to external (subjective) in- 
formation. The velocities of each P-subgroup are 
transformed into rates of translation and rotation 
with respect to the R-group (the XYZ reference 
system) and into rates of deformation. The residual 
velocities of the P-subgroups are inspected visually 
or are tested statistically as a feasibility check of the 
partitioning. 

C, is inverted (it is a full rank matrix, as shown 
in Perelmuter (1979) ) and used to form the linear SYSTEM SENSITIVITY TESTING 

relationship between A,, and X,,: i.e., We have seen above that estimability of the pa- * = -Cn l -C1-x , , .  ralneters depends on proper selection of the type of 
~2 (6) measurements which constitute the system. I t  is 

There are definite advantages in processing the equally important to design the accuracies of the 
measurements made at successive Tj epochs by a various measurements so that the parameters would 
sequential mode of adjustment. At each T, stage the be estimated at a desired level of significance. 
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Fraser (1982) describes experiments which were 
simulated to test the sensitivity of a number of pho- 
togrammetric measurement systems. Applied to a 
list of marginal velocities of object-points, the same 
method can be used to test the capacity of the 
system to detect those velocities at a certain signif- 
icance level. 

A variable U which has an F-distribution is com- 
puted as follows: 

where Qp is the covariance matrix of the velocities 
of k object points (which form a P-sub- 
group) (the Qp matrix is obtained by a 
simulation of the particular measure- 
ments system whlch is being tested); 

o$ is the variance of unit weight which 
would be estimated from the weighted 
sum of squares of measurement correc- 
tions divided by f, the simulated de- 
grees of freedom (in Equation 7 its value 
can be set equal to 1.0); and 

$ are values of the marginal velocities of 
the k object points. Those values are 
specified by the party interested in the 
analysis. 

If the null-hypothesis (gP = 0) is not rejected (in 
case U < FskJso) it would mean that the geometry 
and the quality of the simulated measurements (0,) 
are inadequate for determining ?ip at the (Y level of 
significance. 

Through proper modification (improvement) of 
the simulated measurements, an eventual situation 
should be reached where the null-hypothesis is fi- 
nally rejected. Then we can be confident (at the a 
level) that the system of measurements when per- 
formed in practice will be sensitive enough to detect 
velocities of the magnitude of $. 

SUMMARY AND CONCLUSIONS 
We have shown in some detail how the proposed 

method for analysis of deformations can be applied 
in close-range photogrammetry. Compared with 
other methods employed in geodesy and photo- 
grammetry (Perelmuter and Papo, 1983), it stands 
out by its general and straightforward mathematical 
model. The validity of the few assumptions which 
are made is tested as an integral part of the com- 
putational procedure. 

The main purpose of the paper was to draw at- 
tention to two problem areas in deformation anal- 
ysis, namely, the need for datum definition in a dy- 
namic environment and the limitations in type and 
identity of parameters which can be determined 
from the measurements. An attempt was also made 
to present the principal goals of deformation analysis 
in simple geometric (or rather kinematic) terms. 

The computational procedure was presented 

schematically emphasizing the sequence of elemen- 
tary steps rather than going into the details of partial 
differentiation of the various measurements. So far 
we have had no opportunity to apply our method to 
concrete practical cases in close-range photogram- 
metry. Judging, however, from many simulations as 
well as from the sound theoretical foundation, we 
feel confident in the merits and feasibility of the 
proposed method of analysis. 
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APPENDIX A 

DECOMPOSITION OF A VELOCITY FIELD INTO 
HOMOGENEOUS AND 

RESIDUAL COMPONENTS 

We apply principles of continuum mechanics to 
the analysis of a point-velocity field. The degree of 
cohesion of solid objects and structures has a direct 
bearing on their motion and deformation. The struc- 
tures are  usually represented by a network of 
marked points which have strongly correlated ve- 
locities. Those correlations are directly proportional 
to the cohesion of the structure. 

Let us have such a network defined at a given 
moment with respect to a stable reference system 
by the vectors of position X and velocity % of its k 
points. First we evaluate an average velocity for the 
network: 

- - - 
The vector ( k , f ~ , f )  identifies the velocity of the 

network's center of mass with respect to the refer- 
ence system. 

The velocities of the individual points, in addition 
to the above global translational velocity, are due 
also to rotation as well as to network deformation, 
as shown in Mase (1970). The residual velocities 
(after subtracting the above homogeneous compo- 
nents) can be regarded as virtually random quanti- 
ties. If, however, the network is moving as a system 
of several rigid subnets, we have to identify respec- 
tive rates of translation, rotation, and deformation 
for every subnet. As a reference we can use the 
same or an alternative system, whichever is more 
convenient and useful. 

Partitioning of the velocities vector into ho- 
mogeneous and residual components is accom- 
plished through L, the velocities' tensor. L is basi- 

where L is the network velocity tensor, 
I is the 3 x 3 unit matrix, 

( k , ~ , t ) ~ ~  are the components of residual ve- 
locity of point Pi, and 

( T , ~ , z )  are the instantaneous coordinates of 
the network's mass-center. 

Matrix L is partitioned into a unique pair of a 
symmetric and a skew-symmetric matrices as fol- 
lows: 

(A3) 
where R is the vorticity tensor of the network, while 
matrix D is identified as the deformation-rate tensor 
(Mase, 1970). 

Now Equation A2 is written in a more meaningful 
form: i.e., 

Eli= [:I+ R [I]; (D - 1). [Ii+ [i], 
where ( ~ , B , z ) ~  are now the coordinates of point Pi 

with respect to a Cartesian system 
which is parallel to the reference 
system and has its origin at the net- 
work's center of mass. 

The velocity components in Equation A2' due to 
translation and to rotation can be rewritten as fol- 
lows: 
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where p is a 6 x 1 vector of rates of displace- 
ments (translation and rotation) of the 
network with respect to the reference 
system, and 

Ci is part of the well known Helmert's 
transformation matrix C. 

The components in Equation A2' due to defor- 
mation can be also rewritten as follows: 

where q and Fi are analogous to p and Ci. They 
pertain to homogeneous deformation. 

We extend now Equation A2' to include all the 
points in the network while substituting Equations 
A4 and A5: i.e., 

k = (CTFT) . + = HT - g + X, (A6) l: J 
where fi ,  is the vector of residual velocities. 

An important property of the k, velocities is their 
compliance with the following conditions similar to 
the well known inner adjustment constraints as for- 
mulated by Meissl (1969): 

Equation A7 holds for an arbitrary reference 
system, or in other words, another choice of a ref- 
erence system would result in exactly the same re- 
sidual velocities (Meissl, 1969; Perelmuter and 
Papo, 1983). 

Let us have a system of measurements which 
when processed according to least-squares princi- 
ples results in estimates of ji and its covariance ma- 
trix 0. Provided the network is composed of at least 
four noncoplanar points, the H matrix is of full (12) 
rank and Equation A6 can serve as a model for un- 
biased least-squares estimation of g. The normal 
equations are formed on the basis of the following 
minimum condition (least squares): 

q - Q - l . * ,  = min. 

The solutions for g and its covariance matrix are 
derived in the usual way: 

g = ( W  -0-1. H)-1. ( W .  Q-1 . *) 
8, = ( W  - 0-' . H)-I (A91 

The above is not the only rigorous solution of the 
problem and not necessarily the best one. The re- 
sidual velocities *, can be treated as stochastic vari- 
ables with an autocovariance matrix which is vir- 
tually independent of the measurement errors. 
Such an approach would entail the use of methods 

similar to those proposed by Hein and Kisterman 
(1984). 

APPENDIX B 

CONCEPTS IN ESTIMATION THEORY 

Certain terms referred to frequently in the paper 
are defined in this Appendix in order to preclude 
ambiguity and misinterpretation of their meaning. 

Parameters in the mathematical model of a set of 
measurements (Papo, 1973) which can be deter- 
mined (estimated) uniquely from processing those 
measurements without the need for any additional 
information are estimable parameters (Grafarend 
and Schafrin, 1976). The above concept can be ex- 
tended to include a case where the set of observa- 
tion equations is appended by linear constraints. In 
such a case the parameters are estimable subject to 
those constraints. 

The number of non-estimable parameters in a 
system define the size of its defect. One part of the 
defect which can be corrected by additional mea- 
surements of types already present in the existing 
set is known as configuration defect (Welsch, 1979; 
Wolf, 1983). The remaining defect which can be cor- 
rected either by introducing new types of measure- 
ments or by imposing linear constraints on the pa- 
rameters is defined as the datum defect of the ex- 
isting system of observation equations. I t  is 
customary to associate the datum defect with the 
need to define a reference coordinate system. In a 
system of observation equations whose defects have 
been corrected by additional measurements and 
constraints, all the parameters are estimable subject 
to those additions. 


